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A B S T R A C T

Precision medicine aims to provide personalized care based on individual patient characteristics,
rather than guideline-directed therapies for groups of diseases or patient demographics. Image-
sdboth radiology- and pathology-deriveddare a major source of information on presence, type, and
status of disease. Exploring the mathematical relationship of pixels in medical imaging (“radiomics”)
and cellular-scale structures in digital pathology slides (“pathomics”) offers powerful tools for
extracting both qualitative and, increasingly, quantitative data. These analytical approaches, how-
ever, may be significantly enhanced by applying additional methods arising from fields of mathe-
matics such as differential geometry and algebraic topology that remain underexplored in this
context. Geometry’s strength lies in its ability to provide precise local measurements, such as cur-
vature, that can be crucial for identifying abnormalities at multiple spatial levels. These measure-
ments can augment the quantitative features extracted in conventional radiomics, leading to more
nuanced diagnostics. By contrast, topology serves as a robust shape descriptor, capturing essential
features such as connected components and holes. The field of topological data analysis was initially
founded to explore the shape of data, with functional network connectivity in the brain being a
prominent example. Increasingly, its tools are now being used to explore organizational patterns of
physical structures in medical images and digitized pathology slides. By leveraging tools from both
differential geometry and algebraic topology, researchers and clinicians may be able to obtain a more
comprehensive, multi-layered understanding of medical images and contribute to precision medi-
cine’s armamentarium.

© 2024 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian
Academy of Pathology. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In the era of precision medicine, medical researchers and
practitioners continue to seek improvements in diagnostic accu-
racy, prognosis prediction, and treatment selection. Image-based
tates& Canadian Academy of Pathology. This is an open access article
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tools that allow caregivers to visualize and interpret anatomical
structures and identify abnormalities represent a major arena in
which such advances are being explored. Recent developments in
the field of radiomics and pathomics can transform 2- and 3-
dimensional images into elaborate matrices of data and infor-
mation that can generate insights with potential clinical benefit.1-3

Radiomics is a rapidly evolving discipline that focuses on the
extraction and analysis of quantitative features from medical im-
ages, employing algorithms to extract a wide range of quantitative
features including shape, intensity, texture, and spatial patterns.
These features can provide valuable information about tumor
heterogeneity, treatment response, and patient outcome. By uti-
lizing machine learning and artificial intelligence (AI) techniques,
radiomics may allow development of novel predictive models and
personalized medicine approaches.4,5 Pathomics, similarly, delves
into the analysis of digitized histopathology slides. Histopathology
has long been considered the gold standard for cancer diagnosis
and grading, but the manual interpretation of histological images
is both subjective and time-consuming. Pathomics techniques aim
to overcome these limitations by leveraging computational tech-
niques to analyze digitized slides and extract quantitative infor-
mation related to tissue morphology, cellular architecture, and
molecular markers. By quantifying histological features, patho-
mics can similarly enable objective assessment while providing
insights into disease progression, response to treatment, and pa-
tient prognosis.6-8 Combining information from multiple modal-
ities allows for a more comprehensive understanding of diseases,
and the integration of radiomics and pathomics into decision-
making workflows has the potential to advance precision medi-
cine by bridging the gap between imaging, pathology, and clinical
data. Furthermore, radiomics and pathomics offer the opportunity
to uncover previously hidden patterns and biomarkers that may
have significant clinical implications, paving the way for person-
alized therapeutic interventions and improved patient out-
comes.3,9-12

In this overview, we will explore how algebraic topology and
differential geometry can augment the fields of radiomics,
pathomics, and multiomics-based techniques, delving into the
various applications and challenges associated with these
emerging disciplines, including new tools from geometry and
topology to improve model accuracy and integration with other
data sources. We will discuss the potential benefits and examine
the current state of research and clinical implementation. In
particular, with respect to machine (or deep) learning approaches
methods being developed and deployed,6,13,14 it appears that prior
extraction of topological and geometric features can help improve
both training times and performance in certain cases.
Overview of Precision Medicine

