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Abstract Stakeholders of machine learning models desire explainable artificial intelligence (XAI) to produce 
human-understandable and consistent interpretations. In computational toxicity, augmentation of text-based 
molecular representations has been used successfully for transfer learning on downstream tasks. Augmentations 
of molecular representations can also be used at inference to compare differences between multiple repre-
sentations of the same ground-truth. In this study, we investigate the robustness of eight XAI methods using 
test-time augmentation for a molecular-representation model in the field of computational toxicity prediction. 
We report significant differences between explanations for different representations of the same ground-truth, 
and show that randomized models have similar variance. We hypothesize that text-based molecular representa-
tions in this and past research reflect tokenization more than learned parameters. Furthermore, we see a greater 
variance between in-domain predictions than out-of-domain predictions, indicating XAI measures something 
other than learned parameters. Finally, we investigate the relative importance given to expert-derived structural 
alerts and find similar importance given irregardless of applicability domain, randomization and varying training 
procedures. We therefore caution future research to validate their methods using a similar comparison to human 
intuition without further investigation.

Scientific contribution In this research we critically investigate XAI through test-time augmentation, contrasting 
previous assumptions about using expert validation and showing inconsistencies within models for identical repre-
sentations. SMILES augmentation has been used to increase model accuracy, but was here adapted from the field 
of image test-time augmentation to be used as an independent indication of the consistency within SMILES-based 
molecular representation models.
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Graphical Abstract

Introduction
Explainable artificial intelligence (XAI) is used to eluci-
date how predictions from machine learning (ML) mod-
els are generated [1]. XAI is required to identify security 
and bias risks, enhance new discoveries by elucidat-
ing the reasoning behind predictions and enforce Right 
of Explanation policies [2]. Explanations are reported 
by assigning relative importance to the input variables. 
Notably, different XAI methods adopt different approxi-
mations to determine this importance in relation to the 
ML model [3–7]. These distinct techniques come with 
their individual variances, underpinned by a foundation 
of internal model uncertainty that forms the basis for 
their explanations. As these XAI methods yield outcomes 
with varying degrees of uncertainty [8–10], it raises con-
cerns about potential distrust among end-users. Thus, in 
this study, we delve into how the internal model repre-
sentations affect the stability of these explanations, nota-
bly in the field of toxicity prediction.

Historically, computational toxicity prediction relied 
on statistical methods, structural alerts, and quantitative 
structure-activity relationship (QSAR) models [11], often 
based on chemical descriptors or fingerprint represen-
tations. However, a recent surge in popularity revolves 
around natural language processing (NLP) used for text-
based representation learning in molecular modeling, 
exemplified by the high accuracy of the transformer CNN 
[12] for Ames mutagenicity prediction [13]. The Ames 
test [14] serves as a screen for mutagenic compounds, 
and had important advantages when it was first intro-
duced, including less test chemical, time, plastic and can 
be automated [15]. In NLP-based molecular representa-
tion for prediction of Ames, Simplified Molecular Input 
Line Entry System (SMILES) [16] are used to represent 
molecules as a text string. These SMILES are then used 
within an NLP-driven machine learning (ML) model, 
such as sequence-to-sequence (seq2seq) [17, 18]. Later 

state-of-the-art NLP models used augmentation strate-
gies including masking [19, 20], which also spread to NLP 
models for cheminformatics [12, 21, 22]. Furthermore, 
the high accuracy of the transformer CNN was partly 
achieved with data enumeration. Comparable to vision-
based ML, where images are rotated to augment the 
training data, researchers used multiple SMILES strings 
representing the same molecule [23]. This was then used 
to optimize internal model representations in an auto-
translation task to capture intricate structural nuances 
[24].

When model input can be directly translated to struc-
tural parts of a molecule, explanations from XAI meth-
ods more naturally correspond to human intuition. These 
XAI techniques extend their importance assessment 
capabilities across global and local dimensions. On the 
global context, the evaluation centers on the role of vari-
ables in shaping the model’s overall construction [25]. In 
the local context, the focus shifts to the influence of vari-
ables on specific predictions, a facet that aligns with our 
current investigation. Local prediction elucidation strat-
egies have emerged in the literature, including approxi-
mating complex models with simpler ML counterparts 
[5], or leveraging game theory to pinpoint influential 
input variables by comparing a selection of subsets [4]. 
Alternatively, researchers have harnessed the model’s 
intrinsic architecture to unveil its decision-making pro-
cesses. In deep learning, integrated gradients [3] use 
accumulate local gradients to assess variable effects on 
output. Alternatively, XAI can use inherently interpretive 
parts of a model. The latter has proven especially influ-
ential by using the attention mechanism of transformers, 
exemplified by recent work from Qiang et al. [7] that uti-
lize the transformer attention mechanism thought to be 
inherently interpretable [18].

Contrasting multiple input parameters that represent 
the same underlying ground truth is a method to assess 
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the stability of a model or method. This test-time data 
augmentation has been used in prior research conducted 
in domains including medical imaging, where data aug-
mentation techniques, such as image rotation and con-
trast adjustment, have been used to measure model 
uncertainty [26, 27]. These strategies have demonstrated 
their efficacy in enhancing model performance, gauging 
model uncertainty, and increasing robustness. However, 
this methodology remains largely unexplored within the 
field of XAI concerning molecular representations, pre-
senting an opportunity to assess the robustness of XAI 
methods.

In this study, we delve into the challenges presented 
by Langer et  al. [28] who investigated that stakeholders 
of ML models desire XAI methods to produce human-
understandable and consistent interpretations. We focus 
on the robustness of local XAI methods for molecular 
representations, specifically by comparing importance 
assigned to equivalent SMILES representations. Our 
study has broad implications for the XAI field, given the 
potential impact of varying importance assignments in 
toxicity prediction. Our contributions can be summa-
rized as follows:

• We investigate the influence of molecular pre-train-
ing settings on the transfer learning on Ames muta-
genicity.

• We assess the robustness of eight XAI methods given 
different representations of the same underlying mol-
ecule, using test-time augmentation.

• The robustness is assessed using different data distri-
butions, training variations and from the perspective 
of model randomization.

• Additionally, test-time augmentation is investigated 
as a means of increasing consistency between XAI 
methods for the same model and interpretations of 
the same XAI method from different learned repre-
sentations.

• Finally, we provide a global-level comparison of 
model attributions with expert-based structural 
alerts.

Background
Here, we describe the mathematics behind the trans-
former-based, deep learning and model agnostic meth-
ods investigated in this paper. The methods utilize 
some common parameters and variables including the 
sequence length S, embedding dimension E, number of 
attention heads h, and head-specific embedding dimen-
sion d = E/h , number of layers L. Furthermore, we 
define x as the tokenized input sequence, Ames predic-
tion model f (x) = y, y ∈ R

2 . XAI attributions are given 
as φ ∈ R

S×E , where E can equal S depending on the XAI 

method. Because the dimensions of the embedding of φ 
can be different based on method, we average over the 
embedding space to make φi = 1

n

∑n
j=0 φi,j , which means 

that φi, i ∈ (1, ..., S) is consistent between methods.

Transformer‑based interpretation
Methods that depend on the transformer architec-
ture primarily make use of the attention mechanism. 
We here redefine the methods proposed by Qiang et al. 
[7]. Vaswani et al. [18] defined the multi-head attention 
αl
h ∈ R

h×S×dh of layer l ∈ (0, ...,L) (Eq. 1). Later usage of 
αi,j corresponds to the values averaged over all heads. 
Furthermore, the output of each layer in the encoder is 
denoted as ol ∈ R

S×E is defined in Eq. 2.

In Eqs.  1, 2 (Q,K,V) ∈ R
h×S×d represent the projec-

tion matrices of query, key and values respectively, and 
WO ∈ R

E×E represent model weight matrix of the pro-
jection in multi-head attention. Bias is left out in the defi-
nitions for simplicity.

Firstly, [29] proposed to use the raw attention directly 
as an explanation of the entire model (Eq. 3). Usually the 
last layer of the encoder is used in this approach. Alterna-
tively, the raw attention by multiplying all raw attentions 
over all layers of the model can be aggregated to form one 
explanation, as defined in Eq. 4.

In Eq. 4, IS ∈ R
S×S is the identity matrix.

