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Abstract
In multiple myeloma (MM), B cell maturation antigen (BCMA)-directed CAR T cells have emerged as a novel therapy 
with potential for long-term disease control. Anti-BCMA CAR T cells with a CD8-based transmembrane (TM) and CD137 
(41BB) as intracellular costimulatory domain are in routine clinical use. As the CAR construct architecture can differentially 
impact performance and efficacy, the optimal construction of a BCMA-targeting CAR remains to be elucidated. Here, we 
hypothesized that varying the constituents of the CAR structure known to impact performance could shed light on how to 
improve established anti-BCMA CAR constructs. CD8TM.41BBIC-based anti-BCMA CAR vectors with either a long linker 
or a short linker between the light and heavy scFv chain, CD28TM.41BBIC-based and CD28TM.CD28IC-based anti-BCMA 
CAR vector systems were used in primary human T cells. MM cell lines were used as target cells. The short linker anti-
BCMA CAR demonstrated higher cytokine production, whereas in vitro cytotoxicity, T cell differentiation upon activation 
and proliferation were superior for the CD28TM.CD28IC-based CAR. While CD28TM.CD28IC-based CAR T cells killed 
MM cells faster, the persistence of 41BBIC-based constructs was superior in vivo. While CD28 and 41BB costimulation 
come with different in vitro and in vivo advantages, this did not translate into a superior outcome for either tested model. In 
conclusion, this study showcases the need to study the influence of different CAR architectures based on an identical scFv 
individually. It indicates that current scFv-based anti-BCMA CAR with clinical utility may already be at their functional 
optimum regarding the known structural variations of the scFv linker.
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myeloma
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DMEM	� Dulbecco's Modified Eagle's Medium
DSMZ	� German Collection of Microorganisms and 

Cell Cultures GmbH
ECD	� Extracellular domain
eGFP	� Enhanced green fluorescent protein
E:T ratio	� Effector cell to target cell ratio
FDA	� U.S. Food and Drug Administration
FBS	� Fetal bovine serum
FITC	� Fluorescein isothiocyanate
fLuc	� Firefly luciferase
FR	� Framework region
Grzm B	� Granzyme B
hTCM	� Human T cell medium
ICANS	� Immune effector cell-associated neurotoxicity 

syndrome
IC	� Intracellular costimulatory domain
ICD	� Intracellular costimulatory domain
IL	� Interleukin
Ig	� Immunoglobulin
i.v.	� Intravenous
i.p.	� Intraperitoneal
MM	� Multiple myeloma
NHL	� Non-Hodgkin lymphoma
NSG	� NOD.Cg-Prkdcscid Il2rgtm1Wjl/Sz
PBMC	� Peripheral blood mononuclear cell
PBS	� Phosphate-buffered saline
ROB	� Regierung von Oberbayern
RPMI	� Roswell Park Memorial Institute
scFv	� Single chain variable fragment
SEM	� Standard error of the mean
STR	� Short tandem repeat
TCM	� Central memory-like T cell
TEff	� Effector-like T cell
TEM	� Effector memory-like T cell
TGI	� Tumor growth inhibition
TH	� T helper cell
TLS	� Tumor lysis syndrome
TM	� Transmembrane domain
TME	� Tumor microenvironment
TN	� Naïve-like T cell
TSCM	� Stem cell memory-like T cell
UT	� Untransduced T cell
VH	� Heavy chain of the scFv part
VHH	� Camelid heavy-chain variable domains
VL	� Light chain of the scFv part