Precision medicine, also known as personalized medicine or
stratified medicine, is an evolving approach to health care that
aims to provide tailored medical interventions to individual pa-
tients based on their unique characteristics. Unlike the traditional
one-size-fits-all approach, precision medicine recognizes that
each patient’s genetic makeup, lifestyle factors, environmental
influences, and disease characteristics are distinct and should be
taken into account when making diagnostic and treatment de-
cisions.15-18 This comprehensive approach ideally allows health
care providers to develop a holistic understanding of a patient’s
health status and disease progression. Despite its potential, pre-
cision medicine faces several challenges. The interpretation and
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integration of vast amounts of data, the need for robust analytical
tools, ethical considerations regarding data privacy and consent,
and equitable access to personalized treatments are only some of
the hurdles that need to be addressed. However, in the meantime,
it is becoming practical to combine insights from closely related
arenas, such as radiomics and pathomics; combining quantitative
features from both medical images and histopathology slides is
already providing valuable insights into tumor characteristics,
treatment response, and prognosis.2,19,20

Some Food and Drug Administrationeapproved, mathemati-
cally sophisticated tools are already available. 3D Slicer, an early
example of a biomedical image analysis platform,21 demonstrates
the integration of mathematical principles into radiology. PathAI22

employs deep learning and AI to assist pathologists in diagnosing
diseases more accurately, highlighting the growing influence of
mathematical algorithms in pathology. TexRAD23 is a Food and
Drug Administrationecleared radiomics software that utilizes
texture analysis to extract intricate patterns from positron emis-
sion tomography scans, providing quantitative insights into tissue
heterogeneity. Texture analytics are also promising, especially
when combined with multimodal information.24 Many tools are
also emerging in the AI pathology space, and their development
may democratize the availability of high-quality health care ana-
lytics and diagnostics, bridging gaps in global health disparities
while maintaining privacy and data protection.
Radiomics

Radiomics pipelines focus on extracting and analyzing quan-
titative features from medical images and have recently demon-
strated promise across several areas, including tumor
characterization, treatment response assessment, prognostic
prediction, and treatment planning.9,25 By combining radiomics
features with clinical data, including patient demographics, lab-
oratory values, and histopathological information, these models
can be further enriched. Radiomics has also shown promise in
treatment response assessment by analyzing changes in quanti-
tative features over time as part of monitoring treatment effec-
tiveness. For example, in the context of cancer patients
undergoing chemotherapy, radiomics analysis of serial imaging
scans plays a crucial role in assessing treatment response, allow-
ing for timely adjustments to the treatment regimen.26 Addi-
tionally, if a treatment regimen can be initiated earlier, this can
impact prognosis. Traditional radiomics features, such as first-
order statistics, shape-based features, and texture-based fea-
tures, are employed to quantify various aspects of the medical
images.3,5,7,9,26 Although radiomics has made significant strides,
several challenges remain, including a lack of topology and
geometry-based analytics. Radiomics feature extraction and
analysis methods can vary across studies, leading to inconsistent
results and limited comparability. Efforts are underway to estab-
lish standardized protocols and feature sets to improve repro-
ducibility and facilitate multicenter collaborations.3,27
Pathomics

Pathomics focuses on the analysis of digitized histopathology
slides and, more recently, on developing methods for slide-free
histology in digital pathology. With the increasing availability of
whole-slide imaging scanners and advancements in computa-
tional pathology, pathomics has gained momentum in recent



Figure 1.
An overview of topological data analysis and persistent homology, with 2 indicating the local scale parameter, and b1 indicating the number of cycles “detected” at the given
scale.

Richard M. Levenson et al. / Lab Invest 104 (2024) 102060
years. Pathomics allows for the extraction of quantitative
histology-based information, enabling objective assessment of
tissue morphology, cellular characteristics, and molecular
markers, aiding in the classification and grading of tumors. By
quantifying histological features from tissue samples using image
processing techniques, machine learning algorithms, and deep-
learning models, pathomics can assist in identifying patients
who may benefit from specific treatments or who are at higher
risk of disease recurrence.9 Pathomics has been used to identify
lung cancer subtypes28,29 and lung adenocarcinoma30 and, com-
bined with a variety of genomic techniques such as tran-
scriptomics,31 represents an opportunity for highly multiplexed
(10s to 1000s of analytes), high spatial resolution (“spatial omics”)
data to be investigated.32,33 Despite its potential, pathomics faces
challenges like those confronting radiomics, including standardi-
zation, reproducibility, and scalability. The digitization of histo-
pathology slides, data storage and management, and the
integration of pathomics with other data modalities pose tech-
nical and logistical hurdles. Moreover, the transition from manual
pathology evaluation to computational analysis requires rigorous
validation and regulatory acceptance.
Algebraic Topology and Differential Geometry