Qiang et al. [7] further expanded research by Selvaraju 
et  al. [30] by using the class-activated gradients. Here, 
class-activated gradients are denoted using ∇ωyc with ω 
being the position with respect to which the gradients are 
calculated and yc is the index of the output corresponding 
to the class of interest c (in our case toxic or non-toxic). 
This was then used in the interpretation method of the 
attention layers (Eq. 5). Firstly, similarly to the attention 
maps, by using the last layer or a specific layer to explain 
the entire model. Furthermore, [7] expanded this by sum-
ming over all layers and combining the gradients with the 
raw attention (Eq. 6).

(1)αl
i,j = softmax

(

QKT

√
d

)

(2)hli,j = concat
(

αi,j,1V, ...,αi,j,hV
)

WO

(3)φi,AttentionMaps =
1

n

n
∑

j=0

αL
i,j

(4)φi,Rollout =
1

n

n
∑

j=0

L
∏

l=0

(αlIS)i,j
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In Eq. 6, ⊙ represents the Hadamard product.
Finally, [7] have defined rules to use the outputs of the 

attention layers instead of the attention itself. Here, they 
combine the outputs o with the class-activated gradients 
with respect to o, ∇o,lyc (Eq. 7) and together with the atten-
tion (Eq. 8).

Deep learning‑based interpretation
Methods that are dependent on deep learning, but not spe-
cifically transformers-based, usually depend on the calcu-
lation of the gradients for their interpretation. The most 
straightforward way is to use the basic full gradients over 
the entire model. Integrated gradients (IG) contrasts gradi-
ents of a prediction iteratively with the gradients of a back-
ground sample by integrating over the differences between 
input parameters of the sample x and the input parameters 
of the empty background x̄ (Eq. 9).

Model agnostic interpretation
The model agnostic methods use either inherently inter-
pretable approximations of models [5], or other methods 
that perturb the input and evaluate model output variation. 
One perturbation technique is using Shapely additive val-
ues (Eq.  10) [4] where game theory of parameter subsets 
are used to identify the relative importance of parameters.

In Eq.  10 F is the set of all subsets, {k} the variable of 
interest, S the sets of all subsets without {k} , and xS and 
xS∪{k} are the input with the parameters of subset S and 
S ∪ {k} respectively.

(5)φi,Grad =1

n

n
∑

j=0

(∇[α,L]yc)i,j

(6)φi,AttGrad =1

n

n
∑

j=0

(

L
∑

l=0

(∇[α,l]yc)i,j ⊙ αl
i,j

)

(7)φi,CAT =1

n

n
∑

j=0

(

L
∑

l=0

(∇h,lyc)i,j ⊙ hli,j

)

(8)φi,AttCAT =1

n

n
∑

j=0

(

L
∑

l=0

αl
i,j ⊙ (∇h,lyc]i,j)⊙ hli,j

)

(9)φi,IG =
1
n

n
∑

j=0

(

(xi,j − x̄i,j)
∫ 1

α=0

δf (x̄ + α(x − x̄))
δxi,j

dα

)

(10)

φi,SHAP =

∑

S⊆F−{k}

|S|!(|F| − |S| − 1)!
|F|!

(

fS∪{k}(xS∪{k})− fS(xS)
)

,

Methods
Data collection and processing
All data was gathered from Therapeutic Data Commons 
(TDC) (version 0.4.0) [31] which provided standard-
ized output for the ChEMBL database (version 29) [32, 
33] and the Ames dataset [13] including standardized 
splitting. Both datasets were cleaned using RDKit (ver-
sion 22.9.3) [34]. Datasets were processed to remove ste-
reochemistry and salts; to correct invalid hybridization, 
conjugation, chirality, and valency; and to set correct 
chirality, aromaticity and chemical property flags. Cor-
responding canonical SMILES were then generated and 
duplicates were removed. Finally, datapoints that had 
overlap between Ames and ChEMBL were removed from 
the ChEMBL dataset. SMILES were tokenized based on 
the character representations of the string format and 
given both a beginning-of-sequence (BOS) and end-of-
sequence (EOS) token together with optional padding 
(PAD) tokens to make sequences of equal length, accord-
ing to the original paper from Karpov et al. [12]. Struc-
tural alerts were gathered from Kazius et  al. [35] and 
generated using RDKit SMARTS (SMILES arbitrary tar-
get specification) representations. Identification of alerts 
in molecules was performed using RDKit substructure 
search.

Model architecture and training
Model training was performed using PyTorch (version 
2.0.1) [36] and Lightning (version 2.0.5) [37]. Early stop-
ping was implemented based on the validation cross 
entropy loss. Full model parameters for the training are 
described in Table 1 and a general overview of the meth-
ods used are visualized in Fig. 1.

Table 1 Model training details

Training

Parameter Pre‑training Transfer learning

Batch size 128 128

Learning rate 10−4 5× 10−5

Weight decay 0.01 0.01

Dropout 0.1 0.3

Initialization Xavier Xavier

Optimizer AdamW AdamW

Scheduler None None

Frozen encoder No Yes

Max sequence length 175 175

Token space 68 68

Embedding dimension 512 512
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Representation learning
In this study, two transformer-based architectures 
were explored to learn the molecular representation 
of SMILES. The first is the encoder-decoder architec-
ture that forms the basis of seq2seq [17] and BART [20] 
models. The second is the encoder-only architecture that 
formed the basis for the BERT model [19]. The sole dif-
ference between these architectures is that the decoder 
architecture in the former is a transformer block with 
cross attention and the latter is a simple multilayer 
perceptron.

The pre-training was based on the ChEMBL database 
(Table 2), where the task was auto translation. The archi-
tecture was trained to produce the canonical SMILES 
representation from either a canonical SMILES, rand-
omized SMILES or an enumerated SMILES (up to ten 
randomized SMILES and one canonical SMILES). Addi-
tionally, masking was performed as another way to aug-
ment the training process, where 15% of the tokens in a 

SMILES string were replaced by 80% MASK tokens, 10% 
random character tokens and 10% unchanged tokens. 
Furthermore, alternative embedding dimensions and 
pruning options were also explored.

Ames transfer learning
The architectures were used for transfer learning by using 
the pre-trained encoders from the pre-trained models 
coupled with a small neural network, the predictor. Both 
the original implementation of the transformer CNN 
where the predictor was a TextCNN layer with a highway 
unit layer, as well as a simple max pooling layer with a 
multilayer perceptron were used as model variants for 
the transfer learning stage. Transfer learning was per-
formed using canonical to a binary classification (toxic 
or non-toxic) (Table 3). During training, the pre-trained 
encoder were frozen to keep generalization capabilities, 
and trained on the scaffold split as provided by TDC. 
In order to give an indication of variance in perfor-
mance whilst still only using the scaffold split, test-time 
bootstrapping was performed where the test set was 
sampled with replacement until full test length, and pre-
diction statistics calculated 1000-fold to indicate variance 
(Tables 10, 11).

Additionally, we evaluated training variations, includ-
ing transfer learning using enumerated SMILES to a 

Fig. 1 Overview of the methods used throughout the research. Data augmentation is used during pre-training. Transfer learning uses 
the pre-trained transformer encoder together with a small neural network or CNN. Thereafter, eight XAI methods subdivided into three groups were 
used for interpretation

Table 2 ChEMBL data breakdown

Size Training Validation Test

ChEMBL 29 1.895.373 1.291.223 197.497 407.014

ChEMBL 29 (no Ames) 1.892.281 1.289.081 197.119 406.081

Table 3 Ames data breakdown

Size Scaffold split Random split

Training Validation Test Training Validation Test

Toxic 2511 373 753 2470 391 776

Non-toxic 2248 297 535 2139 297 644

Total 6717 4759 670 1288 4609 688 1420
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binary classification (enumerated), training using a ran-
domly initialized frozen encoder, a completely rand-
omized model without further training and training using 
the random split instead of the scaffold split (Fig.  7). 
Details regarding data distribution differences between 
the data splits are found in Appendix A.

XAI methods
The XAI methods of IG and SHAP were used using cap-
tum [38]. All other methods were re-implemented. Meth-
ods are described in Table 4. For XAI methods that use 
a specific layer for their interpretation (Attention Maps, 
Grads), we used the last layer averaged over all atten-
tion heads. Furthermore, the original implementations 
of Grads and AttGrads, and CAT and AttCAT were re-
implemented using the PyTorch [36] autograd system 
instead of hooks as in the original implementation [7].

