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Molecular architecture of the actin cytoskeleton: From
single cells to whole organisms using cryo-electron
tomography
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Abstract
Cryo-electron tomography (cryo-ET) has begun to provide
intricate views of cellular architecture at unprecedented reso-
lutions. Considerable efforts are being made to further optimize
and automate the cryo-ET workflow, from sample preparation
to data acquisition and analysis, to enable visual proteomics
inside of cells. Here, we will discuss the latest advances in
cryo-ET that go hand in hand with their application to the actin
cytoskeleton. The development of deep learning tools for
automated annotation of tomographic reconstructions and the
serial lift-out sample preparation procedure will soon make it
possible to perform high-resolution structural biology in a
whole new range of samples, from multicellular organisms to
organoids and tissues.
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Introduction
Over the last decade, cryo-electron microscopy (cryo-
EM), in particular single-particle analysis (SPA), has
become a key technique for studying the structure of

macromolecular complexes. It has proved indispensable
www.sciencedirect.com
in the field of the actin cytoskeleton, where it was used
to reconstruct the three-dimensional (3D) structure of
the actin filament at high resolution [1]. Since then, a
plethora of structures have been determined, eluci-
dating the interactions between actin and various actin-

binding proteins [2e5], actin isoforms [6], the mecha-
nisms of filament aging and phosphate release [7e9],
and structural alterations during filament bending [10].
In addition, the cryo-EM structures of the human
cardiac thin and thick filaments have been both
resolved [11,12].

Traditional structural biology methods, including SPA,
work mainly on isolated samples and purified macro-
molecules. However, molecular complexes often only
fold and assemble correctly in the right cellular envi-

ronment. Moreover, biological functions and pathways
are rarely the result of a single macromolecule. The
interplay between several biological components, and
their correct positioning and spatial arrangement within
the cell, is essential for many cellular processes. This
concept has been called the “molecular sociology of the
cell” [13]. Cryo-electron tomography (cryo-ET) enables
macromolecular complexes to be studied directly within
their native functional environment with sub-
nanometer resolution [14]. The spatial arrangement
and interactions of the cellular components involved can

be uncovered and deciphered.

With the exception of very small, thin bacterial cells and
the cell periphery, the cell interior is too thick for direct
imaging with a transmission electron microscope.
Therefore, after vitrification by plunge freezing, cells
are thinned to electron transparency (typically
100e300 nm) using cryo-focused ion beam (cryo-FIB)
milling, where the material above and below the region
of interest is ablated [15] (Figure 1a). The remaining
cellular section is called a lamella. Large biological

samples, such as large cells (typically >10 mm thick),
multicellular organisms or tissues, require vitrification
by high-pressure freezing and sample extraction using
the cryo-lift-out technique [16], which will be discussed
later in this review (Figure 1b).

For cryo-ET imaging, two-dimensional projection
images are generated at different tilt angles, known as
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Figure 1

Sample preparation workflow for cryo-ET exploration. a. Sample preparation workflow for single cells, such as human macrophages, or unicellular
organisms. Adherent cells or cell clumps are vitrified by plunge-freezing in liquid ethane. This vitrification method is applicable for cells less than 10 mm
thick. The sample is then thinned to electron transparency (<500 mm, typically 100–300 nm) using cryo-FIB milling. b. Large cells, multicellular organisms
or tissues (for example during macrophage infiltration) are vitrified by high-pressure freezing. The typical thickness of an HPF sample is between 100 and
200 mm, depending on the spacers used. A sample block is then extracted by cryo-lift-out and thinned to electron transparency using cryo-FIB milling.
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tilt series. This set of projection images can then be
computationally combined into a 3D volume, called a
tomogram, which contains high-resolution structural
information. Tomograms with several copies of a
macromolecule of interest are suitable for subtomogram
averaging (STA). As with SPA, multiple sub-volumes
comprising the structure of interest are extracted and

computationally combined to generate a volume with a
significantly improved signal-to-noise ratio and higher
resolution. For a detailed description of cryo-ET in
general and STA in particular, the reader is invited to
read several excellent reviews [14,15,17]. Below, we
present the latest advances in cryo-ET and how they
have enabled structural exploration of the cytoskeleton
at molecular resolution, both in single cells and in whole
organisms, with a particular focus on actin.