Advanced mathematical concepts from algebraic topology and
differential geometry are still being explored within health care;
these are 2 branches of mathematics with diverse applications.
Topology aims to uncover characteristic proper-
tiesdinvariantsdof a space (or data when connections and re-
lationships can be defined spatially). These invariants serve to
characterize a space up to certain transformations: for instance,
the number of points in a data set is a simple invariant that re-
mains unchanged under rotation. One of the more involved but
also more powerful invariants is homology, a concept central to
algebraic topology. It permits making statements about connec-
tivity characteristics of a space by means of algebraic calculations.
Tools commonly applied in data analysis have been extended to
cover actual physical structures, such as those visible in various
forms of imaging. By analyzing anatomical structures’ connectiv-
ity and relationships, topology helps identify disease patterns,
predict outcomes, and optimize treatment strategies through
network-based modeling.27,34 Thus, in general, algebraic topology
connects geometric spaces to algebraic structures, whereas
3

differential geometry examines curves and surfaces via differential
calculus.27,34,35 These methods are similar in that they analyze
spaces and structures, yet they differ in methods and applications.
Unique areas include topological data analysis and its flagship
algorithm, persistent homology, topological signatures in alge-
braic topology, and fractal geometry in differential geometry.

Topological data analysis is an umbrella term for a set of
methods that aim to make topological information in data sets
apparent.36-40 The flagship method of topological data analysis is
termed “persistent homology,” a method that provides an intui-
tive view of topological features in the data at multiple scales,
described by a scale parameter 2 (epsilon). The scale parameter
defines the radii of balls expanding from the data points (shown in
Fig.1). Betti numbers enumerate the features that exist at different
dimension levels (connected components, cycles, voids, and
higher dimensional voids).

For 2¼0 in Figure 1, all points in the data set are considered
disconnected. As 2 grows, data points become progressively
connected to each other, giving birth to features at the zeroth Betti
number level. Importantly, although the diagram shows this
process at the zeroth Betti number, any Betti number can change
as 2 grows. Persistent homology tracks the “evolution” of shapes
across Betti numbers as 2 increases; increasing 2 gives rise to a
filtration across the data set. The crucial insight of persistent ho-
mology is that there is no one scale to consider data but rather that
one should consider data at all scales, thus tracking the changes in
shape that are characteristic across all of them. Figure 1 illustrates
this process bymeans of a simple circular data set. With a small2
parameter, that is, from a close distance, the circular structure of
the data is not apparent. As we “zoom out,” although increasing
the 2 parameter, the circular structure becomes apparent, and
data points become connected with each other. Topological fea-
tures that “survive” to a given parameter value 2 are termed
“persistent.” Although Figure 1 illustrates how increasing 2 af-
fects the connectedness of a point cloud, this concept can also be
readily applied to medical images when investigating the
connectedness of pixel data.

In the example shown here (Fig. 1), a cycle is a feature that is
persistent across a range of 2 parameters, appearing at 2 value
0.2 and disappearing at 1.0. Although not apparent from this
simple example, topological features afford different in-
terpretations depending on their dimensionality. In low di-
mensions, topological features correspond to connected
components, cycles, and voids, but their mathematical description
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generalizes to spaces of arbitrary dimension that elude our intu-
ition. Computationally, this process can be applied to point clouds
and only involves matrix operations, for example, Gaussian
elimination, a technique for reducing the number of equations and
variables required to characterize the data. It is possible, however,
to generalize and extend persistent homology to a wide variety of
modalities, including images.

Regardless of the modality and the computational details, the
multiscale topological features identified and extracted via
persistent homology are typically summarized in topological de-
scriptors such as persistence diagrams. A d-dimensional persis-
tence diagram is a set of points in the plane, with each point ða; bÞ
representing the scale of a topological feature. Often, a is referred
to as the “creation” or “birth” time, whereas b is called the
“destruction” or “death” time of the feature. The absolute differ-
ence between those 2, that is, jb� aj, is called known as the
persistence of the topological feature. Features of high persistence
are typically considered to be more relevant or trustworthy (ie,
likely to be of biological/clinical significance as they recur
throughout data) than features of low persistence, which are
typically seen as topological noise.36,37 These are described in
more detail below.

