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ABSTRACT

Supernovae (SNs) are an important source of energy in the interstellar medium. Young remnants of supernovae (SNRs) exhibit peak
emission in the X-ray region, making them interesting objects for X-ray observations. In particular, the supernova remnant SN1006 is
of great interest due to its historical record, proximity, and brightness. Thus, it has been studied with a number of X-ray telescopes.
Improving X-ray imaging of this and other remnants is an important but challenging task, as it often requires multiple observations
with different instrument responses to image the entire object. Here, we use Chandra observations to demonstrate the capabilities
of Bayesian image reconstruction using information field theory (IFT). Our objective is to reconstruct denoised, deconvolved, and
spatio-spectral resolved images from X-ray observations and to decompose the emission into different morphologies, namely, diffuse
and point-like. Further, we aim to fuse data from different detectors and pointings into a mosaic and quantify the uncertainty of our
result. By utilizing prior knowledge on the spatial and spectral correlation structure of the diffuse emission and point sources, this
method allows for the effective decomposition of the signal into these two components. In order to accelerate the imaging process, we
introduced a multi-step approach, in which the spatial reconstruction obtained for a single energy range is used to derive an informed
starting point for the full spatio-spectral reconstruction. We applied this method to 11 Chandra observations of SN1006 from 2008 and
2012, providing a detailed, denoised, and decomposed view of the remnant. In particular, the separated view of the diffuse emission
ought to provide new insights into the complex, small-scale structures in the center of the remnant and at the shock front profiles. For
example, our analysis reveals sharp X-ray flux increases by up to two orders of magnitude at the shock fronts of SN1006.
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1. Introduction

In the year 1006, observers on Earth were able to see the light of
a bright “new star”, which eventually faded after a few months.
This observation is now attributed to a type 1a supernova (SN1a)
event that produced a remnant (SNR), now known as SN1006 or
SNR G327.6+14.6. It is the brightest stellar event ever recorded
and its historical record (Stephenson 2010) is one of the reasons
why this remnant was an interesting target for several obser-
vational campaigns. SN1006 is notable for being a relatively
unobscured supernova remnant (SNR; Katsuda et al. 2013) that
is large in angular size due to its proximity to Earth (Winkler
et al. 2003). All these points have made SN1006 a good object
for studying SN1a events and has led to an impressive research
history.

In particular, X-ray observations of the remnant have pro-
vided important information about the dynamics and energies
of the supernova explosion and the surrounding interstellar
medium. When a supernova explodes, it creates a rapidly
expanding shell of ejected material that compresses and aggre-
gates up the surrounding interstellar medium (ISM). The colli-
sion between the expanding shell and the ISM creates a shock

wave that propagates into the ISM and heats it up so that it
emits thermal and non-thermal X-rays (Seward & Charles 2010).
In young SNRs, both thermal and non-thermal emission have a
peak in the 0.5–10 keV energy range (Li et al. 2015), making
current X-ray telescopes perfect for studying these objects. An
important observation was made by Koyama et al. (1995), who
detected synchrotron X-ray emission in the envelope of SN1006,
supporting the theoretical expectation that the shock wave of
SNRs accelerates particles to extremely high energies. This is
believed to be a major production process of cosmic rays (CRs).
Accordingly, SNRs are one important source of energy for the
ISM via cosmic rays. This observation led to many subsequent
spectral (Helder et al. 2012; Reynolds 2008) and spatio-spectral
analyses of SN1006 (Bamba et al. 2003; Winkler et al. 2014;
Li et al. 2015) to study the spatially varying X-ray production
processes in SN1006. In addition, supernovae are known to pro-
duce heavier elements from lighter ones during the explosion,
which are ejected into the ISM and enable the formation of new
stars and planetary systems, making them very important for the
Galactic metabolism. Winkler et al. (2014) and Li et al. (2015)
studied the spatial distribution of elements in the remnant. Long-
term observations of SN1006 allowed Winkler et al. (2014) and
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Katsuda et al. (2013) to study its proper motion and thereby have
offered insights into the dynamics of the explosion, the evo-
lution of the remnant, and its interaction with the interstellar
medium. Despite the extensive previous studies of SN1006 and
other SNRs, there are still a number of aspects that are not well
understood. Among them are the details of particle acceleration
at shock fronts (Vink 2011).

In recent years, there have been significant advances in
X-ray astronomy aimed at studying such high-energy phenom-
ena in the universe. These advances have been driven in large
part by the development of new X-ray satellite missions such
as Chandra, XMM-Newton and Suzaku, which have provided
unprecedented spatial and spectral resolution. However, any
technological advance in space-based astronomical instruments
must be accompanied by advances in imaging methodology in
order to exploit the full potential of these instruments. Here, we
focus on the development of such an imaging method, capable of
denoising, deconvolving, and decomposing the data, and apply it
to Chandra observations of SN1006: the highest resolution data
of this SNR to date. The aim is to obtain a more detailed view
of the small-scale structures of the remnant and, thus, to allow a
more detailed study of the open questions in the field of super-
novae and their remnants as well as to challenge and benchmark
the imaging method.

To obtain an accurate and meaningful reconstruction of the
true flux from the given X-ray data, there are a number of
challenges that need to be overcome. X-ray telescopes such as
Chandra record the data from these high-energy phenomena as
photon count events accompanied by information about the pho-
ton’s arrival direction, time, and energy. In the present work, the
events are categorized into spatial and energy bins, which yields
independent Poisson statistics for each pixel. In particular, X-ray
observations often have low count rates, which poses a challenge
because of the resulting poor signal-to-noise ratio. Accordingly,
a major task in X-ray imaging is the denoising of the correspond-
ing data. In addition, there is an instrument-specific response to
the observed X-ray flux, which complicates the relation between
the sky and data, particularly the exposure and the point spread
function (PSF). A coherent representation and application of the
response is a complex problem, as the instrumental properties
of X-ray instruments tend to change with off-axis angle, energy,
and time. Ultimately, one of the goals of X-ray imaging is to dis-
criminate between noise, background, and extended and point
sources. So far, most imaging techniques are designed to extract
either the point sources or the diffuse flux, but lack the ability to
reconstruct both simultaneously. In the study of such extended
sources as SN1006 in particular, this separation of components
is essential when investigating the spectra and, thus, the emission
properties of the remnant at each location.

The study presented here aims to address these challenges
in X-ray imaging. In particular, we use information field theory
(IFT; Enßlin 2019) as a versatile mathematical framework for
reconstructing the signal from large and noisy data sets by com-
bining information theory, statistical physics, and probability
theory. Along with the numerical IFT algorithms implemented
in the software package NIFTy (Arras et al. 2019), it provides an
excellent tool for denoising, deconvolving and decomposing the
image. This capability has already been demonstrated for Pois-
son data (Selig & Enßlin 2015; Pumpe et al. 2018; Scheel-Platz
et al. 2022). The basis of IFT is Bayes theorem applied to the
problem of reconstructing fields. In our case, the sky photon flux
is regarded to be a field, which we subsequently refer to as the
signal field. It is inferred given prior knowledge on its config-
uration and the measurement data, which is interpreted using a

separate model for the measurement response. The instrument
description, including its noise statistics determines the so called
likelihood; in other words, the probability to observe specific
data given a sky flux configuration. By combining the prior and
the likelihood into the posterior distribution, we obtain not only
an estimate of the actual sky photon flux as its posterior mean,
but also an estimate of the uncertainty via the posterior variance.

During inference, the prior model guides the separation of
the signal into different components, such as point-like and
diffuse structures. Therefore, we need to carefully encode our
knowledge of the different components into our prior model to
give the inference the chance to discriminate their contributions
to the observed photon counts. To this end, we have modeled the
signal field as a superposition of different physical fluxes: the
emission from point-like and extended sources. Assigning a dif-
ferent correlation structure to the diffuse emission from extended
sources, which is assumed to be spatially correlated, and the
point sources, which are assumed to be spatially uncorrelated,
makes it possible to distinguish between these components. A
spatio-spectral prior allows the reconstruction of the emissivity
as a function of energy and spatial position. Further knowledge
about the different spectra of the components improves their
separation.

The instrumental description encoded in the likelihood
drives the deconvolution of the data from the PSF, image denois-
ing, and exposure correction. Specifically for Chandra, there
are two different ACIS X-ray imagers: ACIS-I and ACIS-S.
The majority of the chips in ACIS-I and ACIS-S are front-
illuminated. However, ACIS-S also contains two chips that
are back-illuminated leading to a significant number of non-
astronomical photon events in these regions. To account for
the latter, we added a further model component of a non-
astronomical, spatially varying but temporally constant back-
ground that is present in regions of the back-illuminated chips.
An additional challenge is the fact that Chandra’s field of view
(FOV) is small compared with the extent of SN1006. It is
therefore not possible to capture the entire remnant in a sin-
gle ACIS-I or ACIS-S image. Instead, mosaicking is required
(Winkler et al. 2014), which can be effectively implemented,
even for varying instrument responses, by combining the cor-
responding likelihoods.