Introduction

Multiple myeloma (MM) represents an incurable plasma 
cell neoplasm originating in the bone marrow. Almost all 
patients ultimately relapse with especially poor survival 
noted in patients with a high-risk cytogenetic profile or 

treatment-resistant disease [1]. Improved understanding 
of this disease has resulted in continuous evolution of 
treatment options leading to a new therapeutic repertoire 
[1]. Among them, chimeric antigen receptor (CAR) T cell 
therapy has emerged as a novel treatment modality with 
potential for long-term disease control. B cell maturation 
antigen (BCMA) is the most investigated target antigen 
for MM, mainly expressed by plasma cells and some 
mature B cells [2]. The U.S. Food and Drug Administra-
tion (FDA) approved the anti-BCMA CAR T cell products 
[3] idecabtagene vicleucel (ide-cel) [4] and ciltacabtagene 
autoleucel (cilta-cel) [5] for relapsed/refractory MM in 
2021 and 2022, respectively. The first approved product 
ide-cel consists of a BCMA targeting single chain variable 
fragment (scFv), a CD8 alpha hinge/spacer and transmem-
brane domain (TM), a CD137 (41BB) intracellular costim-
ulatory domain (IC or ICD), and a CD3zeta cytoplasmic 
domain (CD3ζ) [3, 4]. In terms of efficacy, only 33% of the 
patients treated with ide-cel exhibited a complete remis-
sion and 26% of all patients achieved MRD negativity 
[4]. ScFv-based anti-BCMA CAR T cell therapy remains 
a promising treatment approach, although coming with 
limitations including therapeutic resistance and toxicity [2, 
4–6]. Besides the disease and patient’s characteristics, the 
CAR design influences its functionality [7–10]. The scFv, 
length and composition of the hinge/spacer, TM domain 
and ICD can impact CAR T cell functionality indepen-
dently of each other [7, 11, 12].

It has been reported that a short amino acid linker (short 
linker) between the light (VL) and the heavy (VH) chain of 
the scFv part of 41BBIC-based anti-CD22 CAR T cells 
can lead to intermolecular CAR interactions that promote 
autonomous 41BB signaling, priming T cells for enhanced 
anti-tumoral effects [13]. In contrast, short linker versions 
of anti-CD33 and anti-CD19 CAR T cells did not exert such 
an effect [13]. This suggests that shortening the linker length 
of the scFv can induce CAR intermolecular pairing, but that 
this may vary between constructs and target antigens. It is 
thus promising to assess a short linker with a scFv-based 
BCMA-targeting CAR.

Another key aspect of CAR T cell functionality is the 
utilized costimulatory domain: CD28 is frequently employed 
both in preclinical models and in clinical products and leads 
to a more profound and rapid therapeutic impact, while 
41BB (CD137) exhibits prolonged T cell persistence that 
is conducive to durable remissions [14]. However, this out-
come is not uniformly observed across studies [15, 16], again 
indicating inter-CAR variability. Although CAR architecture 
targeting the same antigen can have a divergent impact on 
performance and efficacy, the optimal composition of such 
an scFv-based anti-BCMA CAR has not been investigated.

We aimed to perform a BCMA-target specific com-
parison of such CAR variations to evaluate the impact on 
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anti-BCMA CAR T cell activity and to determine an opti-
mized scFv-based anti-BCMA CAR design.

Materials and methods

Cell lines

MM cell lines RPMI 8226, U-266 (U266), JJN-3 (JJN3) and 
JK-6 (JK6) have been obtained from the German Collec-
tion of Microorganisms and Cell Cultures GmbH (DSMZ). 
Acute monocytic leukemia cell (AML) line THP-1 have 
been previously described [17]. All cell lines were cul-
tured in a humidified incubator (37 °C, 5% CO2) and in 
RPMI 1640 medium containing 10–20% fetal bovine serum 
(FBS), 2 mM L-glutamine, 100 U/ml penicillin and 100 μg/
ml streptomycin. All cell lines were lentivirally transduced 
with a pCDH-EF1a-eFly-eGFP plasmid [18]. After trans-
duction, enhanced green fluorescent protein (eGFP)-positive 
cells were single cell sorted using a BD FACSAria III cell 
sorter, and expression of firefly luciferase (fLuc) was verified 
using a Bio-Glo luciferase assay system. Cells were frozen 
in 90% FBS with 10% DMSO and stored at − 80 °C or in liq-
uid nitrogen for long-term storage. Cell lines were regularly 
checked for mycoplasma contamination. Authentication of 
cell lines by short tandem repeat (STR) profiling analysis 
was conducted in house.