One limitation of current radiomics and pathomics tools is the
ever-present potential for overfitting, whereby models may
perform exceptionally well on the training data but fail to gener-
alize to new patient populations. Fortunately, this issue can be
mitigated using techniques based on persistent homology, which,
because they allow for the identification of stable features in
complex data sets, reduce the risk of overfitting by providing
features that generalize better. Furthermore, radiomics and
pathomics often rely on predefined image and tissue features;
although these improve explainability, especially for AI ap-
proaches, they can limit their adaptability to evolving medical
knowledge. Topology and geometry offer the means to develop
dynamic and data-driven approaches that can respond to
emerging trends in health care.
Persistent Homology: Applications in Radiomics and
Pathomics

Persistent homology is a powerful method that has demon-
strated utility in the analysis of medical images and histopathol-
ogy slides.41-43 Persistent homology is concerned with the study of
topological features that persist across multiple spatial scales in a
data set. Persistence diagrams summarize the birth and death
points within a filtration for topological features in the data.
Persistence diagrams allow for easy visualization of topological
features and can be compared through straightforward distance
metrics, such as the Wasserstein distance, to discern statistically
different images based on persistent features (Fig. 2).
Persistence Landscapes

The persistence landscapes approach builds upon this theory
by generating persistence diagrams that capture the “birth” and
“death” of topological features; these are viewed as a series of
landscapes. These landscapes provide a comprehensive vector-
based representation of the topological structure of the data,41,42

which permits integration of persistent feature summaries with
many common machine learning methods. In addition to implicit
representations, so-called kernels,44 there are other efficient
methods for obtaining vectorial representations of persistence
4

diagrams. Three common approaches, visualized in Figure 3, are
persistence images,45 Betti curves,45,46 and persistence landscapes.47

Except for the persistence landscapes, all transformations are
inherently lossy, that is, it is not possible in general to reconstruct
the original persistence diagram from a persistence image or
from a Betti curve. Nevertheless, all these descriptors can be
quickly calculated and are well-suited to integration into stan-
dard data science tools. They can thus be used to classify data
based on topological features, find anomalies, predict outcomes,
and more.

The persistence landscape approach has been applied to
extract topological features from medical images.47,48 When
assessing the topology of glioblastoma, for example, homology
would explain the interconnectedness of pixel data in 2D or 3D
volumes. Alternatively, persistent homology would provide infor-
mation on the interconnectedness of the pixel data in 2D or 3D
volume across varying scale parameters, assessed, for example, by
increasing the radius surrounding segmented data points. Finally,
persistence landscapes can help visually explain the multiscale
topological features obtained from persistent homology by
depicting how interconnectedness changes at different scales.
Such persistence landscapes can be readily integrated with clas-
sical machine learning or deep-learning algorithms.

Persistence Landscapes: Applications in Medicine
For example, in the analysis of breast cancer lesions, persis-

tence landscapes have been employed to extract radiomics fea-
tures that characterize the spatial distribution of tumor
subregions and their connectivity, metrics usable for predicting
treatment response and patient outcomes.49 Similarly, in lung
cancer, persistence landscapes have been used to quantify the
spatial relationships between tumor regions, allowing for the
identification of high-risk subregions and personalized treatment
strategies.6 Gao et al50 introduced an innovative algorithm to
segment high-resolution computed tomography images of cardiac
left ventricles, focusing on complex papillary muscle and trabec-
ulae features. By utilizing methods from computational topology,
including persistent homology, their algorithm identified missing
topological structures, improving segmentation performance. Wu
et al51 addressed the challenge of reconstructing ventricular
trabeculae in cardiac image analysis. Their novel approach
detected salient topological handles, refined by a classifier,
enhancing segmentation compared with traditional methods,
emphasizing the value of topological priors in cardiac image
analysis.