Overall, the spatio-spectral inference of the sky flux is asso-
ciated with a significantly higher computational complexity than
an inference that only considers the spatial direction. Therefore,
we introduce a multi-step model, which considers two differ-
ent priors: a purely spatial one and a spatio-spectral one. First,
we performed a spatial reconstruction using the spatial prior.
The result of this spatial reconstruction was mapped onto the
entire spatio-spectral sky. The mapped sky with multiple energy
bins added was then used as the initial guess for the subsequent
spatio-spectral reconstruction. This allowed us to perform parts
of the reconstruction and especially of the component separation
in a smaller parameter space.

This multi-step model, which we call the transition model,
and the reconstruction results on SN1006 are presented and dis-
cussed in this paper. In Sect. 2, we present current methods used
in X-ray imaging and their application results on SN1006 data
thus far. We also review state-of-the-art approaches to photon
count data in the field of IFT. An introduction to the imaging of
photon data with IFT is given in Sect. 3. The explicit structure of
the algorithm and in particular of the transition model is given
in Sect. 4. Section 5 focuses on the corresponding prior descrip-
tion and Sect. 6 explains the instrument model and the Chandra
observations of SN1006. In Sect. 7, we present a reconstruction
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from synthetic data to validate the method, before finally pre-
senting and discussing the reconstruction results on SN1006 in
Sect. 8. The conclusion and outlook for future research is given
Sect. 9.

2. Related work

This section is devoted to a review of previous studies and
state-of-the-art developments in X-ray imaging. Previous inves-
tigations in high-energy astrophysics, with a focus on X-ray
studies, are highlighted in three parts. First, we have a discus-
sion of previous and current X-ray imaging techniques, followed
by an explanation of the results of these techniques applied to
SN1006 and an introduction to previous imaging techniques with
IFT, which is the basis for the reconstruction presented here.

2.1. State-of-the-art X-ray imaging

The study of X-ray phenomena in the universe began in the
1960s and it is still a relatively new field of astrophysics due to
the inability of ground-based telescopes to observe X-rays from
astronomical sources. However, there have been many technical
developments since then, discussed in greater detail in Seward
& Charles (2010). Here, we focus on the imaging techniques
that have been developed and are in use, with a non-exclusive
focus on the Chandra X-ray Observatory. A more comprehen-
sive summary of recent developments in X-ray analysis for X-ray
telescopes XMM-Newton, Suzaku, and Chandra can be found in
Seward & Charles (2010).

Among others, Seward & Charles (2010) have offered
insights into the steps and techniques in the widely used Chan-
dra data processing pipeline1. The corresponding methods and
further data imaging and response tools have been implemented
in the software tool Chandra Interactive Analysis of Observa-
tions (CIAO; Fruscione et al. 2006), developed by the Chandra
X-ray Center (CXC).

Overall, there are some standards for extended sources, such
as SN1006, which have been applied in recent publications. One
of these is the reduction of background from the data, which can
obscure the signal from the source of interest. A disadvantage of
this approach is that the subtraction of the background comes at
the cost of eliminating real X-ray events. Another tool, applied
in particular for extended sources, is mosaicking. This allows for
the analysis of sources that have a greater extent than Chandra’s
FOV. In CIAO, mosaicking is implemented by transforming the
raw count images, the effective area, and the background maps
into a single coordinate system. Reconstructing an image from
these mosaics has its difficulties, as there are often several PSFs
and response matrix function (RMF)s for one source. So far,
this problem has been overcome by calculating and using the
weighted average of the PSF and RMF for the data patches, as
suggested by Broos et al. (2010).

One of the final steps, which depends on the object of inter-
est, is source detection and extraction. The aim is to separate the
X-ray source of interest from the background. For this purpose,
three well-known algorithms have been implemented in CIAO:
the sliding cell algorithm (Calderwood et al. 2001), wavelet
detection algorithm (Freeman et al. 2008) and Voronoi tessella-
tion and percolation algorithm (Ebeling & Wiedenmann 1993).
The sliding cell algorithm, previously used for Einstein and
ROSAT, searches for sources by summing the counts in a square
cell that slides over the image. For comparison, the counts in a

1 https://cxc.harvard.edu/ciao/dictionary/sdp.html

cell assigned to the background are taken. From the ratio of the
counts in the cell to the counts in the background, the cell might
be assigned to a source. Wavelet detection, on the other hand,
decomposes the signal into a series of wavelets. By analyzing
the coefficients of the wavelets, patterns of different scales can
be detected in the data. Finally, data cleaning and source extrac-
tion techniques differ for point sources and diffuse emission.
This involves additional work as the pipeline needs to be run
several times to fully extract point source and diffuse emission
information.

There have been other approaches to source decomposition
that fall into the category of blind source separation. In general,
the goal of blind source separation is to automatically decompose
observations into features maximizing their statistical separation.
In Warren et al. (2005), a principal component analysis (PCA)
approach was presented to determine the location of the con-
tact discontinuity and the shock wave, and thus find evidence for
cosmic ray acceleration in the SNR Tycho. In particular, sparse
blind source separation aims to compress the signal and extract
its essence in this way. One application of sparse blind source
separation to Chandra data was recently presented in Picquenot
et al. (2019). Moreover, a generalized morphological component
analysis Bobin et al. (2016) was performed to X-ray data of Cas-
siopeia A by Bobin et al. (2020) to decompose the spectrum into
its components such as thermal and non-thermal emission. Here,
the generalized morphological component analysis models the
source as a linear combination of a fixed number of morphologi-
cal components and solves the according blind source separation
problem, while putting sparsity constraints on the morphological
components.

In addition, Bayesian and machine learning approaches have
been applied for source separation, model comparison or point
source characterization. Guglielmetti et al. (2009) analyzed
Bayesian techniques for the joint estimation of sources and back-
ground, while Cruddace et al. (1988) implemented a maximum
likelihood algorithm for the calculation of certain parameters
of the detected sources, which has also been used for XXM-
Newton. In Ellien et al. (2023), different components of the spec-
trum were modeled for Chandra data of five thin bands around
Tycho and different one-, two-, and three-component models
were analyzed via a Bayesian model comparison. Recently, a
machine learning approach was published by Kumaran et al.
(2023), with the aim of using it as an automated source clas-
sifier. The approach is based on supervised learning and allows
point sources to be assigned to specific classes.

2.2. Previous studies of SN1006 in the X-ray range

The supernova remnant SN1006 has an exciting scientific record.
As mentioned above, the remnant is of great scientific interest in
the study of Type 1a supernovae and their remnants for many
reasons: its proximity, low obscuration, and large size. In partic-
ular, X-ray observations of the remnant provide an opportunity to
study its evolution. Accordingly, there have been intensive stud-
ies of SN1006 in this energy range, starting with observations
by ROSAT (Willingale et al. 1996) and ASCA (Koyama et al.
1995). The ASCA data on SN1006 were analyzed by Koyama
et al. (1995) and Dyer et al. (2003), which led to the confirma-
tion of theoretical predictions that cosmic rays are accelerated
at the shock fronts of the remnant. It was also discovered that
there are several processes in the supernova remnant that are
responsible for the X-ray emission. In fact, it was found that the
northeast (NE) and southwest (SW) of SN1006 are dominated by
non-thermal, synchrotron emission, while the northwest (NW)
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and southeast (SE) edges are less distinct and are attributed
to thermal emission. Accordingly, Dyer et al. (2003) analyzed
non-thermal and thermal models on the ASCA data.

The new technologies of the X-ray telescopes XMM-Newton
and Chandra have led to an unprecedentedly high resolution of
X-ray sources and, thus, to improved data for SN1006. Bamba
et al. (2003) published the first spatio-spectral study of Chan-
dra ACIS-S data from the NE shell of SN1006, followed by
ACIS-I mosaic data from the analysis of Cassam-Chenaï et al.
(2008). Here, we want to highlight the publication of Winkler
et al. (2014), as their reconstructed image ought to be the main
point of comparison for ours. In Winkler et al. (2014), the
standard Chandra pipeline (described in Sect. 2.1) was used
and point sources were extracted using the wavelet detection
algorithm. To use multiple data patches, the observations were
merged using CIAO. A more recent study of SN1006 was car-
ried out by Li et al. (2015) on XMM-Newton data using the
SAS software. The data were preprocessed in a similar way to
the Chandra pipeline and wavelet detection was used. However,
point source detection was only possible at high energies because
of the risk of misidentifying small-scale structures in the low
energy regime as point sources.