Statistical analysis
All attributions were obtained based on the SMILES 
sequences of molecules and represented each token attri-
bution as φi with i corresponding to each token in the 
original full string. Analyses of token attributions were 
analysed in the normalized form were the original φ attri-
bution vector was divided by the absolute sum of the 
total string φ̂i = φi

||φ|| . We understand φ to correspond the 
attributions of the full tokenized string, including original 
SMILES string, BOS, EOS and PAD tokens. Other analy-
ses include analyses of components of SMILES, atom and 
alerts (Table 5). As mentioned, all analysed components 
were first normalized with respect to the full tokenized 
string.

We investigated the normalized attributions by com-
paring distances between attributions, entropy within 
the attributions and the relative importance given to rela-
tive components of the distributions (Table  6). Cosine 

similarity was chosen as a distance measure to analyse 
the variation of importance over attributions using the 
implementation from SciPy [39]. Cosine similarity was 
chosen to measure the agreement of importance given to 
each of the tokens. Entropy was calculated as a measure 
of information, similar to Dabkowski and Gal [40], and 
relative importance is the fraction of the attribution given 
to a specific component of the input (Table  5), mostly 
to investigate the overlap between XAI information and 
human-derived structural alerts [35].

Computational efficiency
To avoid unnecessary computational overhead, all mod-
els were kept small 16.5 M parameters or lower, trained 
on the smaller ChEMBL dataset rather than the more 
standard PubChem dataset and using 16-bit precision. 
All models can be trained using a single GPU. The longest 
pre-training time in our experiments was 24  h (masked 
enumerated encoder-decoder) using two GPUs with dis-
tributed training for faster and more efficient computing.

Reproducibility
The implementation code are publicly available on 
GitHub at https:// github. com/ Peter Hartog/ augme nted- 
xai to ensure the reproducibility of the experiments. 
Cleaned data and trained model weights are publicly 
available from Figshare: https:// doi. org/ 10. 6084/ m9. figsh 
are. 24866 091.

Results
Model training
ChEMBL representation learning
To generate our internal representations, we first 
trained attention-based encoder and attention-based 
decoder (encoder-decoder) and attention-based encoder 
with an MLP (encoder-only) transformer models on 
the ChEMBL small molecule dataset (Table  8). Train-
ing regimens were to translate canonical to canonical 
(C2C), randomized to canonical (R2C) and enumerated 

Table 4 Descriptions and equations of metrics used during the 
analysis of the interpretations

Described are three metrics, what they measure and their equations. φi is the 
attribution of token i. Entropy and cosine similarity were calculated only using 
the atom components

Method Implementation Equations

IG Captum Eq. 9

SHAP Captum Eq. 10

Attention Maps Re-implemented Eq. 3

Rollout Re-implemented Eq. 4

Grads Re-implemented Eq. 5

AttGrads Re-implemented Eq. 6

CAT Re-implemented Eq. 7

AttCAT Re-implemented Eq. 8

Table 5 Names of components, description of components and 
example of token strings

Described are four names with corresponding sections of the tokens analysed 
in statistical analyses. Most analyses use atom tokens or alerts but are relative to 
the full tokenized string

Name Analysed components Example

Full Full token string BOS O=C=O 
EOS PAD 
PAD

SMILES Full SMILES string O=C=O

Atom Atom tokens ordered canonically COO

Alerts Atom tokens of structural alerts CO

https://github.com/PeterHartog/augmented-xai
https://github.com/PeterHartog/augmented-xai
https://doi.org/10.6084/m9.figshare.24866091
https://doi.org/10.6084/m9.figshare.24866091
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to canonical (E2C) as well as the masked versions (e.g., 
ME2C). Additionally, the encoder-decoder models char-
acter and sequence accuracy scores for the canonical to 
canonical versions were high in all versions except for 
the R2C models. The encoder-decoder R2C models were 
more predictive regarding the sequence accuracy without 
context (greedy-search), but still significantly worse than 
other training regimens.

Ames transfer learning
To create our final prediction models, we used transfer 
learning of the pre-trained models to the Ames training 
set by freezing the encoders and replacing the decoders 
by either a textCNN or MLP. The MLP results on the scaf-
fold split (Table  7) outperformed the transformerCNN 
model (Table  9). Because of this, we decided to con-
tinue our interpretation analysis with the MLP model. 
Pre-trained models of C2C and E2C outperformed R2C 
models, whilst masked models increased model statistics 
over unmasked models. Finally, encoder-only pre-trained 

models generally outperformed encoder-decoder models 
on the Ames transfer learning task.

Interpretation analysis
The robustness of XAI methods was examined from 
three different perspectives. The first was to analyse 
XAI methods in the same circumstance, namely the 
same model and the same input, to see how different 
the explanation given is over all methods. Figure  2a 
shows the different attributions from each XAI method 
for one randomly chosen canonical SMILES of the 
encoder-decoder ME2C model. Secondly, we want to 
investigate the variance that internal representation 
gives. To further illustrate this, the heat map shows 
the inner variance of the method, and the robustness 
score is the mean value of this heat map. Figure  2b 
shows how the different training regimens for an 
encoder-decoder architecture influence the explana-
tions of IG for on randomly chosen canonical SMILES. 
Again, the heat map shows the internal consistency for 

Table 6 Descriptions and equations of metrics used during the analysis of the interpretations

Described are three metrics, what they measure and their equations. φi is the attribution of token i. Entropy and cosine similarity were calculated only using the atom 
components

Metric Analyses Equation

Cosine distance Distance between attributions cos(θ) = 1− u·v
||u||2||v||2 .

Entropy Information contained in the attribution H(φ) = −
∑n

i=0 φi × log2(φi)

Relative importance Relative importance given to component
∑

φi ,φi ∈ component

Table 7 AUROC, accuracy, F1, MCC precision and recall scores of MLP models transfer learned on Ames data

Values are based on the scaffold split

Training AUROC↑ Accuracy↑ F1↑ MCC↑ Precision↑ Recall↑

No training Untrained 0.652 0.516 0.143 0.063 0.081 0.619

Native 0.676 0.634 0.624 0.269 0.607 0.642

Variations Random split 0.856 0.788 0.788 0.576 0.789 0.787

Train set 0.873 0.792 0.792 0.584 0.792 0.792

CNN 0.709 0.650 0.657 0.300 0.671 0.644

Enumerated 0.810 0.739 0.739 0.478 0.738 0.739

Encoder only C2C 0.734 0.666 0.666 0.332 0.665 0.666

R2C 0.738 0.670 0.670 0.339 0.670 0.670

E2C 0.731 0.665 0.665 0.331 0.665 0.665

MC2C 0.754 0.682 0.682 0.364 0.683 0.682

MR2C 0.694 0.653 0.652 0.305 0.651 0.653

ME2C 0.804 0.719 0.719 0.438 0.719 0.719

Encoder-decoder C2C 0.716 0.662 0.662 0.324 0.663 0.662

R2C 0.698 0.634 0.634 0.269 0.634 0.634

E2C 0.748 0.677 0.678 0.354 0.679 0.676

MC2C 0.751 0.682 0.682 0.365 0.681 0.683

MR2C 0.698 0.647 0.647 0.294 0.647 0.647

ME2C 0.772 0.696 0.697 0.393 0.699 0.695
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in-between model robustness. Finally, we investigate 
how input variation all representing the same underly-
ing ground truth, can change the given importance of 
IG for the encoder-decoder ME2C model. In Fig. 2c, we 
investigate the canonical SMILES and ten randomized 
SMILES and compare the internal robustness between 
the importance given to the atom indices. Importantly, 
we reshuffle the respective SMILES strings according to 
RDKit canonical atom order so that each character rep-
resents the same atom when compared.

Test‑time augmentation as a measure for robustness
Firstly, we analyse the difference between SMILES of 
the same molecules for each method and model training 
(Fig. 3). Overall, the cosine distance between these sam-
ples is greatest in the IG, SHAP and AttGrads and AttCat. 
Additionally, the distances of the attention maps, rollout 

attention are lowest and most variable. The Grads value 
seem to have the highest variability in most models. All 
other methods are relatively similar in all models, with 
the exception of the R2C and MR2C pre-trained mod-
els, where all methods have increased cosine distances in 
the encoder-decoder models, but less pronounced differ-
ences in the encoder-only models.