In pathomics, persistence landscapes have been used to
analyze digitized histopathology slides, converting morphological
features into persistence landscapes to provide quantitative rep-
resentations of tissue morphology and cellular structures. This
allows for the identification of biomarkers and patterns that are
associated with disease progression and patient outcomes.9

Persistent homology has also been applied to prostate cancer
histopathology, clustering architectural subtypes independently
of Gleason patterns. These topological representations offer
higher granularity and reproducibility, making them valuable in-
puts for machine learning methods aimed at enhancing prostate
cancer diagnosis and prognosis.6,52 The derived pathomics fea-
tures have also shown potential in predicting tumor aggressive-
ness and guiding treatment decisions. In addition, the persistence
landscape approach has been used to analyze immunohisto-
chemistry slides, allowing for the quantification of biomarker
expression patterns and the identification of subtypes with
different molecular characteristics.53,54 One recent study using
pathology images has demonstrated utility in combining



Figure 2.
Algorithm for persistent homology profiles for standard hematoxylin and eosin-stained slides.55
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persistent homology profiles and CNNs to classify specimens from
tumor-bearing and normal patients.55

Topological approaches, specifically topological image
modification and topological image processing, have been
shown to enhance object detection and characterization of skin
Figure 3.
An overview of different representations of persistence diagrams.40 (A) Persistence images (o
They provide a fast and effective way of using topological features for subsequent data analy
number of active topological features as a function of the overall scale. (C) Persistence landsca
reconstruct the original features of data from them. There are no axes for the Persistence i
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lesions in clinical images (Fig. 4), offering an efficient, unsuper-
vised approach to isolate significant objects within relevant re-
gions.56 Topological approaches can also track spatial data of cell
locations over time to predict malignant behaviors in tumors,
offering insights into the intricate patterns and dynamics
n right) are constructed by “smoothing” the persistence diagrams (scatter plots on left).
sis tasks. (B) Betti curves are a coarse summary of a diagram, obtained by counting the
pes enjoy stability properties akin to those of persistence diagrams; it is also possible to
mages because they are images and only have pixel coordinates.



Figure 4.
Algorithm for persistent homology profiles for gross lesion images.56
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between tumor and immune cells and accurately identifying
early signs of perivascular niche formation, a proxy for metas-
tasis.57 The integration of AI with advanced analytics of histo-
logical images can also provide insights into the tumor
microenvironment. Various deep-learning algorithms including
attention-based and multimodal models have been applied for
characterizing tumor microenvironment patterns, linking image
features with clinical outcomes. Although the majority of AI
models are evaluated retrospectively, newly available data sets
and increasing computational power can assist in prospective
validation and demonstration of actual benefits in both statisti-
cal and clinical modes.58

Abousamra et al59 explored digital pathology’s intricacies by
utilizing spatial statistics and topological data analysis to model
cell contexts. They introduced new mathematical tools
combining a location-specific function with topological fea-
tures, enabling the generation of high-quality multiclass cell
layouts. These layouts, a novelty in the field, demonstrated
potential for data augmentation and improving cell classifica-
tion. Lawson et al52 pioneered prostate cancer histology
assessment with topological data analysis, clustering images
into architectural groups beyond familiar Gleason patterns.
Their persistent homology approach showed sensitivity in
identifying subarchitectural groups, offering a refined quanti-
fication method with applications in diagnosis and prognosis
determination.
Topological Signatures

Topological signatures involving homology profiles represent
another promising method that leverages concepts from algebraic
topology to characterize topological properties of complex data,
providing valuable insights into disease characterization and
prediction. As touched on above, rather than converting a
persistence diagram into a vector-compatible format to integrate
with other data sets, as persistence landscapes do, topological
signatures capture a vector of features in an image, focusing less
on start and end appearances. These signatures offer a compact
6

summary of the “topological activity” within the data filtration,
improving image analysis, for instance.60 Although persistence
landscapes map how the interconnectedness of data points
changes over differing scales, measuring when they appear and
disappear, topological signatures typically focus on the total
number of new connections that can be formed. Long-lived to-
pological features are captured, stored, and then parsed into a
relational database as either a vector feature or individual fea-
tures, with a number given for each column representing a feature
dimension.

Despite its promise, however, persistence landscapeebased
approaches are challenged by issues involving computational
hurdles and complex interpretation. Additionally, the selection of
appropriate parameters and the standardization of persistence
landscapes across various data sets and applications require care.
Topological Signatures: Applications in Medicine
These signatures can help determine more comprehensive

and robust predictive tumor characterization and patient strat-
ification.27 In the case of gliomas, topological features can
distinguish between different subtypes as well as predict patient
survival.34 Similarly, for breast cancer, the approach has been
utilized to analyze mammographic images and extract topolog-
ical features related to the spatial arrangement and connectivity
of microcalcifications, aiding in the detection and characteriza-
tion of malignancies.61,62 Figure 5 illustrates 3 groups of brain
scans: a young (top left), aging (middle left), and Alzheimer’s
disease patient (bottom left), along with a diagram of filtration
features for each group. Note the smaller peak found in the
young group.