Muscle sarcomeres, an ideal system for
cryo-ET imaging
Cryo-ET, combined with STA, is perfectly suited to the
study of the cytoskeleton. The actin cytoskeleton pro-
vided the first examples of the power of cryo-ET to
explore cell architecture [18,19]. Over the last years,
numerous studies have exploited cryo-ET, for example to
reveal the mechanism of propagation of actin waves [20],
the embedding of stress fibers in a contractile cortical

network [21], the interface between actin filaments and
integrins in platelet pseudopodia [22], the mechanism of
force generation by macrophage podosomes [23], the
Current Opinion in Cell Biology 2024, 88:102356
modulation and remodeling of actin filaments in neuronal
growth cones and axon branches [24e26], the role of
different Arp2/3 complex isoforms in lamellipodia archi-
tecture [27], the structural basis of sarcomere contrac-
tility [28e32], and actin remodeling during glucose-
induced insulin secretion in beta cells [33]. Cryo-ET
has also been used for exploratory purposes, for

example to show the presence of actin filaments within
the microtubule lumen [34] or the existence of an actin-
based cytoskeleton in Asgard archea [35].

Most of these studies have been carried out in the
cytosol of eukaryotic cells, with missing data in yeast,
where detection of cytoskeletal features has proved
difficult, partly due to the high density of the cytoplasm.
Similarly, detection of nuclear actin filaments in
mammalian cells poses major challenges, suggesting that
filaments may be very short and difficult to detect in the

dense nuclear interior. This is currently one of the main
limitations in cryo-ET data analysis, where small cellular
features are difficult to identify due to the lack of
appropriate detection tools. In addition, cryo-ETsuffers
from the “missing wedge” problem, i.e. incomplete
sampling due to the limited tilt range during data
acquisition, which also leads to an elongation in z.
However, this problem can be solved by collecting to-
mograms of actin structures in different orientations, as
well as using STA to recover missing structural infor-
mation from the filaments.
www.sciencedirect.com
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Myofibrils have proven to be an ideal sample for cryo-
FIB sample preparation and STA due to their geome-
try and the regular organization of their components.
They have been used to provide unique insights into the
structure of actin-binding proteins in near-native con-
ditions. For example, the sarcomeric protein nebulin,
one of the largest mammalian proteins, could not be
resolved either by X-ray crystallography or by SPA due to

its very large size, flexible nature and unique in-
teractions with the thin filament. Using cryo-ET and
STA, its structure and interaction with the core actin
filament were elucidated in myofibrils isolated from
mouse skeletal muscle at high resolution [30]. In addi-
tion, the structure of the thick filament has recently
been resolved in relaxed mouse cardiac myofibrils,
revealing in unprecedented detail the interaction be-
tween myosin, myosin protein binding C and titin [31].
This pioneering work paves the way for further explo-
ration of the structure of the thick filament in different

states of contraction and for an in-depth understanding
of sarcomere function and regulation. Finally, a new
preprint presented a cryo-ET platform for studying
cardiovascular structural biology in human induced
pluripotent stem cell-derived cardiomyocytes, which
could be useful for studying the impact of
cardiomyopathy-associated mutations on protein struc-
ture [32]. All these cryo-ET studies have begun to
provide a molecular picture of the architecture and
interconnectivity of the sarcomeric components that
enable contractility. Many important questions remain

about the organization of sarcomeres in human cells and
tissues, particularly in the context of heart and muscle
disease, for which sophisticated sample preparation
methods, such as lift-out, are required.

Towards improved data collection and
analysis
Cryo-ET in combination with STA provides lower res-
olution structures than SPA, with good samples reaching
below 10 Å and, in ideal cases, down to 4.5 Å for actin
and actin-related proteins [30,36,37]. It has been sug-
gested that the main limitation in terms of resolution is
the initial alignment of the tilt series, which can be
partially corrected using multi-particle refinement
[38e40]. It has therefore been argued that the main
advantage of SPA over cryo-ET is the much faster data
acquisition and the ability to obtain larger datasets.
Cryo-ET remains a low throughput method and is more

labor intensive than SPA. Considerable efforts are
currently being made to speed up tilt series acquisition
and tomogram annotation.