Additionally, we investigate whether the distances can 
be explained by the difference between canonical and 
random SMILES. No significant differences are found 
between distances of canonical and a randomly cho-
sen random SMILES in most models. Some exceptions 
were found, as determined by the Mann Whitney U test 
(Table  12): CAT and AttCAT for encoder-only ME2C; 
encoder-decoder C2C AttGrads; encoder-decoder R2C 
Rollout and AttGrads; encoder-decoder E2C Atten-
tion Maps; encoder-decoder MC2C IG and SHAP. In 

Fig. 2 Single instance robustness analysis of XAI methods from three different angles: in-between method, in-between representation 
and in-between input. a Importance given to each input parameter varied over XAI methods, given a constant canonical SMILES input 
and encoder-decoder masked enumerated to canonical (ME2C) model. b Importance given to each input parameter varied over representations 
of the encoder-decoder model, given a constant canonical SMILES input and IG XAI method. c Importance given to each input parameter varied 
over different SMILES representations, given a constant canonical SMILES input, IG XAI method and encoder-decoder masked enumerated 
to canonical (ME2C) model

Fig. 3 In-between sample distance robustness analysis of XAI methods. Cosine distances of attributions given to different SMILES representations 
of the same molecule over different XAI methods with different pre-trained representation models
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these models the populations do look similar (Fig.  8), 
but results of these method-model combinations could 
possibly be explained by randomization attribution 
differences.

Finally, we utilize entropy as a measure for informa-
tion to examine if the in-between sample analysis was 
due to overall small differences between values (Fig. 9). 
Entropy scores of IG, SHAP, Attention Maps, Roll-
out attention, AttGrad and CAT were similarly high 
throughout all models, but the values for Grads and 
AttCAT were significantly lower, indicating that the 
test-time augmentation robustness is partially depend-
ent on the entropy the method itself.

Influence of ML model on XAI methods
To investigate the dependence of XAI on models, we 
investigate the difference of both our test-time aug-
mentation robustness score and the overall entropy of 
the XAI methods between different models. Firstly, dif-
ferences between the pre-trained model with AUROC 
of 0.798, native model with AUROC of 0.763 and 
untrained model with AUROC of 0.474 in both entropy 
and in-between sample variation are minimal (Fig.  4). 
This indicates that the in-between model analysis of 
these models is dependent on something other than 
learned parameters.

Secondly, we identify the difference between the in-
domain training data and the out-of-domain test data, 
as well as in-domain test data from a model trained 
using a random split ((Fig.  4). The in-domain data 
shows a larger difference in in-between sample dis-
tance, indicating that the XAI methods depend more 

on learned parameters than the out-of-domain sam-
ples. It also indicates that larger cosine distances are 
not necessarily less consistent with model predictions. 
Finally, we also analyse if different training techniques 
(enumerated) or architecture (CNN) affects cosine 
distances. No obvious distance changes were found 
(Fig. 4).

Interestingly, investigations into differences in 
entropy (Fig. 10) based on these variations were minor. 
We also further investigated if the number of tokens 
explained the consistency in in-between sample cosine 
distances (Fig.  11), where it seemed to be carbon-
dependent and explains the variation.

Using test‑time augmentation to improve XAI robustness
To further assess the use of test-time augmentation, we 
analysed the in-between model and in-between method 
distances (Fig.  5). Figure  5 indicates that both the in-
between model distance and the in-between method 
distances are reduced when values are averaged using 
test-time augmentation. This means that values become 
more consistent when using the average over test-time 
augmentation between both methods and models. We 
further investigated whether this effect was because 
of consistency or overall reduction in information by 
investigating the entropy of averaged values and canon-
ical values (Fig.  10). There was no difference found 
between averaged values or canonical values, indicating 
only consistency between methods change, not specific 
attributions.

Fig. 4 In-between sample cosine distance of different training settings. Cosine distances of different attributions given to different SMILES 
representations per molecule of different XAI methods of different training settings. Training settings include baseline ME2C of the encoder-decoder 
pre-training architecture, untrained, frozen encoder (native), completely random model (untrained), distances of the training data (train) of baseline, 
distances of the test set on a random split model (random), enumerated training (enumerated) and the statistics of the CNN model (CNN). All 
variations had the ME2C encoder-decoder model as the initial encoder with the exception of native and untrained
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Comparison with expert‑based structural alerts
Finally, we analyse the robustness of model explana-
tion by examining the overall attribution of all tokens 
as opposed to tokens corresponding to expert-derived 
structural alerts (Fig.  6). Values of IG, SHAP and Att-
Grads all consistently had the highest values with mean 
values around 0.2, whereas a Attention Maps, Roll-
out and CAT gave consistently similar or slightly lower 
relative importance. Relative importance of Grads and 
AttCAT consistently gave the lowest relative attribution 
to the structural alerts. Relative importance is generally 
consistent between randomized models, in-domain sam-
ples, training variations and test-time augmentation aver-
aging. Similar consistent results were observed in model 
variations (Fig. 12).

We further analysed the overall attribution of all tokens 
as opposed to the SMILES tokens, atom tokens and 
tokens corresponding to expert-derived structural alerts 

of all methods for each model (Fig. 14) and all methods 
for each variation (Fig.  13), where similar attributions 
were found irregardless of model or variation.

Discussion
In this research, we performed an analysis of eight XAI 
methods and used (1) test-time augmentation, (2) in-
between model, method and sample cosine distances, 
(3) entropy, and (4) relative importance given to struc-
tural alerts to assess the validity of these XAI methods 
and XAI robustness analyses in the context of NLP-based 
molecular-representation models for toxicity.

The importance of tokenization in NLP‑based research
Notably, we show that overall cosine distances between 
samples of a trained model and progressively randomly 
initiated models is minimal. This indicates that model 
interpretation in these cases is dependent on an aspect 

Fig. 5 Comparison of the canonical and averaged values of in-between model and in-between method cosine distances. Cosine distances 
between different encoder-decoder models for the same method (in-between model) and different methods for the same encoder-decoder model 
(in-between method) of canonical and averaged atom attributions

Fig. 6 Relative importance given to expert-derived structural alerts. Relative token importance given to atoms corresponding to expert-derived 
structural alerts. Relative importance is given for canonical representations of different XAI methods of different training settings. Training settings 
include untrained, frozen encoder (native), completely random model (untrained), distances of the training data (train), distances of the test set 
on a random split model (random), enumerated training (enumerated), the statistics of the CNN model (CNN) and the averaged values of all SMILES 
enumerations of the ME2C model
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other than the learned model parameters. We analyse the 
variation with respect to the amount of carbon atoms in 
Fig. 11, which shows that consistency is dependent on the 
amount of carbon atoms. This indicates that tokeniza-
tion is what is measured mostly by these interpretation 
methods. In fact, we find this aligns with the previous 
research of Zafar et al. [41] who found that interpretation 
of untrained models is not random in NLP-based models.

We hypothesise that the questions about the intuitive 
attributions of random models posed by Zafar et al. [41] 
can be answered by assessing the influence of the initial 
tokenization or architecture artifacts. This is further sup-
ported by our findings that a native encoder sometimes 
even outperformed pre-trained encoders during transfer 
learning, as well as research from Ucak et  al. [42] who 
showed that different tokenizations can have significant 
effects on final performance in NLP-based molecular 
representation models.

Usage of human intuition to validate XAI
In this study, we also used expert-derived structural 
alerts for Ames mutagenicity to investigate if the XAI 
overlapped with human intuition. A recent study inves-
tigated the mean attention weights given to toxicophores 
in Tox21 prediction and found significantly higher atten-
tion weights to toxicophore atoms than non-toxicophore 
atoms [43]. In this study, we analyse the overall impor-
tance given to structural alerts and don’t divide by the 
number of atoms. Regardless, in this study we also show 
that the relative importance given to structural alerts is 
mostly model-independent and, crucially, no different 
from completely randomized models. Structural alerts 
and case studies are often used to investigate the inner 
workings of ML research, but this finding urges caution 
using these tactics without further investigation.