In prostate cancer grading, a histology-centric task, it is
possible to extract topological features that capture architectural
patterns and glandular structures that encapsulate differences
between low- and high-grade tumors. A 2020 study by Yan et al
introduced statistical representations of homology profiles, a
persistent homologyebased method, for automating Gleason
grading in prostate cancer assessment.63 They achieved a
remarkable accuracy of 0.89 and an area under curve of 0.96 in
distinguishing between grade 3 and 4 patterns on prostate biopsy



Figure 5.
Topological changes with aging and Alzheimer’s disease show the effects in gray matter (red) and white matter (white). Both aging and Alzheimer’s disease result in the loss of
white matter volume and a thinning of the gray matter. Segmenting colors measures only area, whereas missing intricate topologies. Although the Betti number as such only
captures coarse summary statistics about data, that is, the number of connected components or cycles, they can be evaluated alongside a filtration (a growth process) to improve
their expressivity. In the form of such Betti curves, the Betti numbers capture complex structures, offering deeper, more comprehensive insights than mere area measurements.
Gray matter of the aging brain breaks down into smaller connected components, illustrated by the example of a dimension 1 Betti curve computed from the gray matter. Mean
subject ages were 56 for the “young” cohort, 83 for the aging cohort, and 65 for patients with Alzheimer’s disease.
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slides. What sets statistical representations of homology profiles
apart is its ability to provide not only effective results but also
interpretability, aligning well with the practices of pathologists
(Fig. 6). This advancement holds significant promise for enhancing
the accuracy and consistency of prostate cancer diagnosis and
prognosis.

In lymph node analysis, a topological signature approach has
been used to extract features that correlate with metastatic po-
tential, aiding in the identification of high-risk patients.64 How-
ever, the vectorization of topological features in persistence
Figure 6.
This image describes a process involving binary image manipulation and the computation
format using various threshold values, specifically 40, 100, and 150. The resulting binary
spaces, marked with red stars (b1). This process helps visualize and quantify the structur

7

diagrams requires significant computational resources and
application of robust algorithms. The interpretation and inte-
gration of topological features in conjunction with other data
modalities, such as genomics and clinical data, is also
nontrivial. However, by integrating mathematical tools from
spatial statistics and topological data analysis into a deep
generative model, it becomes possible to create high-quality
multiclass cell layouts. These topology-rich layouts enhance
data augmentation, significantly improving downstream tasks
such as cell classification.59
of Betti numbers. Initially, an H-stained component image is transformed into binary
images highlight connected components, represented as blue dots (b0), and empty
al characteristics of the images in terms of Betti numbers.63
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Geometric Feature Extraction: Applications in Radiomics and
Pathomics

Although tools from topology capture global properties that are
not affected by stretching, squishing, or other imagemanipulations,
geometric properties such as curvature, distance between points,
and volumes of objects change under such distortions of the un-
derlying datamanifold. However, inmany cases, geometric features
are important to capture. For instance, thickening of a blood vessel
or development of plaques in that blood vessel does not change the
topology of the vessel: it is still a tubewith a hollow interior (unless
the vessel is fully occluded to eliminate that hollow tube). Yet, the
geometry certainly changes and may be of interest when studying
the progression of stenosis and atherosclerosis. An aneurysm’s
bubble within a vessel, similarly, does not change the fact that the
vessel is still a tube. However, the bulge does affect vessel geometry
and impacts blood flow and patient risk. Given these differences,
many geometry-based feature extraction tools exist, and geometry-
based image modeling is a growing field in medical imaging.

The geometric feature extraction approach is a powerful
method used in radiomics and pathomics for the analysis of
medical images and histopathology slides. This approach focuses
on extracting quantitative geometric features that capture the
spatial characteristics and shape properties of anatomical struc-
tures and cellular components,65,66 taking advantage of the wide
range of quantitative features it generates. These features can be
computed from region-based or contour-based segmentation
approaches, depending on the specific task and data set. Various
geometric descriptors, including size-based features (eg, volume,
area, and diameter), shape-based features (eg, circularity, elon-
gation, and complexity), and spatial distribution-based features
(eg, distance and clustering), can be extracted to capture various
aspects of anatomical or cellular structures.27