Automation of data acquisition
Acquiring a tilt series takes much longer than acquiring
a single projection image. The stage must be tilted and

stabilized, and the area of interest recentered and
focused before an image can be acquired. This is why
www.sciencedirect.com
most tomographic data acquisition software now uses
multishot acquisition, where several tilt series are
recorded in parallel using the beam-image shift, while
using a single tilt series for tracking and focusing
[41,42] (Figure 2aeb).

The open-source PACE-tomo (parallel automated cryo-
electron tomography) software uses a geometrical model

of the sample to predict the motion for each position
across the lamella, enabling tens of tilt series to be ac-
quired at a time and reducing acquisition time to
w5 min per position [36]. The authors reconstructed
the structure of the actin filament in complex with
tropomyosin in mouse mammary gland epithelial cells at
a resolution of 12 Å. This structure was generated from 4
of 7 tilt series, which were acquired in just 30 min,
highlighting the importance of rapid acquisition to
optimize the imaging area covered and quickly assess
the sample quality. This can be done all the more easily

thanks to current developments in on-the-fly pre-
processing and analysis of tilt series [43,44].

Whereas for homogeneous samples in SPA, acquisition
areas are selected automatically on the basis of ice
thickness, cryo-ET still requires user intervention for
target selection. On-the-fly pre-processing of the tilt
series already helps to assess whether a target of interest
is present in the selected area of the lamella. PACE-
tomo’s capabilities have also recently been enhanced by
the use of machine learning to facilitate target selection.

SPACE-tomo (smart parallel automated cryo-electron
tomography) enables automated detection of lamellae
and classification of their quality, segmentation of or-
ganelles such as mitochondria and automated selection
of suitable acquisition areas [45].

Another exciting development is the introduction of
square beams for montage tomography, using a dedicated
C2 aperture that is applicable to modern TEM in-
struments [46]. In montage tomography, multiple image
tiles are acquired with some overlap and then stitched
together to obtain a large tomogram, thus combining high

magnification and a larger field of view [47,48]. Square-
beam imaging reduces the overlap required between
adjacent tiles, and limits the areas that are illuminated
but not captured by the detector. This results in a more
efficient and evenly distributed electron dose.
Deep learning-based data analysis
With rapid advances in automated data acquisition,
efficient workflows for data analysis are becoming
increasingly essential. Tilt series can be processed and
tomograms reconstructed automatically using various
software solutions [44,49e53]. However, tomogram
annotation is time consuming and current efforts in
deep learning aim to improve this limitation. In the last
two years, a few tools have been published that use deep
Current Opinion in Cell Biology 2024, 88:102356
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Figure 2

Improved data collection and analysis. a. Acquisition of a single tilt series. The red target area contains a region of interest, tracking and focusing
during acquisition is usually performed in a different area along the tilt-axis of the microscope. b. Improved tilt series acquisition using multishot to-
mography, as implemented in PACE-tomo [36]. The red target area is the tracking tilt series. The additional acquisition areas in black are acquired
simultaneously. When the stage is tilted, the sample geometry is taken into account to image the correct targets. This reduces the acquisition time for a
single tomogram to less than 10 min. c. Annotation of a tomogram. Left: Tomographic slice of the basal membrane of a vitrified primary human
macrophage exposed after cryo-FIB sample preparation. An actin filament and a microtubule are indicated by a white and black arrow, respectively. The
asterisk indicates the Vault protein. Scale bar: 100 nm. Middle: Manual segmentation of membranes and filaments is time-consuming. Recent deep
learning tools based on 3D U-nets considerably speed up tomogram annotation. Right: Segmentation of the tomogram shown on the left. Actin filaments
are shown in red, microtubules in green, ribosomes in light blue and membranes in gray.
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learning algorithms and pre-trained models or training
datasets to locate and identify various cellular compo-
nents (Figure 2c). We will cover here not only the tools
developed for the detection of actin filaments, but also
for organelles, membranes and macromolecules, as un-
derstanding actin functions in cells requires the ability
to detect all its interaction partners, for example to
quantify distances separating them or the sites

of interaction.