Test‑time augmentation to improve XAI
Recently, [44] independently analysed the invariance 
and equivariance of interpretability methods. They used 
the bag-of-words [45] NLP model in combination with 
text permutation to assess the robustness of a num-
ber of feature importance methods, including IG and 
gradient SHAP [46]. Bag-of-words models differ from 
our models in that text data in bag-of-words is inher-
ently invariant to text permutation, whereas different 
text representations in our approach are learned to be 
invariant given the same underlying molecule. Crabbé 
and van der Schaar postulated that “...Any interpretabil-
ity method can be made invariant..., one should increase 
the number of samples Ninv until the desired invariance 
is achieved. In this way, the method is made robust with-
out increasing the number of calls more than necessary” 
[44]. This is consistent with our findings using test-time 

augmentation to improve XAI robustness, where we see 
greater in-between model and in-between method con-
sistency when using values averaged over multiple Ninv 
samples (i.e., test-time augmentations). This was even 
true in a model that was not inherently invariant.

However, we also identified that neither the amount 
of information analysed through entropy, nor the rela-
tive importance given to expert-derived structural alerts 
changes when using averaged values. This indicates that 
test-time augmentation can be used to make XAI more 
invariant, but not to improve XAI attribution overall.

XAI methods and test‑time augmentation 
for out‑of‑domain identification
Wang et  al. [26] analysed test-time augmentation as a 
measure of aleatoric (data-based) uncertainty in the task 
of image segmentation and found it improved over base-
line methods. Later, [27] used test-time augmentation to 
measure epistemic (model-based) uncertainty in the field 
of image classification where it again found to improve 
uncertainty classification. Uncertainty can be useful to 
identify out-of-domain predictions, but, to our knowl-
edge, test-time augmentation has not yet been applied to 
that area of uncertainty prediction.

In this research, we hypothesize that test-time aug-
mentation has a difference between in-domain and out-
of-domain predictions. It remains to be seen if these 
differences can be used to determine out-of-domain pre-
dictions, especially in the field of NLP-based molecular 
representations. This is because we find less variation in 
out-of-domain in-between sample interpretations than 
the variation of in-domain interpretations. This indicates 
that if the epistemic uncertainty is measures the same 
model effects as XAI methods described here, it will 
show decreased values in uncertainty for out-of-domain 
samples. Additionally, this result identifies the need to 
combine XAI explanations with applicability domain 
assessments, to verify the explanation.

Test‑time augmentation as a measure for robustness
In this study, we analysed test-time augmentation as a 
measure for XAI robustness. We show substantial disa-
greement between augmented SMILES, even when 
canonical SMILES show no more difference than ran-
domized SMILES. However, we also note a number of 
cautionary findings, including similar disagreements in 
randomized models, higher disagreement in in-domain 
distributions and relatively consistent distribution rank-
ings. We did observe higher variation in in-between sam-
ple distances of untrained and worse-performing models 
(R2C and MR2C). This finding was subsequently dimin-
ished by the finding that in-domain training set values 
and random split values had similarly increased variation 



Page 12 of 20Hartog et al. Journal of Cheminformatics           (2024) 16:39 

and higher overall values of in-between sample distances. 
We therefore conclude that using test-time augmentation 
as a measure for XAI robustness is inherently valid, but 
requires a comparison to randomized and applicability 
domain to draw well-founded conclusions.

XAI implementation differences
Overall, we have investigated eight XAI methods, of 
which six are transformer-specific, one more general 
to neural networks and one perturbation XAI method. 
Firstly, we note that all methods from Qiang et al. [7] were 
re-implemented, and crucially, the methods of Grads, 
AttGrads, CAT and AttCAT were re-implemented with 
changes to the original implementation. Namely, for the 
gradients of the attention ( ∇αi,j ) and the attention out-
put ( ∇hi,j ), we implemented the gradients with respect to 
the full outcome. We believe this to be in line with the 
original publication, but have not tested differences due 
to implementation difficulties. Due to this, investigations 
into Grads, AttGrads, CAT and AttCAT were can be sub-
ject to change based on implementation. We did find the 
methods of Grads and AttCAT to have significantly lower 
entropy and lower relative importance to the structural 
alerts. However, the difference with respect to gradient 
calculations should not impact our final conclusions, as 
the methods still use the same underlying principles.

Furthermore, the methods of attention maps and Grads 
were performed using the last layer and averaged over 
all attention heads. Some researchers have suggested to 
use specific layer and head combinations to explain the 
model based on heuristic approaches, such as Schwaller 
et  al. [47]. We leave such analyses to future papers and 
stay consistent here with the methods from Qiang et al. 
[7]. The methods of IG and SHAP were implemented 
using the standard Captum [38] library and can therefore 
serve as proper baseline implementations.

Future investigation of XAI methods for SMILES‑based 
representation models
In general, our findings indicate a greater need to iden-
tify what XAI methods measure, and specifically to 
remove any confounding background information. In 
our case, all methods in this context seemed to rely not 
on learned gradients, but likely instead on the tokeniza-
tion. While this could be the ground truth explanation, 
randomization experiments indicated that this is not the 
case. We therefore advocate for approaches that prop-
erly take background into account. Notably, local XAI 
methods are often further refined through comparative 
analysis, contrasting their findings with those obtained 
from background or empty samples. Two of our meth-
ods included such a comparison to a background sample, 
namely SHAP and IG. The approach contrasted the input 

with padding tokens. This did increase their in-between 
sample distances in randomization studies, but this effect 
did not translate to the in-domain predictions, which 
saw similar distances albeit with higher variation. Inter-
estingly, these methods were the only ones affected in 
the training variations of enumerated training on Ames 
and the CNN architecture, where other methods stayed 
consistent.

However, further comparisons, specifically with 
regards to randomization should help improve robust-
ness in XAI methods. Although, as [8] discussed, rand-
omization can indicate architecture-based priors of XAI, 
XAI should reflect learned parameters to explain model 
behaviour. Methods to increase XAI robustness to ran-
domized models can include but are not limited to cre-
ating models to investigate ML models, such as [10], 
contrasting findings to randomized models predictions 
as background instead of empty samples, and counterfac-
tual explanations, such as the recent study from Fradkin 
et al. [48].

Finally, we hypothesize that test-time augmentation 
can improve XAI methods and identify robust XAI meth-
ods, but only when XAI methods are both in-domain and 
measure decision-dependent parameters, not confound-
ing information.

Conclusion
In this research, we performed an analysis of eight XAI 
methods and used several analyses to assess the validity 
of these XAI methods and XAI robustness in the con-
text of NLP-based molecular-representation models 
for toxicity. We report significant differences between 
explanations for different representations of the same 
ground truth. Additionally, we show that randomized 
models are similarly different, indicating that the XAI 
methods applied to NLP-based molecular representa-
tions in this and past research reflect tokenization more 
than learned parameters. Interestingly, we see a greater 
variance between in-domain predictions than out-of-
domain predictions, further supporting this hypothesis. 
Furthermore, we investigated the relative importance 
given to expert-derived structural alerts and find similar 
importance given irregardless of applicability domain, 
randomization and training variation. We therefore cau-
tion future research to validate their methods using a 
similar comparison to human intuition without further 
investigation into the validity and robustness of the XAI 
method used. Finally, we note that test-time augmenta-
tion can be used as a measure of robustness, only if used 
in conjunction with other XAI method analyses, and note 
a greater need to identify what XAI precisely measure 
before drawing conclusions.
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Appendix A
Ames data analysis

See Fig. 7.

Appendix B
Model statistics

See Tables 8, 9.

Appendix C
Bootstrapping statistics

See Tables 10, 11

Appendix D
Differences between canonical and randomized smiles 
distances

See Fig. 8 and Table 12

Fig. 7 t-SNE plots of the distributions of training, validation and test for different splits of the Ames data set
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Appendix E
Entropy analyses

Table 8 Model Statistics of pretrained transformer models

Bold values are accuracies calculated without previous token information. Models were tested on canonical SMILES to canonical SMILES (canonical) and enumerated 
SMILES to canonical SMILES (enumerated)

Architecture Training Canonical Enumerated Time (hh:mm) Size

Character 
accuracy

Sequence 
accuracy

Character 
accuracy

Sequence 
accuracy

Encoder only C2C 1.000 1.000 1.000 1.000 01:16 6.7M

R2C 0.202 0.000 0.195 0.000 00:42 6.7M

E2C 1.000 1.000 1.000 1.000 03:33 6.7M

MC2C 0.999 0.993 0.994 0.819 01:25 6.7M

MR2C 0.202 0.000 0.196 0.000 00:46 6.7M

ME2C 1.000 0.991 0.999 0.962 10:31 6.7M

Encoder-decoder C2C 0.998 0.995 0.994 0.994 0.998 0.996 0.994 0.994 01:45 15.9M

R2C 0.813 0.089 0.000 0.000 0.554 0.082 0.000 0.000 02:44 15.9M

E2C 0.998 0.995 0.995 0.995 0.998 0.995 0.994 0.994 08:43 15.9M

MC2C 0.998 0.996 0.993 0.987 0.976 0.965 0.463 0.452 02:53 15.9M

MR2C 0.812 0.040 0.000 0.000 0.549 0.040 0.000 0.000 05:56 15.9M

ME2C 0.998 0.994 0.983 0.958 0.998 0.994 0.979 0.936 24:04 15.9M

Table 9 AUROC, accuracy, F1, MCC precision and recall scores of the TransformerCNN models transfer learned on Ames data