2.3. Previous work on high energy count data with IFT

High-energy astronomical data, including X-ray and gamma-ray
data, are recorded in photon counts. So far there have been no
applications of IFT to Chandra X-ray data, but there have been
studies on gamma-ray data and methodological research on the
reconstruction and component separation of such count data.
First, the algorithm D3PO by Selig & Enßlin (2015) based on
IFT implemented the denoising, deconvolution, and decompo-
sition of count data. Building on this, D4PO by Pumpe et al.
(2018) allows D3PO to work on fields that have spectral and
temporal coordinates in addition to spatial coordinates. Finally,
Scheel-Platz et al. (2022) built a model of the gamma-ray sky
and applied a variant of D4PO in a spatio-spectral setting.

In this work, we adapt a similar model as presented in
Scheel-Platz et al. (2022) to describe the X-ray sky. As such, this
is the first application of IFT imaging to X-ray data. Further, we
introduce a method to fuse several data sets with different detec-
tor characteristics, pointing directions, and noise levels into a
mosaic. We demonstrate how the imaging can be accelerated and
improved by a multi-step model, which is presented in Sect. 4.

3. Image reconstruction with IFT

In X-ray imaging, we are dealing with finite, incomplete, and
noisy data. Here, we use IFT (Enßlin 2019), an information the-
ory for fields, to infer the X-ray sky as a continuous field from
this finite data, d. In general, a physical field, s : Ω→ R, assigns
a value to each point in the space Ω, which describes a contin-
uous physical quantity such as temperature, pressure, intensity,
and so on; in our case, this is the X-ray flux. Given the data,
d, we obtain constraints on the field of interest, which we call
the signal field. Since the data provide only a finite number of
constraints on the signal field, there could have been an infinite
number of signals that have produced the data, even if we com-
pletely neglect noise. For this reason, prior assumptions about
the field are needed to sufficiently constrain the signal field, s.
Given the likelihood, P(d|s), which describes the measurement,
and a statistical description of the prior, P(s), the posterior prob-
ability of the signal given the data can be calculated via Bayes

theorem:

P(s|d) =
P(d|s)P(s)
P(d)

. (1)

Through IFT, we aim to inspect this posterior probability, as it
allows us to draw posterior samples and thereby calculate any
important posterior quantity such as the posterior mean,

m = ⟨s⟩(s|d) ≡
∫
Ds s P(s|d), (2)

where
∫
Ds denotes the path integral over all possible field con-

figurations and a measure of uncertainty via the covariance of
the posterior probability,

D = ⟨(m − s)(m − s)†⟩(s|d). (3)

The expectation value over the posterior probability is denoted
by ⟨⟩(s|d) and † gives the adjoint of the corresponding field.
Therefore, the statistical treatment of the fields of interest in IFT
creates an important advantage, as we may not only present a
point estimate of the field, but also quantify its reliability at each
position.

A more detailed description of the likelihood and prior
model is given in Sect. 4. Here, we describe image reconstruction
with IFT given a general measurement equation. Accordingly,
we consider a measurement as a function f that maps a field
from its continuous space to a discrete data space. This function
is determined by the response, R(s), of the instrument and some
statistical noise, n, in the measurement,

d = f (R(s), n). (4)

Given this generic measurement equation we can calculate the
likelihood by marginalizing over the measurement noise,

P(d|s) =
∫

dn P(d, n|s) =
∫

dn P(d|n, s) P(n|s), (5)

=

∫
dn δ(d − f (R(s), n)) P(n|s), (6)

= P
(

f −1(R(s), d)|s
) ∣∣∣∣∣∂ f (R(s), n)

∂n

∣∣∣∣∣−1
, (7)

where f −1, is the inverse of the measurement function with
respect to the second argument, n, and |∂ f /∂n| is the func-
tional determinant. When combining the likelihood with a prior
distribution to obtain the posterior, the main difficulty lies in
normalizing the posterior, namely, in computing the evidence:
P(d) =

∫
Ds P(d|s)P(d). To circumvent the problem of analyt-

ically intractable normalization, we approximate the posterior
via variational inference (VI), where a possibly complex pos-
terior distribution P(s|d) is approximated by a simpler one,
Q(s|d). Mathematically, the Kullback-Leibler divergence (KL;
Kullback & Leibler 1951) is the measure that needs to be
optimized to find the optimal approximation,

DKL(Q(s|d)|P(s|d)) =
∫
Ds Q(s|d) ln

(Q(s|d)
P(s|d)

)
. (8)

Here, we use the VI version of the KL divergence; when min-
imized for the parameters of Q(s|d), it ensures that in the
approximation the least amount of spurious information is intro-
duced. The expectation propagation (EP) version of the KL
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Table 1. Number of hyper-parameters in each model per component.

Model s sd sp sb

SF 24 11 2 11
MF 53 19 15 19

Table 2. Number of latent parameters in each model per component.

Model s sd sp sb

SF 3.4 × 106 1.2 × 106 1.0 × 106 1.2 × 106

MF 1.4 × 107 4.4 × 106 5.0 × 106 4.4 × 106

divergence, DKL(P(s|d)|Q(s|d)), would be more conservative,
as it would just ensure that a minimum of information is lost,
but none have been introduced. However, EP requires integra-
tion over the intractable posterior P(s|d), while VI only requires
integration over a conveniently chosen function Q(s|d) (e.g., a
Gaussian) and, therefore, this is feasible. As a consequence,
uncertainty estimates obtained from the VI approximation are
known to be a bit too optimistic, which should be kept in mind.
However, those are nevertheless well informative about the struc-
ture of the uncertainties. For further details, we refer to Frank
et al. (2021).

4. Algorithm overview of Bayesian inference of the
X-ray sky

4.1. Structure of the reconstruction algorithm

The measure of interest in our reconstruction of SN1006 is
the sky flux s as a function of space and energy. In other
words, the signal field, s, lives on a space consisting of a
two-dimensional (2D) position space and a one-dimensional log-
energy space, denoted by z = (x, y) ∈ Ω = R2 × R, where
y = log(E/E0) and E0 is the reference energy. In order to guide
the inference in the latent space and to reduce computational
complexity, we introduce a multi-step model, which we call
the transition model. The transition model divides the actual
reconstruction into three parts, with three different inference
problems, which are solved by VI. First, we aim to reconstruct
the sky at a single energy level. Here, we perform a purely
spatial reconstruction of the signal of interest. This part of the
reconstruction is called the single frequency (SF) reconstruction.
Its results are used to determine an informed starting position
for the spatio-spectral reconstruction, subsequently called the
multifrequency (MF) reconstruction. The standard reconstruc-
tion algorithm for the SF and MF model are further described
in Sect. 4.2. We model the mapping from the SF image to the
MF image space as an inference problem, whose solution con-
stitutes step two (introduced in Sect. 4.3). In the third step, we
solve the MF reconstruction using the starting point provided
by step two. A similar model was previously used by Arras
et al. (2022) to move from a spatial domain to a spatio-temporal
domain.

Using the transition model, we can solve significant parts
of the reconstruction problem, including the separation of point
source and diffuse emission, in the SF setting, which has less
model and computational complexity. Table 1 shows the number

of hyper-parameters for each model, SF and MF, and its sub-
components, reflecting the model complexity. Table 2 presents
the number of latent parameters in the model as a measure
for the computational complexity. Figures B.1 and B.2 show
a quantitative comparison regarding computational complexity
and reconstruction error for the transition model presented here
versus a pure MF reconstruction. A schematic overview of the
described reconstruction algorithm can be seen in the diagram
in Fig. 1. The MF and SF prior models themselves are discussed
in Sect. 5.

4.2. Variational inference and generative models

As mentioned in Sect. 3, we approximate the posterior given
information on the prior model (as described in Sect. 5) and the
likelihood description (see Sect. 6) via VI. Two approaches to
VI of posteriors within the current NIFTy package are metric
Gaussian variational inference (MGVI; Knollmüller & Enßlin
2020) and geometric variational inference (geoVI; Frank et al.
2021). They are designed to approximate high-dimensional and
complex posterior probability distributions via optimization of
the cross entropy term of the KL in Eq. (8). Both approaches
perform the KL optimization in a coordinate space of the prob-
lem, in which the prior is a standard Gaussian. In particular,
the signal field is described by a generative model s = s(ξ)
given a set of latent parameters ξ with a standard Gaussian
prior P(xi) = G(ξi,1). The generative model encodes all prior
knowledge on the corresponding field. To this end, the likeli-
hood is formulated as a function of the latent parameters, P(d|ξ)
and the posterior P(ξ|d) can be inferred via VI. In this work,
geoVI is used, which optimizes the KL for the parameters of
a non-linear coordinate transformation in which the posterior
becomes an approximate standardized Gaussian. Thereby, geoVI
allows for the representation of non-Gaussian signal posteri-
ors. The detailed implementation can be found in Frank et al.
(2021). In any case, we need to define generative prior models for
both, the SF and the MF model, given the corresponding latent
parameters sm = sm(ξm), m ∈ {SF,MF}. The detailed explana-
tion of these models is part of the prior description in Sect. 5.
The according posterior approximations for each model m are
denoted by Qm.