The MemBrain deep learning software automatically
and reliably segments membranes from tomograms and
can also automatically detect membrane-bound pro-
teins [54,55]. Moreover, it does not require extensive
manual corrections, as is usually the case with semi-
automated segmentation tools [56,57]. Complemen-
tary software solutions are used to locate and identify
macromolecules in tomographic volumes. DeePiCt
(deep picker in context) is based on convolutional

neural networks (CNNs) and enables supervised
detection of macromolecular complexes in the cellular
Current Opinion in Cell Biology 2024, 88:102356
environment [58]. DeePiCt has been trained on fully
annotated yeast tomograms and has been successfully
applied to the structural exploration of distinct ribo-
some subpopulations. It has also been used to detect
cytoskeletal components, in particular microtubules
and actin filaments, although actin segmentation would
benefit from more training data and sampling of
different orientations to improve performance.

TomoTwin is another generalized particle picking
model based on deep metric learning, which enables de
novo identification of macromolecules in tomograms
[59]. It does not require user-generated training data
and is therefore less user-biased. Its applicability to the
detection of cytoskeletal filaments would require
optimization of the underlying models.

Commercial Dragonfly software has been used to
generate tomogram segmentations based on multi-slice
U-Net CNNs, where multiple target structures are

segmented simultaneously [60]. The approach has been
used to automatically segment actin filaments. In
www.sciencedirect.com
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addition, based on training on synthetic data, the au-
thors were able to differentiate bare actin filaments from
cofilin-decorated actin filaments [61]. Such synthetic
datasets can serve as ground truth for new deep learning
approaches and make time-consuming manual annota-
tions redundant [62].

All these developments represent a promising step to-

wards the identification and annotation of cellular fea-
tures in tomograms, but considerable efforts are still
needed to be able to extract all the information present.
The development of foundation models for cryo-ET
data would be a major step forward, but would require
access to a broad spectrum of generalized data, which is
currently lacking.

Towards exploring larger samples
The ability to explore large cells, multicellular organisms,
organoids or tissues is the latest advance in cryo-ET.
Cryo-FIB milling is generally limited to cell samples
that are thin enough to be vitrified by plunge freezing

(Figure 1a). Unexpectedly, human oocytes, the largest
mammalian cells, have been successfully sectioned by
cryo-FIB milling, with an additional orthogonal milling
step [63]. However, this approach relies on the use of
large quantities of cryo-protectant [64], the effects of
which on the structural integrity of the cell at the mo-
lecular level, in particular the cytoskeleton, remains to
be studied.

Large biological samples must be high pressure frozen
(HPF) in order to achieve vitrification. A procedure

called lift-out is then required to extract the samples
from the thick layer of ice in which they are embedded,
so that lamellae can be prepared (Figure 1b). Cryo-lift-
out uses a micromanipulator in the form of a needle
tip or gripper to extract a small volume and place it on a
receiver grid where the sample is reattached and then
thinned using cryo-FIB milling [16,65]. A new study has
developed a platform to grow human foreskin fibroblast
extracellular matrix (ECM) on EM grids and explore the
structural landscape of the ECM using lift-out and cryo-
ET [66]. This made it possible to visualize a network of
ECM fibers, such as collagen and unknown fibrillar

structures, as well as their relative positioning with
respect to the surrounding cells. This is particularly
interesting because of the coupling between the actin
cytoskeleton and the ECM via the adhesion machinery
as exemplified during macrophage migration, matrix
degradation or cell invasion [22,23].
Sampling whole organisms with serial lift-
out
Cryo-lift-out is a time-consuming and labor-intensive
technique, and the success rate is generally low. As a
result, it is not yet widely used. Thanks to a new lift-out
procedure, known as serial lift-out (SLO), it is now
www.sciencedirect.com
possible to extract sections in series from a single lift-out
transfer, significantly increasing yield [67] (Figure 3a). A
similar approach has been described and called SOLIST
(serialized on-grid lift-in sectioning for tomography)
[68]. SLO was performed on Caenorhabditis elegans
(C. elegans) L1 larvae, where the whole worm was
extracted from an HPF waffle grid (Figure 3b). Waffle
samples are vitrified by high-pressure freezing on an EM

grid sandwiched between two HPF carriers [69]. This
reduces the thickness of the HPF sample to the height of
the grid, greatly reducing the milling time required to
extract a block of sample. In the study, the extracted bulk
sample containing a C. elegans larva was sequentially sliced
into transversal sections approximately 1e2 mm thick,
each of which was then thinned to the thickness of a
typical lamella. In this way, multiple consecutive lamellae
were generated transverse to the main axis of the worm,
revealing the molecular anatomy of the worm over its
entire height.