Values are based on the scaffold split

Architecture Training AUROC↑ Accuracy↑ F1↑ MCC↑ Precision↑ Recall↑

No training Untrained 0.564 0.507 0.668 0.055 0.991 0.504

Native 0.698 0.653 0.665 0.308 0.689 0.643

Encoder only C2C 0.687 0.639 0.638 0.279 0.635 0.641

R2C 0.706 0.643 0.652 0.287 0.668 0.636

E2C 0.685 0.644 0.656 0.288 0.679 0.634

MC2C 0.711 0.656 0.658 0.311 0.663 0.653

MR2C 0.693 0.641 0.647 0.283 0.656 0.637

ME2C 0.738 0.676 0.681 0.352 0.692 0.670

Encoder-decoder C2C 0.711 0.663 0.662 0.327 0.658 0.665

R2C 0.680 0.625 0.623 0.249 0.621 0.626

E2C 0.719 0.650 0.650 0.301 0.649 0.651

MC2C 0.715 0.643 0.647 0.287 0.655 0.640

MR2C 0.652 0.583 0.583 0.167 0.582 0.583

ME2C 0.709 0.650 0.657 0.300 0.671 0.644
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See Figs. 9, 10

Table 10 AUROC, accuracy, F1, MCC precision and recall scores with bootstrap variability of MLP models transfer learned on Ames 
data

Values are based on the scaffold split. ± values have been determined using 1000 fold test-time bootstrapping

Architecture Training AUROC↑ Accuracy↑ F1↑ MCC↑ Precision↑ Recall↑

No training Untrained 0.640 ± 0.004 0.518 ± 0.003 0.172 ± 0.008 0.066 ± 0.011 0.100 ± 0.005 0.610 ± 0.019

Native 0.652 ± 0.005 0.611 ± 0.006 0.601 ± 0.006 0.221 ± 0.012 0.587 ± 0.006 0.616 ± 0.006

Variations Random split 0.853 ± 0.004 0.776 ± 0.006 0.776 ± 0.006 0.551 ± 0.012 0.776 ± 0.006 0.775 ± 0.006

Training set 0.872 ± 0.002 0.789 ± 0.003 0.789 ± 0.003 0.577 ± 0.007 0.789 ± 0.003 0.788 ± 0.003

CNN 0.721 ± 0.006 0.663 ± 0.008 0.668 ± 0.008 0.326 ± 0.016 0.678 ± 0.008 0.658 ± 0.008

Enumerated 0.812 ± 0.003 0.740 ± 0.005 0.740 ± 0.005 0.480 ± 0.011 0.739 ± 0.005 0.741 ± 0.005

Encoder only C2C 0.735 ± 0.004 0.666 ± 0.006 0.665 ± 0.006 0.332 ± 0.011 0.665 ± 0.006 0.666 ± 0.006

R2C 0.735 ± 0.004 0.672 ± 0.006 0.672 ± 0.005 0.344 ± 0.011 0.672 ± 0.006 0.672 ± 0.006

E2C 0.733 ± 0.004 0.657 ± 0.005 0.657 ± 0.005 0.315 ± 0.011 0.657 ± 0.005 0.658 ± 0.005

MC2C 0.764 ± 0.004 0.695 ± 0.006 0.696 ± 0.006 0.389 ± 0.012 0.698 ± 0.006 0.693 ± 0.006

MR2C 0.694 ± 0.003 0.648 ± 0.004 0.647 ± 0.004 0.296 ± 0.009 0.644 ± 0.004 0.649 ± 0.004

ME2C 0.808 ± 0.003 0.734 ± 0.006 0.734 ± 0.006 0.468 ± 0.012 0.733 ± 0.006 0.735 ± 0.006

Encoder-decoder C2C 0.715 ± 0.002 0.660 ± 0.005 0.661 ± 0.005 0.321 ± 0.009 0.663 ± 0.005 0.660 ± 0.005

R2C 0.699 ± 0.005 0.640 ± 0.007 0.640 ± 0.007 0.281 ± 0.013 0.640 ± 0.007 0.640 ± 0.007

E2C 0.748 ± 0.003 0.677 ± 0.006 0.678 ± 0.005 0.355 ± 0.011 0.680 ± 0.006 0.677 ± 0.006

MC2C 0.748 ± 0.004 0.683 ± 0.006 0.682 ± 0.006 0.366 ± 0.012 0.681 ± 0.006 0.684 ± 0.006

MR2C 0.687 ± 0.006 0.633 ± 0.007 0.633 ± 0.007 0.267 ± 0.013 0.633 ± 0.007 0.634 ± 0.007

ME2C 0.782 ± 0.005 0.710 ± 0.007 0.710 ± 0.007 0.420 ± 0.014 0.711 ± 0.007 0.709 ± 0.007

Table 11 AUROC, accuracy, F1, MCC precision and recall scores with bootstrap variability of the TransformerCNN models transfer 
learned on Ames data

Values are based on the scaffold split. ± values have been determined using 1000 fold test-time bootstrapping

Architecture Training AUROC↑ Accuracy↑ F1↑ MCC↑ Precision↑ Recall↑

No training Untrained 0.565 ± 0.006 0.502 ± 0.002 0.665 ± 0.001 0.019 ± 0.016 0.990 ± 0.002 0.501 ± 0.001

Native 0.702 ± 0.005 0.659 ± 0.006 0.669 ± 0.006 0.318 ± 0.012 0.689 ± 0.007 0.650 ± 0.006

Encoder only C2C 0.697 ± 0.005 0.654 ± 0.007 0.654 ± 0.007 0.309 ± 0.013 0.652 ± 0.007 0.655 ± 0.007

R2C 0.714 ± 0.005 0.652 ± 0.007 0.660 ± 0.007 0.304 ± 0.013 0.676 ± 0.007 0.645 ± 0.006

E2C 0.692 ± 0.005 0.649 ± 0.007 0.660 ± 0.007 0.298 ± 0.014 0.683 ± 0.007 0.639 ± 0.007

MC2C 0.725 ± 0.006 0.660 ± 0.008 0.663 ± 0.008 0.320 ± 0.015 0.668 ± 0.008 0.657 ± 0.008

MR2C 0.695 ± 0.005 0.643 ± 0.007 0.649 ± 0.007 0.287 ± 0.014 0.660 ± 0.007 0.638 ± 0.007

ME2C 0.740 ± 0.006 0.680 ± 0.008 0.686 ± 0.007 0.360 ± 0.015 0.701 ± 0.008 0.673 ± 0.007

Encoder-decoder C2C 0.711 ± 0.004 0.659 ± 0.006 0.657 ± 0.006 0.319 ± 0.012 0.652 ± 0.007 0.662 ± 0.006

R2C 0.680 ± 0.006 0.634 ± 0.007 0.633 ± 0.008 0.269 ± 0.015 0.631 ± 0.008 0.635 ± 0.008

E2C 0.713 ± 0.004 0.653 ± 0.006 0.652 ± 0.006 0.306 ± 0.012 0.649 ± 0.006 0.655 ± 0.006

MC2C 0.726 ± 0.006 0.663 ± 0.008 0.667 ± 0.007 0.326 ± 0.015 0.676 ± 0.008 0.659 ± 0.007

MR2C 0.644 ± 0.004 0.584 ± 0.001 0.583 ± 0.001 0.167 ± 0.001 0.583 ± 0.001 0.584 ± 0.001

ME2C 0.721 ± 0.006 0.663 ± 0.008 0.668 ± 0.008 0.326 ± 0.016 0.678 ± 0.008 0.658 ± 0.008
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Appendix F
Carbon breakdown

See Fig. 11

Appendix G

Fig. 8 Violin plot of in-sample cosine distance populations per model and XAI method. Red boxes indicate p > 0.005 and notes 
that the populations are not significantly similar