4.3. Transition model

The indirect encoding of fields in generative models complicates
the transition from one model (e.g., the SF model) to another
(e.g. the MF model) as the corresponding generative function
is in generally not invertible; in other words, its inverse is not
unique. Thus, our objective is to determine a mapping function,
T, that plausibly maps the parameters of the SF model, ξSF, to
their corresponding MF parameters ξMF,

T : ξSF → ξMF. (9)

As the transition model is intended to be flexible and adapt-
able to a range of initial and final models, we implement it as
an inference problem. Given the posterior signal space mean
mSF = ⟨sSF(ξ)⟩QSF and signal space variance σ2

SF = ⟨(sSF(ξSF) −
mSF)2⟩QSF of the SF reconstruction, we infer the corresponding
latent space parameters of the MF model, which we take as the
starting point ξI,MF for the MF reconstruction. The according
virtual measurement equation is:

dT = mSF = RsMF(ξI,MF) + n, n↶ G(n,N), (10)
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Single frequency (SF) Transition Multifrequency (MF)

SF data

Poisson likelihood SF prior model

geoVI: Posterior approximation

Latent space posterior samples {ξ∗SF}

Signal space mean mSF
Signal space variance σ2

SF

Virtual measurement
Data dT = mSF

Gaussian Likelihood
Noise covariance N = diag(σ2

SF) MF prior model

geoVI: Posterior approximation

Latent space posterior samples {ξ∗I, MF}

Latent space mean ξ̄I,MF

MF data

Poisson likelihood MF prior model

geoVI: Posterior approximation
Initial latent space position ξ̄I,MF

Latent space posterior samples {ξ∗MF}

Signal space mean mMF
Signal space variance σ2

MF

Fig. 1. Structure of the transition model given the generative prior models for the SF reconstruction sSF = sSF(ξSF) and for the MF reconstruction
sMF = sMF(ξMF), which transform the according latent parameters ξSF and ξMF from the latent space into the signal space. Here, ξI, MF denotes the
initial position of the MF reconstruction in latent space.

where N = diag(σ2
SF). The transition response R is a linear oper-

ator that can be chosen adaptively according to the problem
under consideration. In the present analysis, R is an operator that
extracts the highest energy bin from the spatio-spectral field sMF,
generating a 2D field, sSF. The likelihood of the mapping infer-
ence problem is given by the linear measurement equation in
Eq. (10) and the likelihood derivation in Sect. 3 is described by
a Gaussian:

P(dT|ξI,MF, σ
2
SF) = G(dT − RsMF(ξI,MF), diag(σ2

SF)). (11)

The posterior for the initial latent parameters in the MF model
P(ξI,MF|dT, σ

2
SF) is approximated by QT(ξI,MF|dT, σ

2
SF), with

geoVI as described in Sect. 4.2. We chose the posterior mean of
the transition ⟨ξI,MF⟩QT as the initial position for the subsequent
MF reconstruction. This results in an overall algorithm that starts
with a high-energy slice and uses this reconstruction as a start-
ing point for the subsequent spatio-spectral reconstruction. The
flow of reconstructions in this approach is illustrated in Fig. 1.
The decision to start with the high energy slice was deliberate,
as this particular energy range has a more consistent effective
area for Chandra. Since the transition result is used only as an
initial guess, we assume a consideration of a diagonal transition
noise covariance, N, to be sufficient. The possibly underesti-
mated noise level is corrected in the subsequent spatio-spectral
reconstruction steps.

5. Prior models for the X-ray sky

5.1. Prior composition

As described in Sect. 4.1, we consider two different prior models,
one for the SF reconstruction and one for the MF reconstruc-
tion. The fields in the SF reconstruction are defined in the spatial
domain, sSF : ΩSF = R

2 → R+, whereas the MF fields have
an additional spectral dimension, sMF : ΩMF = R

2 × R → R+.
Regardless of the model, we assume that the X-ray sky consists
of two possible sources: point sources and diffuse sources. Dif-
ferent prior models represent fluxes of different morphologies,
each shaped by their physical production processes. The flux in
diffuse structures should vary smoothly over position space. In
other words, field values in the vicinity of a location are similar
to that, which is best represented by the correlation structure of
the field. In contrast, point sources are spatially uncorrelated and
therefore best represented by spatially independent and sparsity
enforcing priors. We discuss the specific use of either compo-
nent in more detail below. In the following, the validity of the
assumptions made for s ∈ {sSF, sMF} is assumed to hold for both
the SF and MF sky.

We represent the flux signal, s, as a superposition of point
sources, sp, and diffuse sources, sd. In addition, we add a back-
ground component, sb, which in our case accounts for the differ-
ent backgrounds in front-illuminated (FI) and back-illuminated
(BI) chips, which are further discussed in Sect. 6.
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Correspondingly, we denote the latent space sub-vectors,
which parametrize these individual components, as ξp, ξd, and ξb,
which altogether form the total latent space vector of the model,
ξ = (ξp, ξd, ξb). The according generative prior model is given by,

s(ξ) = sp(ξp) + sd(ξd)︸            ︷︷            ︸
sky flux

+ R′sb(ξb)︸   ︷︷   ︸
BI background

. (12)

Here, R′ denotes a mask, which assures that the additional back-
ground field is added in BI chip regions only. By expressing the
transformation into the standardized coordinate system as a func-
tion si with i ∈ d, p, b, we obtain a generative model for each
component as described in Enßlin (2022).

A set of prior samples can be seen in the first row of the
synthetic data generation diagram in Fig. A.1. Furthermore, the
according prior samples and synthetic data allow us to choose
the model hyper-parameters correctly. Here, we perform the
search in two steps. First, we ensure mathematically via a coarse
adjustment of the parameters that the order of magnitude in
the counts of the data in Fig. 2 is the same as the order of
magnitude in the expected counts of the pixel-wise product
of the exposure and the prior samples. Second, we look at the
corresponding synthetic data, as shown in Fig. A.1 and fine-tune
hyper-parameters such that the components in the actual data
and the synthetic data are morphologically similar, in order to
improve the convergence of the algorithm.

5.2. Correlated components

Correlated components correspond to a flux that can vary over
several orders of magnitude and exhibit spatial correlation. In
this sense, the diffuse sky emission and the background are rep-
resented by correlated components. Their morphology is imple-
mented by representing the signal for a correlated component as
a log-normal processes:

s = eτ with P(τ|T ) = G(τ,T ), (13)

with an unknown covariance, T, describing the correlation struc-
ture of the correlated signal component. Since the correlation
structure is not known a priori, we infer it concurrently by incor-
porating the correlated field model from Arras et al. (2022).
Using the reparametrization trick introduced by Kingma et al.
(2015), we describe the logarithmic sky flux as a generative
process:

τ = Aξτ with T = AA†. (14)

We went on to model the correlations in space and energy sepa-
rately and assumed a priori statistical homogeneity and isotropy
of the correlated logarithmic sky flux components in each of
the subspaces Ω(k), where Ω =

⊗
k Ω

(k). Thus, according to
the Wiener-Khinchin theorem, the corresponding covariances
for the space Ω(k), T (k) are diagonal and defined by the power
spectrum pT (k) .

To learn the correlation structure of the correlated compo-
nent, the power spectrum was modeled non-parametrically by
representing the logarithmic power spectrum by an integrated
Wiener process according to Arras et al. (2022). In particular, the
mean and uncertainty of the parameters resulting from the cho-
sen representation, such as the slope of the logarithmic power
spectrum, its offset, and the fluctuations around the described
power law, are learned from the data by modeling them as gen-
erative processes. This introduces further latent parameters to

Fig. 2. Visualization of the photon count data used for the reconstruction
(Table 3) with right ascension on the x-axis and declination on the y-
axis: red = 0.5–1.2 keV, green = 1.2–2.0 keV, and blue = 2.0–7.0 keV.

describe the generative model for the correlation structure. In
the following, we refer to this prior model as the correlated field.