The authors captured the body wall muscle, a cell type
prominent in transverse sections, allowing direct visual-
ization of the hexagonal packing and interconnection of
thin and thick filaments (Figure 3ced), previously
observed only in longitudinal sections [28e32]. In addi-
tion, the authors highlighted the singular structure of
microtubules in C. elegans, which is mainly composed of 11
protofilaments (pfs), except in touch receptor cells,
which typically contain 15 pf microtubules. In a single
tomogram, the authors show both types of microtubules

located in adjacent cells, highlighting the importance of
imaging biological structures in their native cellular
context (Figure 3eeh). They also resolved several
translational states of the ribosome (Figure 3h).
Future perspectives
Now that the cryo-ETworkflow is well established and
more and more cell biologists have begun to exploit this
powerful approach for their studies, the range of actin
systems that could be explored is likely to expand rapidly.
For example, we could imagine cryo-ET work on actin-
spectrin scaffolds in neurons, which would bring valu-
able complementary information to existing platinum-
replica studies. In addition, the development of deep-
learning tools for the detection of short or crosslinked
filament networks, particularly in noisy tomograms, will
make elusive actin structures such as nuclear actin fila-

ments or actin filaments in yeast accessible. Cofilin-actin
rods are already detectable by cryo-ETand will probably
be the first nuclear actin structures to be characterized.

The serial lift-out method makes it possible to examine
a whole new range of complex biological samples, such
as multicellular organisms, organoids or tissues, at higher
throughput. This paves the way for exciting research
experiments, particularly in the field of the actin cyto-
skeleton. Here again, myofibrils would be a prime
Current Opinion in Cell Biology 2024, 88:102356
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Figure 3

Sampling the molecular anatomy of a C. elegans larva using serial lift-out and cryo-ET. a. Schematic illustration of the serial lift-out method applied
to a C. elegans L1 larva [67]. Serial sections are prepared from one lift-out volume containing a single larva. One slice highlighted on the left is shown as a
schematic top view on the right, with the black boxes indicating the areas imaged in c and e. b. Schematic view of an HPF sample prepared using the
waffle method [69]. c. Tomographic slice of body wall muscle (BWM, EMD-17246). Bundles of thin filaments are shown by white arrows, a thick filament is
indicated by a black arrow. SR: sarcoplasmic reticulum. The main BWM is surrounded by a second BWM, both bordered by a hypodermal cell (Hyp),
followed by a layer of collagen (indicated by an asterisk) within the cuticle (Cut). d. Segmentation of the tomogram shown in c. Thin filaments are shown in
red, thick filaments in blue, microtubules in green and membranes in brown. e. Tomographic slice of a presumed part of the ventral sublateral nerve cord
(EMD-18186), including a touch receptor neuron (TRN) and other putative neurons (N). The TRN is characterized by a microtubule array of 15 pfs,
compared with 11 pfs in other cells. f. Corresponding segmentation. The 11 pf microtubules are colored in green, the 15 pf microtubules in green–brown,
ribosomes are shown in light blue and membranes in brown. g. Close-up view of the regions boxed in e, showing an 11 pf microtubule (gray, top) and a
15 pf microtubule (black, bottom), respectively. h. Top: Subtomogram average of a subsection of the 11 pf microtubule, resolved at 13 Å (EMD-18187).
Bottom: Subtomogram average of a ribosome at 6.9 Å resolution (EMD-17241). c, e: Scale bars: 100 nm. g: Scale bars: 10 nm.
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sample for serial lift-out: waffle samples of skeletal or
cardiac myofibrils could be easily prepared to visualize
the molecular architecture of serially arranged sarco-

meres in transverse or oblique sections. Cell migration
and invasion could also be studied directly in a 3D tissue
environment to generate molecular views along the
migratory pathway throughout the tissue. Cryo-ET of
lift-out samples would provide valuable structural in-
formation on adhesion complexes and transmembrane
proteins, which could be captured in multiple orienta-
tions rather than in the single plane of the carbon film of
an EM grid. We believe that these experiments will be
feasible over the next few years and will provide exciting
insights into these essential biological processes.
Current Opinion in Cell Biology 2024, 88:102356
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