Table 12 Mann Whitney U test statistics of the difference in in-sample distance populations for each model and interpretation 
method

Values are compared between canonical SMILES representation attributions or random SMILES representation as compared to all other enumerated values. Bold 
values are p > 0.005

Architecture Training IG SHAP Att. Rollout Grads AttGrads CAT AttCAT 
Maps

Encoder only C2C 0.761 0.867 0.767 0.722 0.831 0.032 0.930 0.673

R2C 0.121 0.114 0.507 0.339 0.316 0.036 0.376 0.469

E2C 0.375 0.796 0.871 0.299 0.667 0.908 0.900 0.081

MC2C 0.848 0.978 0.370 0.548 0.281 0.342 0.921 0.409

MR2C 0.711 0.760 0.925 0.793 0.903 0.278 0.457 0.855

ME2C 0.216 0.373 0.626 0.955 0.326 0.060 0.004 0.000
Encoder-decoder C2C 0.414 0.202 0.794 0.794 0.537 0.001 0.060 0.261

R2C 0.563 0.324 0.765 0.000 0.657 0.000 0.237 0.376

E2C 0.066 0.348 0.000 0.046 0.422 0.167 0.814 0.536

MC2C 0.004 0.002 0.651 0.932 0.447 0.521 0.625 0.362

MR2C 0.055 0.398 0.960 0.861 0.668 0.798 0.154 0.356

ME2C 0.590 0.381 0.955 0.971 0.498 0.186 0.377 0.376
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Relative importance
See Figs. 12, 13, 14

Acknowledgements
The author would like to thank the doctoral candidates and supervisors from 

Fig. 9 Entropy values of each XAI method per model. Entropy values of XAI methods of canonical representations indicating relative information 
in the attributions

Fig. 10 Entropy values of each XAI method per experiment. Entropy values of XAI methods of canonical representations or indicating relative 
information in the attributions. Averaged experiment variation used the average over all enumerations instead of the canonical representation 
for it’s entropy analysis



Page 18 of 20Hartog et al. Journal of Cheminformatics           (2024) 16:39 

the Marie Skłodowska-Curie Innovative AIDD consortium for their support. In 
particular, the authors thank Paula Torren Peraire for the beamsearch imple-
mentation, and Emma Svensson for review and feedback for the manuscript 
Alessandro Tibo for troubleshooting. Additionally, the authors thank BioRender 

for the publication of the table of contents figure generated with BioRender 
authorized under the subscription plan of Peter Hartog.

Author contributions
Conceptualization, P.H., I.T., S.G.; methodology, P.H., I.T.; validation, P.H., F.K.; writ-
ing original draft preparation, P.H.; writing, review and editing, P.H., F.K., E.S., I.T.; 

Fig. 11 Cosine distance as a measure of number of carbon atoms. Variations of in-between sample cosine distances and carbon atoms, broken 
down to show training variations and XAI methods

Fig. 12 Relative importance given to expert-derived structural alerts for models. Relative token importance given to atoms corresponding 
to expert-derived structural alerts. Relative importance is given for canonical representations of different XAI methods of different pre-trained 
representation models

Fig. 13 Relative importance given to different components for experiments. Relative token importance given to smiles, atoms and atoms 
corresponding to expert-derived structural alerts. Relative importance is given for canonical representations and aggregated over all XAI methods 
of different training settings



Page 19 of 20Hartog et al. Journal of Cheminformatics           (2024) 16:39  

figures: P.H., F.K.; visualization, P.H.; supervision, S.G., I.T.; project administration, 
S.G., I.T.; funding acquisition, S.G., I.T..

Funding
This study has received funding from the European Union’s Horizon 2020 
research and innovation program under the Marie Skłodowska-Curie Actions 
Innovative Training Network European Industrial Doctorate grant agree-
ment "Advanced machine learning for Innovative Drug Discovery (AIDD)" No. 
956832.

Availability of data and materials
The cleaned ChEMBL and Ames files, as well as model parameters are available 
from Figshare: https:// doi. org/ 10. 6084/ m9. figsh are. 24866 091.

Code availability
Project home page: https:// github. com/ Peter Hartog/ augme nted- xai. Operat-
ing system(s): Platform independent Programming language: Python 3 Other 
requirements: several open source python packages License: MIT. Any restric-
tions to use by non-academics: none.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
All authors have read and agreed to the published version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Molecular AI, Discovery Sciences, R &D, AstraZeneca, 431 83 Mölndal, 
Sweden. 2 Institute of Structural Biology, Helmholtz Munich, Munich 85764, 
Germany. 

Received: 20 December 2023   Accepted: 9 March 2024

References
 1. Vellido A, Martín-Guerrero JD, Lisboa PJ (2012) Making machine learning 

models interpretable. In: ESANN, vol. 12, pp 163–172. Citeseer
 2. Ali S, Abuhmed T, El-Sappagh S, Muhammad K, Alonso-Moral JM, 

Confalonieri R, Guidotti R, Del Ser J, Díaz-Rodríguez N, Herrera F (2023) 
Explainable artificial intelligence (XAI): What we know and what is left to 
attain trustworthy artificial intelligence. Inf Fus 99:101805

 3. Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep 
networks

 4. Lundberg SM, Lee S-I (2017) A unified approach to interpreting model 
predictions. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, 
Vishwanathan S, Garnett R (eds) Advances in neural information process-
ing systems, vol 30. Curran Associates Inc, New York

 5. Ribeiro MT, Singh S, Guestrin C (2016) “why should i trust you?” explaining 
the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, pp 
1135–1144

 6. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep 
features for discriminative localization. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp 2921–2929

 7. Qiang Y, Pan D, Li C, Li X, Jang R, Zhu D (2022) AttCAT: explaining trans-
formers via attentive class activation tokens. In: Koyejo S, Mohamed S, 
Agarwal A, Belgrave D, Cho K, Oh A (eds) Advances in neural informa-
tion processing systems, vol 35. Curran Associates, Inc., New York, pp 
5052–5064

 8. Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B (2018) Sanity 
checks for saliency maps. Adv Neural Inf Process Syst 31

 9. Kindermans P-J, Hooker S, Adebayo J, Alber M, Schütt KT, Dähne S, Erhan 
D, Kim B (2019) The (un) reliability of saliency methods. Explainable AI: 
interpreting, explaining and visualizing deep learning, pp 267–280

 10. Schwab P, Karlen W (2019) CXplain: causal explanations for model 
interpretation under uncertainty. In: Wallach H, Larochelle H, Beygelzimer 
A, Alché-Buc F, Fox E, Garnett R (eds) Advances in neural information 
processing systems, vol 32. Curran Associates Inc, New York

 11. Hansch C, Fujita T (1964) p-σ-π analysis: a method for the correla-
tion of biological activity and chemical structure. J Am Chem Soc 
86(8):1616–1626

 12. Karpov P, Godin G, Tetko IV (2020) Transformer-CNN: Swiss knife for QSAR 
modeling and interpretation. J Cheminf 12(1):1–12

 13. Xu C, Cheng F, Chen L, Du Z, Li W, Liu G, Lee PW, Tang Y (2012) In 
silico prediction of chemical Ames mutagenicity. J Chem Inf Model 
52(11):2840–2847

 14. Gee P, Maron DM, Ames BN (1994) Detection and classification of 
mutagens: a set of base-specific salmonella tester strains. Proc Natl 
Acad Sci 91(24):11606–11610

 15. Kamber M, Flückiger-Isler S, Engelhardt G, Jaeckh R, Zeiger E (2009) 
Comparison of the Ames II and traditional Ames test responses with 
respect to mutagenicity, strain specificities, need for metabolism and 
correlation with rodent carcinogenicity. Mutagenesis 24(4):359–366

 16. Weininger D (1988) Smiles, a chemical language and information 
system. 1. Introduction to methodology and encoding rules. J Chem 
Inf Computer Sci 28(1):31–36

 17. Wiseman S, Rush AM (2016) Sequence-to-sequence learning as beam-
search optimization. arXiv preprint arXiv: 1606. 02960

 18. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser 
L, Polosukhin I (2017) Attention is all you need. In: Guyon I, Luxburg 
UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds) 