In the case of the SF model, we only considered the spatial
correlations. Accordingly, the generative model for the spatially
correlated components in the SF reconstruction is defined via
sSF(ξSF) = eτSF(ξSF) with Ω = Ω(k) = R2. In the MF model, we
combined the power spectra for the independent spatial and
spectral domain via a tensor product and define sMF(ξMF) =
eτMF(ξMF). A further description of this generative model and its
normalization can be found in Arras et al. (2022).

The diffuse and background components are represented by
these spatially and spectrally correlated components. The num-
ber of derived hyper-parameters as well as latent parameters per
component in each model is given in Tables 1 and 2. For the
correlation structure of the diffuse and background components,
we made different prior assumptions to ensure an adequate sep-
aration of these components. In particular, we assumed that the
spatial power spectrum of the diffuse sky structures has a slightly
declining slope, allowing for small-scale structures in this com-
ponent; meanwhile the spectrum of the background is assumed
to be steep, allowing only for smooth background noise in the
back-illuminated chips.

5.3. Point-like components

Point-like components appear local without any spatial corre-
lation structure, due to their extreme distances. Consequently,
we assume that the sky fluxes from point sources are spa-
tially independent and, thus, their prior is factorized in a spatial
direction:

P(sp) =
∏

x
P(sp(x, y)).
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In Selig & Enßlin (2015), different functional forms of possible
point source luminosity priors were analyzed. Since the recon-
struction of SN1006 requires a point source prior capable of
modeling a few very bright point sources, we chose the inverse-
gamma prior for the spatial direction according to Guglielmetti
et al. (2009):

P(sp|q, α) =
∏

x

(q)α

Γ(α)

 1

s(x)
p

α+1

exp

 −q

s(x)
p

 , (15)

where α is the shape parameter of the inverse-gamma distribu-
tion and q is the corresponding lower flux cutoff. The inverse-
gamma prior behaves as a power law for fluxes much larger than
the cutoff value, which matches the behavior observed for the
luminosity functions of high-energy astrophysical point sources.
Intuitively, it encodes the assumption that with increasing lumi-
nosity, the set of point sources exceeding it becomes increasingly
sparse. We model the inverse-gamma prior in standardized coor-
dinates via inverse transform sampling leading to the generative
model:

sSF = sp(ξp), (16)

where ξp is drawn from a standard Gaussian. Accordingly, sp
encodes the entire complexity of the inverse-gamma distribu-
tion and sp(ξp) is drawn according to Eq. (15). In the SF model,
Eq. (16) describes the accurate generative model for the point
sources.

For the MF model, we need to consider the spectral axis
as well, by modeling the point source flux as spatially inde-
pendent functions of the logarithmic energy y, according to
Scheel-Platz et al. (2022). We assume that each point in the
spatial subdomain has non-negligible correlations in the energy
direction, as described by the correlated field component. In par-
ticular, we want to obtain a power-law dependence in the energy
direction, defined by the spectral index a, and add fluctuations
around it by a correlated field τp,

(sMF)p(x, y) = (sSF)p(x)
eτ

(x)
p (y)+a(x)

p y

C
, (17)

where C is the normalization. Here, not only the correlated field
is described by a generative model, but also the spectral index
a(x)

p at every location x is learned. Thus, the additional energy
axis introduces a number of new hyper- and latent parameters.
The exact numbers of hyper- and latent parameters for the point
sources in each model are given in Tables 1 and 2.

6. Chandra instrument and data description

In Bayesian X-ray imaging, the prior model (Sect. 5) is respon-
sible for decomposing the components, whereas the denoising
and deconvolution is controlled by the likelihood model, which
describes the measurement process. In general, an X-ray tele-
scope provides photon counts that are statistically binned into
pixels. This stochasticity is modeled by Poisson noise. The Pois-
son distribution gives the probability of the actual number of
photon counts per bin, given the expected number of events, λ,

P(d|λ) =
∏

i

P(di|λi) =
∏

i

1
di!
λi

di e−λi . (18)

In the end, we want to know the photon flux at each point in
position and energy space. To do this, we need to model the

response function R, which in a first step transforms the continu-
ous flux field into a pixel-wise vector of expected photon counts
λi, given a sky and BI background model. The response func-
tion includes all aspects of the instrument specific measurement,
which are described in more detail below. Given the response, R
(see Sect. 6.1), the number of expected counts at each pixel, λi, is
calculated via λ(z) = R(s)(z). Because the Chandra FOV is small
compared to the extent of SN1006, multiple observations were
taken to cover the whole SNR. For each of several data patches, j,
we get the data, d j, and the response, R j, which need to be fused.
Here, we introduce a mechanism that accounts for differences
in the exposure and the PSF between the patches. By assum-
ing that each patch is observed independently, we can write
the log-likelihood of the full mosaic as the sum over individual
patches (Eq. (18)) for each data patch, d j, and the corresponding
expected counts, λ j, calculated from the response, R j,

lnP(d|λ) =
∑

j

lnP(d j|λ j). (19)

6.1. Chandra instrument response

We consider the data taken by the Advanced CCD Imaging
Spectrometer (ACIS; Garmire et al. 2003), which is able to
determine the energy of each incoming photon by using charge-
coupled devices (CCDs). In particular, we consider the energy
range 0.5 keV to 7.0 keV, which we bin in accordance with
Winkler et al. (2014) into three energy bins (0.5–1.2 keV, 1.2–
2.0 keV, and 2.0–7.0 keV). Chandra carries two different kinds
of ACIS detectors, ACIS-I, used for imaging, and ACIS-S, used
for imaging and spectral analysis. According to their applica-
tion, ACIS-I and ACIS-S differ in the chips they are built of.
In particular, ACIS-I is constructed out of FI chips only, which
means that the incidental X-ray photons have to pass through
the metal wiring until they reach the light-receiving surface.
In contrast, ACIS-S also contains BI chips, where the CCD is
flipped, such that the gate structure and channel stops do not face
the X-ray-illuminated side. Accordingly, the BI chips are more
sensitive to soft X-rays, so they are well suited for spectral analy-
ses. However, they have a lower high-energy quantum efficiency
and a worse resolution due to increased noise (Keith Arnaud &
Siemiginowska 2011). The exact layout of ACIS-I and ACIS-S
can be found in Chandra X-ray Center (2021).

We use version 4.14 of CIAO tool (Fruscione et al. 2006)
designed by the CXC to extract information on the response
ingredients such as the PSF and the exposure as well as on the
event files itself for each patch. Here, we have made use of tools
from the “data manipulation” category for extracting and bin-
ning the data and from the “response tool” category to generate
the ingredients of the instrument response.

The exposure map is a key component in the process of
converting raw X-ray data into scientifically useful data prod-
ucts, such as images and spectra. The exposure map combines
information from the instrument map, which characterizes the
instrument sensitivity such as the effective area and aspect solu-
tion (McDowell 2006), which describes the spacecraft pointing
and roll to create a map of the total observing time (or exposure)
for each pixel in the field of view.

In Evans et al. (2010), the effective area as a function of
energy is shown for the different chips. As mentioned above
already, the FI chips are much less sensitive to low energy X-
ray photons than the BI chips. On the other hand, the BI chips
have more background flux. The exposure maps for the FI and
BI chips can be seen in Fig. 3. In order to account for the higher
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Table 3. Information on the Chandra ACIS observations for the used
data of SN1006 according to Winkler et al. (2014).

ObsID Instrument RA Dec Date

9107 ACIS-S 15:03:51.5 –41:51:19 24.06.2008
13737 ACIS-S 15:02:15.9 –41:46:10 20.04.2012
13738 ACIS-I 15:01:41.8 –41:58:15 23.04.2012
14424 ACIS-I 15:01:41.8 –41:58:15 27.04.2012
13739 ACIS-I 15:02:12.6 –42:07:01 04.05.2012
13740 ACIS-I 15:02:40.7 –41:50:21 10.06.2012
13741 ACIS-I 15:03:48.0 –42:02:53 25.04.2012
13742 ACIS-I 15:03:01.8 –42:08:27 15.06.2012
13743 ACIS-I 15:03:01.8 –41:43:05 28.04.2012
14423 ACIS-I 15:02:50.9 –41:55:25 25.04.2012
14435 ACIS-I 15:03:42.5 –41:54:49 08.06.2012

Notes. Observations taken by the instrument ACIS-S are followed by
the ACIS-I observations.

noise in the BI chips, we introduce an additional BI background
field in Sect. 5.