Fusion of deep convolutional (CNN) and geometric features is an
approach that increases boundary contrasts and enhances features,
which can then be deployed downstream in CNN-based modeling.
This approach, applied to capsule-based endoscopy images, was
shown to decrease training time 5-fold compared with existing state-
of-the-art methods, without sacrificing performance quality.67 Recent
advancements in object recognition, such as hyperbolic visual
embedding, which maps flat images onto hyperbolic spaces prior to
modeling, have also shown promise in distinguishing features that
exist in an image or set of images. Although this has not yet been
applied to pathomics, the potential for recognizingmany types of cells
and cellular aberrations with this method is promising.67 In all, dif-
ferential geometry distinguishes itself from standard spatial analysis
tools by seamlessly integrating basic methods, such as size-based and
shape-based feature extraction, with advanced techniques such as
hyperbolic or fractal mapping. This convergence not only optimizes
compute time and accuracy but also paves the way for medical
models to scale efficiently and incorporate diverse data sources.68
Integration With Other Data Sources

Features arising just from imaging studies or biometric mea-
surements often do not capture all relevant information that could
contribute to diagnosis or modeling disease progression. Multi-
modal models including patient histories, biometric measure-
ments, image features, and other electronic health record data
constitute a more complete biopsychosocial view of disease
and patient histories. Topological signatures and persistence
8

landscapes integrate well with other types of datadsuch as ge-
nomics data, biometric records, and extractions from clinical
notes, as these can be expressed as vectors. Often, such combined
models provide better insights and patient management oppor-
tunities than models that only include one type of data (such as
imaging).69 However, integration of text features, imaging fea-
tures, and relational data from electronic health record systems
(such as biometric records or medication lists) is complicated.
Thus, tools such as topological signatures that allow medical im-
ages to integrate easily with other data types will be helpful in
creating powerful multimodal models at scale. However, caution
is still required when multidimensional data are used to generate
biological or clinical conclusions because the opportunity for
overfitting increases as the number of variables increases,
potentially yielding results that may be misleading or entirely
spurious. Although it is a prevalent belief that cross-validation
acts as a safeguard against overfitting or “overhyping,” this is
not always the case. Random data can still produce spurious re-
sults even when cross-validation is employed, for example, by
merely tweaking hyperparameters in ways that might otherwise
seem harmless.70

Genomics
Genomics approaches consist of data that can be processed by

many machine learning methods to identify rare mutations,
common tumor profiles, and other relevant diagnostic and
prognostic features for modeling. Data topology approaches have
played a role recently in tracking changes in tumor genetics over
time71 and in identifying genetic alterations and markers in tu-
mors.72 Certainly, one of the fastest-growing fields today is
radiogenomics, in which tumor imaging profiles are linked to
tumor genetic profiles.73 By linking imaging with specific genetic
profiles of tumors, it is possible to discern new cancer pheno-
types and develop specialized treatments for rare tumor sub-
types. However, the lack of accessible imaging and accessible
genomics data often hinders collaboration between radiologists,
pathologists, and geneticists studying the same diseases or
working on management of the same patients.74 For example,
the use of radiogenomics has led to the successful prediction of
glioblastoma survival time bymodeling patient imaging data (via
geometric feature extraction) and tumor genetic profiles; the
combination can outperform survival models that use only im-
aging data or only tumor genetic profiles.75 It is possible that
persistence landscapes and topological signatures can also play a
role in integrating such data with the pathomics and radiomics
information outlined above.
Future Perspectives

The potential of radiomics and pathomics tools to contribute to
the goals of precision medicine is evident. As these fields continue
to advance, we can expect exciting developments that will shape
the landscape of medical imaging and histopathology analysis.
The integration of radiomics and pathomics with other omics data,
such as genomics, proteomics, and metabolomics, along with
other patient-associated data, will enrich our understanding and
the utility of these approaches, leading tomore accurate diagnosis,
personalized treatment selection, and improved outcomes. Ma-
chine learning and AI algorithms, particularly those rooted in
geometry and topology, can play a crucial role in this process. The
development of standardized protocols and guidelines for radio-
mics and pathomics analysis can address some reproducibility and
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generalizability issues, enabling increasingly diverse data sets to
be explored and facilitating multicenter collaborations. Finally, a
potential advantage is that geometry and/or topology provide
additional prior information, which may obviate the need to
collect ever-larger data sets. Together, these tools may help define
the shape of things to come.
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