Generation of CAR constructs

All CAR constructs were second-generation CAR vec-
tor systems as  previously described [17, 19–21] and 
either generated using conventional cloning techniques or 
codon-optimized and cloned into pMP71 retroviral vec-
tors using commercial cloning services (Twist Bioscience, 
USA). c-Myc tags were used to detect CAR expression. 
Anti-BCMA CAR constructs were based on the patented 
sequence of the approved construct idecabtagene vicleucel 
[22]. CD8TM.41BBIC-based CAR vectors with either a 
short (referred as short linker CD8TM.41BBIC) or a long 
(referred as long linker CD8TM.41BBIC) amino acid linker 
in the extracellular antigen recognition domain between the 
VL and VH chain of the scFv section, CD28TM.41BBIC-
based and CD28TM.CD28IC-based CAR vector systems 
were generated and used in primary human T cells. Besides 
the short linker construct, the other anti-BCMA CARs 
have the same long linker based on ide-cel. The long linker 
CD8TM.41BBIC therefore served as universal control. 
Anti-CD19 CAR T cells were designed based on anti-CD19-
CAR-FMC63-28Z CAR T cells and used as negative con-
trols [23], as previously described [17]. Single-cell clones 
were generated and screened for the highest level of virus 

production by determining T cell transduction efficiency, as 
previously described [20].

CAR T cell generation and expansion

For virus production, retroviral pMP71 vectors carrying the 
CAR sequence (kindly provided by C. Baum, Hannover) 
were stably introduced into packaging cell lines 293Vec-
Galv and 293Vec-RD114, as previously described [24]. T 
cells were isolated from peripheral blood mononuclear cells 
(PBMCs) of healthy donors by density gradient centrifuga-
tion, enriched by anti-CD3 microbeads (Miltenyi Biotec, 
Germany) and activated by Dynabeads human T-Activator 
CD3/CD28 (Life Technologies, Germany) before trans-
duction. Human T cell transduction has been previously 
described [17, 19–21]. Untransduced T cells (UT) were iso-
lated and activated like CAR T cells without transduction 
on day 2. T cells were expanded 1–2 weeks in human T cell 
medium (hTCM) containing RPMI 1640 with 2.5% human 
serum, 2 mM L-glutamine, 100 U/mL penicillin, 100 µg/
mL streptomycin, 1% sodium pyruvate and 1% non-essential 
amino acid solution supplemented with recombinant human 
IL-2 (PeproTech, Germany/Novartis, Switzerland) used in a 
final concentration of 180 U/ml and IL-15 (PeproTech, Ger-
many/Miltenyi Biotech, Germany) used in a final concentra-
tion of 2 ng/ml. Expansion steps were performed in the same 
manner for both untransduced and CAR T cells.

T cell stimulation and killing assay using tumor cells

For co-culture experiments, 1.5 − 2.5 × 104 tumor cells were 
plated in flat bottom 96-well plates. T cell numbers trans-
duced with the indicated CAR constructs or untransduced T 
cells were added at different effector cell to target cell ratios 
(E:T ratios). Co-cultures were performed in hTCM without 
cytokines. Cytokines were washed out before the assay. Kill-
ing was assessed by luciferase-based killing assays using 
Bio-Glo™ Luciferase Assay System according to manufac-
turer’s protocol (Promega Corporation, USA).