In general, for any of the considered chip types, it is evi-
dent that the chips are more sensitive to higher energies, leading
us to the decision to take the highest energy bin (2.0–7.0 keV)
as a starting point for the transition model. The PSF was sim-
ulated using the Model of AXAF Response to X-rays (MARX;
Davis et al. 2012). MARX is a software developed by the CXC
(amongst others) to simulate the response (i.e., the PSF) of the
Chandra X-ray Observatory, taking into account the telescope
optics, pointing, and aspect of the telescope. We generated the
response for each dataset and for each dataset, we used a homo-
geneous, spatially invariant PSF – but different PSFs for the
different patches. The consequences of this approximation are
addressed further in the quantitative discussion of the results in
Sect. 8.1. For a further analysis of spatially variant PSFs, we refer
to Eberle et al. (2023).

6.2. Chandra data of SN1006

The photon count data taken by the instrument is translated into
an event table. Each event has information on time, energy, and
position. Here, the data are binned into 1024×1024 spatial pixels
and three energy bins. Moreover, the pointing direction of Chan-
dra varies in time. Thus, the aspect correction is necessary, that
is, taking into account the pointing direction of the telescope as
a function of time. The data itself is an event list, which spec-
ifies the position in the chip coordinates and the arrival time
of each photon. In McDowell (2001) the calculation of the sky
coordinates of the photon given this event list is specified.

The latest Chandra observations of SN1006 according to
Winkler et al. (2014) was chosen for the reconstruction presented
here. Information on the data is given in Table 3. The aim of
the study of Winkler et al. (2014) was to measure the motion
of the remnant and to get a more detailed view on its fine scale
structures. Thus, the data observations were designed by Winkler
et al. (2014) in order to match former observations, to be able to
measure the expansion and using a longer exposure time in order
to get a more detailed picture. The previous observations, which
were taken as first-epoch images by Winkler et al. (2014), com-
prised a study of the non-thermal NE rim and the thermal NW
rim with the ACIS-S array (Long et al. 2003; Katsuda et al. 2009)
and the whole remnant with a mosaic of the ACIS-I observation

Fig. 3. Visualization of the exposures used for the reconstruction in
[s cm2] (Table 3). Top: full exposure for all FI chips. Bottom: full expo-
sure for all BI chips.

(Cassam-Chenaï et al. 2008). Accordingly, the reconstruction
deals with data from the BI and FI chips.

7. Validation of the algorithm using synthetic data

To demonstrate the performance of the developed algorithm, we
perform the inference described above on a realistic but simu-
lated dataset. Such a reconstruction based on synthetic data is
useful not only for validating the reconstruction method, but also
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Fig. 4. Generation of synthetic data. Left: sky sample generated for the validation experiment. Center: Chandra exposure, modeled by combining
three patches (14423, 14424, 14435; see Table 3). Right: synthetic data corresponding to the sky sample, obtained by convolving the sky sample
with the PSF and drawing a pixel-wise Poisson sample from the resulting detector flux prediction.

Fig. 5. Reconstruction results on synthetic data. Left: sky sample generated for this study masked by the extent of the exposure patches (14423,
14424, 14435; see Table 3). Center: reconstruction result, i.e., the posterior mean, of the imaged sky masked by the extent of the same exposure
patches. Right: zoomed-in regions of the data on top and of the reconstructed image below. The shown cutout region is marked in the center image.

for determining certain parameters of the actual reconstruction,
such as the sky flux detection limit. By constructing our model
as a generative model, we were able to draw realistic sky sam-
ples that are similar to the region of the X-ray sky considered
in this study. Given a sample of the sky, we were able to apply
the response to it and mimic the Poisson noise. As a result, we
obtained the synthetic data. The process of generating synthetic
data is illustrated in the Appendix A. For simplicity, we consid-
ered only three of the ACIS-I exposure patches for the synthetic
reconstruction, rather than the whole set. The relevant synthetic
data are shown in Fig. 4, together with the actual simulated sky
sample and the considered exposure map.

The resulting spatio-spectral reconstruction of the synthetic
data in Fig. 5 shows that the structures of the simulated sky
are well captured. The denoising and response corrections are
clearly visible when compared to the data shown in Fig. 4. In
particular, the right-hand side Fig. 5 shows an enlarged version
of the data and reconstruction to illustrate the denoising and
deconvolution.

As mentioned before, a particular strength of the X-ray imag-
ing method presented here is that we not only get an expectation
of the signal, but also a corresponding standard deviation to
this estimate. The corresponding pictures of the standard devi-
ation for the individual energy bins can be seen in Fig. C.2.
As expected, higher mean values exhibit greater variability in
the flux, which in turn leads to a higher absolute uncertainty.
However, given the standard deviation, σs, the reconstruction
mean, ms, and the fact that we know the signal ground truth,
sgt, itself from our generative model, we can calculate even more
interesting validation measures, such as the uncertainty weighted
residuals (UWRs) per energy bin, i:

(ϵUWR)i =
(ms)i − (sgt)i

σi
. (20)

In Fig. C.1, we show the UWRs as well as the residuals,

r = (ms − sgt). (21)
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Fig. 6. Visualization of the 2D histogram for the sample averaged rela-
tive distance of the posterior sky flux samples vs. the ground truth sky
flux (Eq. (22)). The detection limit is determined via the intersection of
the line showing the mean standardized error ā (Eq. (23)) with the a=1
line.

Areas with many counts show higher and more correlated
residuals than those with low counts. Accordingly, the UWRs
show that these pixels with high counts have higher uncertainty
weighted residuals, due to a relatively small uncertainty. Over-
all, the simulated reconstruction demonstrates that the method
developed is internally consistent. Therefore, we used this syn-
thetic reconstruction to set the threshold above which we can no
longer distinguish noise from signal, which we refer to as the
detection limit. The detection limit is used as a plotting lower
limit in the actual reconstruction. Below this lower limit flux
values are not shown in the image.

The posterior approximation gives us the opportunity to draw
posterior samples s∗ ←↩ Q(s|d), which we can use to calculate
the sample averages. In order to determine the detection limit,
we define the standardized error, a, between the ground truth,
sgt, and each of these samples, s∗, as a function of the ground
truth flux,

a(sgt) =
∣∣∣∣∣ s∗ − sgt

sgt

∣∣∣∣∣. (22)

In Fig. 6, the sample-averaged 2D histogram a(sgt) as a function
of the ground truth flux, sgt, is shown. For each value of sgt, i. we
calculate the mean standardized error of the histogram bins along
the a-axis, ā(sgt, i), where n(a j, sgt, i) is the number of counts for
each bin (i, j) in the 2D histogram:

ā(sgt, i) =
∑

j a j ∗ n(a j, sgt, i)∑
j n(a j, sgt, i)

. (23)

Figure 6 reflects the expectation that the standardized error
increases with smaller flux. To establish a detection threshold
for low fluxes, we defined a limit beyond which we cannot con-
fidently ascertain the presence of a signal in our observations. In
this study, we determined the detection threshold in such a way
that the mean standardized error is less than 1. In other words,
the detection threshold is set via the intersection point of the
mean standardized error ā and the line a = 1, leading to a detec-
tion limit of 9.0e−9[s−1 cm−2]. We only performed this synthetic
analysis on three of the data patches. Therefore, this threshold is
conservative for the reconstruction with all patches.

Fig. 7. Spatial reconstruction result for the highest energy bin in
[s−1 cm−2].

8. Results and analysis of inference performance

In this section, we discuss the results of the sky flux reconstruc-
tion. The additional background from the BI chips according
to Eq. (12) is removed in the reconstruction process. In Fig. 7,
we show the intermediate result of the SF reconstruction of the
highest energy bin. This is taken as the initial condition of the
subsequent MF reconstruction of SN1006, whose reconstruction
results are shown in Fig. 8 given the data shown in Table 3
using Bayesian imaging and the transition model introduced in
Sect. 4.1. The reconstruction was visualized using the SAOImage
DS9 imaging application (Joye & Mandel 2003). The according
results for each energy bin including the according color bars can
be found in Fig. D.2.

As noted above, we are not only reconstructing the sky flux
itself, but also its correlation structure in its correlated compo-
nents. Accordingly, the posterior mean of the power spectrum
in the spatial direction of the diffuse, extended sky compo-
nent was also reconstructed and is shown for each energy bin
in Fig. D.1.