Fig. 14 Relative importance given to different components for experiments. Relative token importance given to smiles, atoms and atoms 
corresponding to expert-derived structural alerts. Relative importance is given for canonical representations and aggregated over all XAI methods 
of different pre-trained representation models

https://doi.org/10.6084/m9.figshare.24866091
https://github.com/PeterHartog/augmented-xai
http://arxiv.org/abs/1606.02960


Page 20 of 20Hartog et al. Journal of Cheminformatics           (2024) 16:39 

Advances in Neural Information Processing Systems, vol 30. Curran 
Associates Inc, New York

 19. Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: pre-training of 
deep bidirectional transformers for language understanding. arXiv 
preprint arXiv: 1810. 04805

 20. Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Stoy-
anov V, Zettlemoyer L (2019) Bart: denoising sequence-to-sequence 
pre-training for natural language generation, translation, and compre-
hension. arXiv preprint arXiv: 1910. 13461

 21. Öztürk H, Özgür A, Schwaller P, Laino T, Ozkirimli E (2020) Exploring 
chemical space using natural language processing methodologies for 
drug discovery. Drug Discov Today 25(4):689–705

 22. David L, Thakkar A, Mercado R, Engkvist O (2020) Molecular represen-
tations in ai-driven drug discovery: a review and practical guide. J 
Cheminf 12(1):1–22

 23. Xu M, Yoon S, Fuentes A, Park DS (2023) A comprehensive survey of 
image augmentation techniques for deep learning. Pattern Recognit 
137:109347

 24. Bjerrum EJ (2017) Smiles enumeration as data augmentation for neural 
network modeling of molecules. arXiv preprint arXiv: 1703. 07076

 25. Tetko IV, Villa AE, Livingstone DJ (1996) Neural network studies. 2. Vari-
able selection. J Chem Inf Computer Sci 36(4):794–803

 26. Wang G, Li W, Aertsen M, Deprest J, Ourselin S, Vercauteren T (2019) 
Aleatoric uncertainty estimation with test-time augmentation for 
medical image segmentation with convolutional neural networks. 
Neurocomputing 338:34–45

 27. Ayhan MS, Berens P (2022) Test-time data augmentation for estimation 
of heteroscedastic aleatoric uncertainty in deep neural networks. In: 
Medical Imaging with Deep Learning

 28. Langer M, Oster D, Speith T, Hermanns H, Kästner L, Schmidt E, Sesing 
A, Baum K (2021) What do we want from explainable artificial intel-
ligence (XAI)?-a stakeholder perspective on XAI and a conceptual 
model guiding interdisciplinary XAI research. Artif Intell 296:103473

 29. Kovaleva O, Romanov A, Rogers A, Rumshisky A (2019) Revealing the 
dark secrets of BERT. arXiv preprint arXiv: 1908. 08593

 30. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) 
Grad-cam: visual explanations from deep networks via gradient-based 
localization. In: Proceedings of the IEEE International Conference on 
Computer Vision, pp 618–626

 31. Huang K, Fu T, Gao W, Zhao Y, Roohani Y, Leskovec J, Coley CW, Xiao C, 
Sun J, Zitnik M (2021) Therapeutics data commons: machine learning 
datasets and tasks for drug discovery and development. arXiv preprint 
arXiv: 2102. 09548

 32. Davies M, Nowotka M, Papadatos G, Dedman N, Gaulton A, Atkinson 
F, Bellis L, Overington JP (2015) ChEMBL web services: streamlin-
ing access to drug discovery data and utilities. Nucl Acids Res 
43(W1):612–620

 33. Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix 
E, Magariños MP, Mosquera JF, Mutowo P, Nowotka M (2019) 
ChEMBL: towards direct deposition of bioassay data. Nucl Acids Res 
47(D1):930–940

 34. Landrum G (2006) RDKit: open-source cheminformatics software https:// 
doi. org/ 10. 5281/ zenodo. 74151 28, https:// www. rdkit. org. Accessed 9 Oct 
2023

 35. Kazius J, McGuire R, Bursi R (2005) Derivation and validation of toxico-
phores for mutagenicity prediction. J Med Chem 48(1):312–320

 36. ...Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin 
Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison 
M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) 
PyTorch: an imperative style, high-performance deep learning library. In: 
Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R 
(eds) Advances in neural information processing systems, vol 32. Curran 
Associates Inc, New York, pp 8024–8035

 37. Falcon W (2019). The PyTorch Lightning team: PyTorch Lightning https:// 
doi. org/ 10. 5281/ zenodo. 38289 35. https:// github. com/ Light ning- AI/ light 
ning. Accessed 19 Oct 2023

 38. Kokhlikyan N, Miglani V, Martin M, Wang E, Alsallakh B, Reynolds J, Mel-
nikov A, Kliushkina N, Araya C, Yan S, Reblitz-Richardson O (2020) Captum: 
a unified and generic model interpretability library for PyTorch

 39. ...Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau 
D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, 

Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, 
Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, 
Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, 
Pedregosa F, van Mulbregt P (2020) SciPy 1.0 contributors: SciPy 1.0—
fundamental algorithms for scientific computing in python. Nat Methods 
17:261–272. https:// doi. org/ 10. 1038/ s41592- 019- 0686-2

 40. Dabkowski P, Gal Y (2017) Real time image saliency for black box classi-
fiers. Adv Neural Inf Process Syst 30

 41. Zafar MB, Donini M, Slack D, Archambeau C, Das S, Kenthapadi K (2021) 
On the lack of robust interpretability of neural text classifiers. arXiv pre-
print arXiv: 2106. 04631

 42. Ucak UV, Ashyrmamatov I, Lee J (2023) Improving the quality of chemical 
language model outcomes with atom-in-smiles tokenization. J Cheminf 
15(1):55

 43. Born J, Markert G, Janakarajan N, Kimber TB, Volkamer A, Martínez MR, 
Manica M (2023) Chemical representation learning for toxicity prediction. 
Digit Discov. https:// doi. org/ 10. 1039/ D2DD0 0099G

 44. Crabbé J, Schaar M (2023) Evaluating the robustness of interpretability 
methods through explanation invariance and equivariance. arXiv preprint 
arXiv: 2304. 06715

 45. Lan M, Tan CL, Su J, Lu Y (2008) Supervised and traditional term weighting 
methods for automatic text categorization. IEEE Trans Pattern Anal Mach 
Intell 31(4):721–735

 46. Erion G, Janizek JD, Sturmfels P, Lundberg SM, Lee S-I (2021) Improving 
performance of deep learning models with axiomatic attribution priors 
and expected gradients. Nat Mach Intell 3(7):620–631

 47. Schwaller P, Hoover B, Reymond J-L, Strobelt H, Laino T (2021) Trans-
former-based neural networks capture organic chemistry grammar from 
unsupervised learning of chemical reactions. In: American Chemical 
Society (ACS) Spring Meeting

 48. Fradkin P, Young A, Atanackovic L, Frey B, Lee LJ, Wang B (2022) A graph 
neural network approach for molecule carcinogenicity prediction. Bioin-
formatics 38(Supplement_1), 84–91

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1703.07076
http://arxiv.org/abs/1908.08593
http://arxiv.org/abs/2102.09548
https://doi.org/10.5281/zenodo.7415128
https://doi.org/10.5281/zenodo.7415128
http://www.rdkit.org
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://doi.org/10.1038/s41592-019-0686-2
http://arxiv.org/abs/2106.04631
https://doi.org/10.1039/D2DD00099G
http://arxiv.org/abs/2304.06715

	Using test-time augmentation to investigate explainable AI: inconsistencies between method, model and human intuition
	Abstract 
	Scientific contribution 
	Introduction
	Background
	Transformer-based interpretation
	Deep learning-based interpretation
	Model agnostic interpretation

	Methods
	Data collection and processing
	Model architecture and training
	Representation learning
	Ames transfer learning

	XAI methods
	Statistical analysis
	Computational efficiency
	Reproducibility

	Results
	Model training
	ChEMBL representation learning
	Ames transfer learning

	Interpretation analysis
	Test-time augmentation as a measure for robustness
	Influence of ML model on XAI methods
	Using test-time augmentation to improve XAI robustness
	Comparison with expert-based structural alerts


	Discussion
	The importance of tokenization in NLP-based research
	Usage of human intuition to validate XAI
	Test-time augmentation to improve XAI
	XAI methods and test-time augmentation for out-of-domain identification
	Test-time augmentation as a measure for robustness
	XAI implementation differences
	Future investigation of XAI methods for SMILES-based representation models

	Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Acknowledgements
	References