8.1. Quantitative discussion

Figure 8 displays the final results of applying our reconstruction
algorithm to SN1006: the reconstructed sky and its separated
components. The overall separation of diffuse emission and
point sources succeeded. The point sources are clearly identified
and the PSF deconvolution is particularly evident for the point
sources. The diffuse structures are almost free of point source
contributions. The effect of component separation can be seen
more clearly in Fig. 9, which shows a zoom-in on the NE quarter
of the remnant and its components. It can also be seen that some
of the additional background noise from the BI chip is partially
absorbed into the background model.
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Fig. 8. Reconstruction results for the flux in [s−1 cm−2] (red = 0.5–1.2 keV, green = 1.2–2.0 keV, and blue = 2.0–7.0 keV. The corresponding
color bars for each of these energy bins can be found in Fig. D.2): top: full sky reconstruction mean. Bottom left: reconstruction mean for diffuse
emission. Bottom right: reconstruction mean for point sources.
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Fig. 9. NE quarter of SN1006 and its components. From left to right:
total sky, diffuse emission, point sources, and BI background.

Fig. 10. Exposures that capture the not well separated point source
(marked red).

One soft X-ray point source in the center of the remnant
was not well separated from the diffuse emission. We believe
this was caused by PSF mismodeling in the outer pixels of the
detectors, where the source is located in all observations con-
sidered, due to the assumption of invariant PSFs within each
observation. Figure 10 shows the exposure maps of the obser-
vations that covered this source and the position of the point
source within these exposure maps. The pointing of ACIS-I and
ACIS-S described in Chandra X-ray Center (2021) suggests large

(a)

(b)

Fig. 11. Zoom-in on the reconstruction results in the diffuse component.
(a) The whole diffuse reconstruction and the locations of the zoomed-in
areas; (b) the top panels represent the green areas marked in the remnant
and show zoom-ins on the denoised shell of the remnant. The lower
panels are represented by the white boxes in (a) and show structures in
the inner soft X-ray emission of the remnant.

deviations of the actual PSF from the PSF model used in the
positions of the mismodeled point source in detector coordinates.
Dealing with position dependent PSFs will be addressed in a
future publication.

Figure 11 shows the reconstruction of diffuse emissions from
the remnant in detail. In order to study the remnant effectively,
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it is crucial to get a detailed view of it. To improve the clarity
of our results, we present four close-up images of the rem-
nant, highlighting its small-scale structures. The analysis shows
that the shell is denoised both in the NW region (where we
expect thermal emission) and in the SW region (where we expect
non-thermal emission). We can also see that the denoising has
improved the resolution of the small-scale structures in the inner
X-ray emission of the remnant with respect to the data and also
in comparison to the previous study of Winkler et al. (2014).

Due to the statistical approach presented in this study, we
obtained an estimate of the sky flux via the mean of the posterior
probability, but also an uncertainty estimate via its standard devi-
ation. The corresponding standard deviations for each energy bin
are shown in Fig. D.2. The top row of the figure shows the dif-
ferent energy bins of the posterior mean for better comparison.
It can be seen that, as expected, the standard deviation is higher
for regions of higher flux.

Thanks to the probabilistic approach we adopted, we gain
the ability to draw posterior samples from the inferred distri-
bution. Such posterior samples, s∗, have allowed us to compute
the posterior mean, the standard deviation or any other statistical
quantity of interest. Correspondingly, we can calculate the abso-
lute noise-weighted residual (NWR) (ϵNWR) j for each data patch,
j, as another interesting outcome of our results:

(ϵNWR) j =

〈 |d j − λ j(s)|√
λ j(s)

〉
Q(s|d)

≈ 1
N

N∑
i=1

|d j − λ j(s∗i )|√
λ j(s∗i )

. (24)

Here, λ j describes the reconstructed expected number of counts
for each pixel in the data patch, j. The absolute NWRs provide
a way to quantify the difference between a measured data
point and its reconstruction, and help to distinguish between
true deviations of the data from the reconstruction and devi-
ations that are simply due to Poisson noise. The plots of the
absolute NWRs are shown in Table D.1 for each energy bin
and data patch. These plots can be used as a sanity check on
the correctness of the reconstruction presented here, as they
allow us to point out systematically unmodeled effects in the
likelihood and the prior. We can see that the NWRs are close
to one in most regions, which implies a well-fitting model and
reconstruction. In particular, in regions around point sources or
at strong edges, we find higher NWRs, which we attribute to
the well-functioning deconvolution in these regions, leading to
deviations of the reconstructed signal from the data.

8.2. Analysis and comparison with previous studies

As mentioned above, SN1006 has been studied extensively using
a variety of instruments. In particular, several studies using X-ray
telescopes have produced images of the SNR. These studies have
provided important insights into its structure and evolution, thus
advancing our understanding of supernova explosions and their
aftermath. Corresponding imaging approaches to SN1006 can
be found in Winkler et al. (2003), Li et al. (2015), Bamba et al.
(2003) and also in Fruscione et al. (2006), which demonstrated
the fidelity of the Chandra data processing pipeline for SN1006.
In particular, in this study we have focused on the data and
energy regions used by Winkler et al. (2014) and compare our
reconstructions with their results. In Winkler et al. (2014), a com-
parison was made between the X-ray image and a Hα image
of SN1006 from CTIO. The comparison shows that there are
several thin arcs of Balmer emission in the southern part of
the remnant, which lie just in front of small-scale structures
in the X-ray emission. In Fig. 11, we show these central parts
of the remnant, which are dominated by soft X-rays. We show

the enlarged cut-outs of these regions for the extracted rem-
nant. Compared to previous studies, small-scale structures have
an improved resolution due to the denoising and deconvolution
and are well disentangled from any point sources in the back-
ground. Accordingly, the presented reconstruction provides a
more detailed view of the inner part of the remnant, enabling
a more accurate study of its small-scale structures.

As noted in Li et al. (2015), the different energy bands show
spatial variations in the remnant SN1006 with respect to each
other. Figure 8 shows these differing spatial variations of inten-
sity with different X-ray energy bands. In particular, in Figs. 9
and 11, parts of the hard X-ray lobe (the non-thermal regions in
the SW and NE of the remnant) are well resolved and denoised,
without any point source contribution. Soft X-rays in the NW
shell are shown in Fig. 11, which shows the shell of the thermal
emission. Koyama et al. (1995) presented the first observational
evidence that supernova shocks produce cosmic rays. However,
the details of the acceleration mechanism of the particles is still
an open question. Therefore, the study of the shock fronts is
important to gain further insight into the acceleration mecha-
nism and the dynamics of the shock front. The separation of the
diffuse emission from the remnant allows us to visualize long
intensity profiles along the remnant. Figure 12 shows such radial
intensity profiles of the SNR in eight equidistantly space orienta-
tions. These denoised and deconvolved profile lines can be very
useful to search for halos in front of the non-thermal regions
and to get insights into the magnetic field strength according
to Helder et al. (2012). Here, the profile lines show strong and
sharp X-ray flux increases by up to two orders of magnitude at
the shock front in the non-thermal regions in the SW and NE of
SN1006. Notwithstanding, we defer the analysis of the structure
of the remnant based on our reconstructions to future works.

9. Conclusion

In summary, we present a technique for obtaining an estimate
of the true sky photon flux from Chandra X-ray event data.
By using the sky flux as a generative process, this method
allows us to infer not only the flux itself, but also its correlation
structure in its extended components. Based on IFT and the
application of Bayes’ theorem, this method approximates the
posterior probability of a signal given the data via geoVI in a
problem-adapted latent space. This allows us to draw posterior
samples in order to compute the expected sky flux, posterior
uncertainty, and further validation and diagnostic measures.

Modeling the different correlation structures of point
sources, diffuse emission, and background in the BI chips,
we were able to separate point-like, extended sources and the
additional noise in the BI chips from the sought-after signal.
Compared to previous separation and source extraction tech-
niques, which are usually specified to extract either point sources
or extended sources, the inference based on IFT accounts for
both components jointly. In particular, we built a spatio-spectral
model for the sky flux based on the D4PO algorithm imple-
mented by Scheel-Platz et al. (2022) and used it for the spatio-
spectral reconstruction of the X-ray sky. Since the spatio-spectral
reconstruction is computationally expensive for a large number
of pixels, we introduced an accelerated inference model, called
the transition model. In the transition model, we first performed a
spatial reconstruction in a single energy band, which has almost
one order of magnitude less degrees of freedom as the spatio-
spectral reconstruction, making it computationally less complex.
The result of the spatial reconstruction, which already contains a
lot of information about the sky flux in an energy bin and about
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Fig. 12. Flux intensity profiles in [s−1 cm−2]. The center image shows the location of the lines along which we present the intensity profile in pixel
coordinates. The corresponding intensity profiles are plotted next to the line. The posterior mean of the reconstructed flux is plotted in red and the
corresponding posterior samples are plotted in grey. The profiles are shown from left to right from the outsides to the insides of the SNR.

the component separation, was used as an initial condition for
the spatio-spectral reconstruction.

A benefit of the here presented analysis is the ability to build
mosaics of different observations via the sum of logarithmic
likelihoods. Each likelihood has its own description of the instru-
ment response. This approach solves the problem of modelling
different PSFs for the same source in different data patches.

We applied the spatio-spectral reconstruction to the latest
Chandra observations of SN1006, presented by Winkler et al.
(2014). The resulting image is a denoised, deconvolved and
decomposed image, which provides a detailed view of the small-
scale structures of SN1006. We reconstructed a separate image
of the point sources present in the considered datasets, which can
be compared with point source catalogs and, more importantly,
which allows us to study the X-ray emission of SN1006 with-
out point source contributions. The different energy ranges in
NE and SW – dominated by synchrotron emission – and the rest
of the remnant – dominated by thermal emission – are clearly
visible. The intensity profiles at the shell of the remnant are
denoised and not visibly affected by point source contributions.
We also show other diagnostics such as a simulated data recon-
struction, uncertainties, and noise-weighted residuals as a check
for systematic errors.

Taking this work as a starting point for spatio-spectral
Bayesian imaging of X-ray data, we have pointed out the need
for further methodological improvements. One is based on the
use of a spatially varying PSF. Alexander et al. (2003) already

showed the actual spatial variability of the PSF in the Chandra
image of the Deep Field North. We expect that the separation of
the central point source in SN1006 to improve by the implemen-
tation of a spatially varying PSF. However, this is not a trivial
task, as an invariant PSF can be applied via multiplication in
Fourier space, whereas a spatially varying PSF cannot. Meth-
ods are currently being developed to solve this problem in the
language of IFT, including a neural network approach recently
presented by Eberle et al. (2023). In addition, a line model capa-
ble of modelling lines in the thermal emission will help to further
resolve the energy direction. An interesting option here, already
mentioned in Seward & Charles (2010), would be to define dif-
ferent models for synchrotron emission and bremsstrahlung, with
the goal of eventually decomposing the diffuse emission of the
remnant into its thermal and non-thermal components. In gen-
eral, we aim to further improve the reconstruction speed and
reduce its computational cost to enable studies of more data
sets, larger regions, and with higher resolutions in the spatial
and spectral dimensions. In addition, we want to further opti-
mize our hyper-parameter search to enable a faster convergence
of the algorithm.
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Appendix A: Synthetic data generation

Given the generative models, we can construct prior samples
of the individual components and of the imaged sky composed
of them, as described in Sect. 5. Three of these prior samples
are shown at the top of Fig. A.1. They illustrate how the prior
samples are converted into simulated data using the instrument
response and mimicking Poisson noise. As mentioned in Sect.
5, we use the prior samples and the simulated data to fine-tune
the hyper-parameters prior to reconstruction. As we can see by
comparison, the chosen hyper-parameters ensure that the order
of magnitude of the data in Fig. 2 is the same as the order of
magnitude of the simulated data. Moreover, and more impor-
tantly, the simulated data allow us to perform the validation of
the algorithm, as described in Sect. 7.

Fig. A.1: Illustration of generation of simulated data for three prior
samples, showing the variance in intensity and correlation structure per-
mitted by the prior.

Appendix B: Computational analysis

In this section, we present a comparison of the introduced
algorithm including the transition model and a pure MF recon-
struction in terms of computational time and reconstruction
error. In case of the transition model, we started with a SF recon-
struction and use the corresponding result as an initial condition
for the MF reconstruction, as described in Sect. 4. In the other
case, we started the reconstruction on the whole MF parameter
space from the beginning. We considered four different spatial
resolutions, from 64 × 64 to 512 × 512 pixels, for which we
generated simulated data and perform the corresponding recon-
struction on a single core for the transition model and the pure
MF model. This allowed us to compare, for each problem size,
the time complexity at each iteration and the reconstruction error
as a function of time.

As mentioned in Sect. 4, the parameter space for the SF
reconstruction is much smaller (Table 2), leading to higher com-
putational time for each iteration in the MF reconstruction. This
effect is also shown in Fig. B.1. The time complexity of each iter-
ation is accordingly higher in the MF reconstruction than in the
SF reconstruction, resulting in an overall lower time complexity
for the transition model reconstruction. It can be seen that sim-
ilarly to the duration of each iteration in the reconstruction, the
transition time also increases with the growing parameter space.

Fig. B.1: Time complexity (top-left: 64 × 64 spatial pixels; top-right:
128 × 128 spatial pixels; bottom-left: 256 × 256 spatial pixels; bottom-
right: 512 × 512 spatial pixels). The time complexity is plotted for the
different models. In green, we show just the MF reconstruction times per
iteration. Light blue: duration for each iteration in the SF model before
the transition. Dark blue: duration of the MF model iterations after the
transition. The first dark blue marker also includes the transition time.

However, the increased transition time is not significant com-
pared to the overall time savings.
What is more important for the analysis is the notion of how
the reconstruction error of the reconstruction behaves over time.
This is shown for the different components in Fig. B.2. As a
measure of the reconstruction error, we computed the poste-
rior sample mean for N samples of the Frobenius norm of the
sample residuals r∗ = (s∗ − sgt) according to Eq. (21) for each
component:

⟨∥r∥F⟩s∗ = 1
N

N∑
n=0

(∑
i, j,k

(r∗n)2
i, j,k

) 1
2

, (B.1)

where i, j, k are the corresponding spatial and spectral pixel
indices. Due to the consideration of a smaller space in the iter-
ations of the SF model, we would typically expect a smaller
reconstruction error in terms of small Frobenius norm. It can
be seen that the computational advantage of the transition model
approach increases as the problem size increases in terms of a
higher number of spatial pixels. This is especially true for the
diffuse component, which is constructed from an outer product
of correlated fields.
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Fig. B.2: Reconstruction error in terms of the Frobenius norm (Eq. (B.1). From top to bottom: for 64 × 64, 128 × 128, 256 × 256, and 512 × 512
spatial pixels. From left to right: for the imaged sky: the point sources and the diffuse component. The green line marks the reconstruction error as a
function of time for the pure MF reconstruction. The light blue line marks the reconstruction error of the SF reconstruction as part of the transition
model and, correspondingly, the black line marks the transition and the blue line marks the subsequent transition model MF reconstruction. In the
iterations of the SF model, we typically anticipate lower reconstruction error in terms of small Frobenius norm. This expectation is attributed to
the model’s consideration of a smaller space.

Appendix C: Further diagnostics for synthetic data
reconstruction

In this section, we present further diagnostic plots for sanity
checks on the simulated data reconstruction in Sect. 7. The anal-
ysis of these plots can be found in the according sections. We
show the UWRs and residuals for the simulated data case in Fig.
C.1. Figure C.2 shows the reconstruction results for the simu-
lated data case for each energy bin together with the associated
uncertainty.

Fig. C.1: Synthetic data reconstruction UWRs (top row) and residuals
(bottom row) for the individual energy bins (left: 0.5-1.2 keV, center:
1.2-2.0 keV, right: 2.0-7.0 keV) according to Eq. (20).
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Fig. C.2: Synthetic data reconstruction uncertainties for the individual
energy bins (left: 0.5-1.2 keV, center: 1.2-2.0 keV, right: 2.0-7.0 keV.
Top row: Reconstruction results for the flux in [s−1 cm−2] for the indi-
vidual energy bins. Bottom row: Uncertainty maps for the individual
energy bins.

Appendix D: Further diagnostics for SN1006
reconstruction

Here, we show more diagnostic plots for the analysis of the
reconstruction results presented in Sect. 8. First, the reconstruc-
tion mean and posterior samples of the spatial power spectrum
are shown in Fig. D.1. For further analysis of the reconstruction
of the sky flux of the remnant SN1006, we present the posterior
standard deviation separately for each energy bin and accompa-
nied by the corresponding color bars in Fig. D.2. Finally, Table
D.1 shows the NWRs according to Eq. (24) for each energy bin
and dataset.

Fig. D.1: Spatial power spectra of the posterior mean and samples in the
diffuse component for each energy bin (red: 0.5-1.2 keV, green: 1.2-2.0
keV, blue: 2.0-7.0 keV)
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Fig. D.2: Posterior means and standard deviations for each energy bin in [s−1 cm−2]: Top row: Posterior means (red: 0.5-1.2 keV, green:1.2-2.0 keV,
blue:2.0-7.0 keV). Bottom row: Posterior standard deviations (left: 0.5-1.2 keV, center:1.2-2.0 keV, right:2.0-7.0 keV).
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Patch ID 0.5-1.2keV 1.2-2.0keV 2.0-7.0keV

9107

13737

13738

13739

13739

13740
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13741

13742

13743

14423

14424

14435

Table D.1. NWR (Eq. (24)) for each dataset in Table 3 and energy bin.
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