T cell stimulation assay using plate‑bound 
recombinant protein

Flat bottom 96-well plates were coated overnight at 4 °C 
with Fc-tagged recombinant human BCMA (SinoBiologi-
cal, China) with 2.0 µg/ml diluted in 50 µl PBS per well 
(0.1 µg/well). The next day, the protein-containing PBS was 
removed, plates were blocked with 70 µl 2% bovine serum 
albumin (BSA) dissolved in PBS for 30 min and washed 
after removal of the blocking solution with 100 µl PBS. After 
removal of the PBS serving as washing solution, 105 T cells 
were resuspended in hTCM without cytokines and added 
into the protein-coated wells. Following an incubation time, 
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culture supernatants were obtained for storage at  −  20 °C, 
and cells were used for flow cytometry-based analysis.

Proliferation assay

For long-term co-culture experiments, 2.5 × 104 U266 
tumor cells were plated in flat bottom 96-well plates. T cell 
numbers transduced with the indicated CAR constructs or 
untransduced T cells (UT) were added at an E:T ratio of 
2:1. Co-culture was performed in hTCM without cytokines 
for > 200 h. No further addiction or re-challenge of T cells 
with tumor cells was performed. At the end of cultivation 
time, proliferation and immunophenotype were assessed by 

flow cytometry and cytokine production was detected in cul-
ture supernatants by ELISA after storage at -20 °C.

Cytokine protein level quantification

IFN-γ, interleukin (IL)-2 and granzyme B (Grzm B) release 
in co-culture supernatants was quantified by enzyme-linked 
immunosorbent assay (ELISA) according to manufacturer´s 
protocol (IFN-γ and IL-2: BD Biosciences, USA; Grzm B: 
R&D Systems, USA).
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Fig. 1   Evaluation of different anti-BCMA CAR constructs. A Sche-
matic of CD28TM.CD28IC-based (red), CD28TM.41BBIC-based 
(yellow), and CD8TM.41BBIC-based anti-BCMA CAR constructs 
with either a long (blue) or short (green) linker between the light (VL) 
and the heavy (VH) chain of the scFv part. Anti-CD19 CAR T cells 
were used as negative control CAR T cells (gray). B + C Transduc-

tion efficiency in primary human T cells. Data for B one representa-
tive donor or C for n = 12 (anti-BCMA CAR) and n = 10 (anti-CD19 
CAR) shown as means ± SEM. D Expression of human BCMA, 
CD19 and CD33 was detected on different multiple myeloma cells 
(RPMI 8226, U266, JJN3, JK6) and on the AML cell line THP-1. 
Expression was compared to isotype controls
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Flow cytometry

For staining, cells were transferred into U-bottom 96-well 
plates and washed with ice-cold PBS and centrifuged (400 g, 
5 min, 4 °C). Blocking of Fc receptors with TruStain FcX 
(BioLegend, USA) was performed (15 min). Dead cells were 
excluded after staining with a fixable viability dye (eFluor™ 
780; eBioscience, USA). Surface proteins were stained 
(20 min, 4 °C). The following fluorophore-conjugated anti-
bodies reactive to human antigens were used: anti-CCR7 
(G043H7), anti-PD-1 (EH12.2H7), anti-CD8 (SK1), anti-
TIM-3 (F38-2E2), anti-CD45RA (HI100), anti-CD3 (HIT3a 
or OKT3), anti-CD62L (DREG-56), anti-CD69 (FN50), 
anti-CD45 (HI30) and anti-CD4 (A161A1) (all from Bio-
Legend). Anti-c-Myc (SH1-26E7.1.3) from Miltenyi Bio-
tec was used for CAR detection. Target antigen expression 
was detected by BCMA-PE (19F2), CD19-PerCP-Cy5.5 
(HIB19), and CD33-PE (P67.6). Quantification of absolute 
cell counts was carried out by using Count Bright™ Abso-
lute Counting Beads (Thermo Fisher Scientific, USA). Cells 
were analyzed on a BD FACSCanto™ or BD LSRFortessa™ 
II flow cytometer, and data were analyzed with FlowJo soft-
ware (version 10.7.2).

Animal experiments

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were origi-
nally bought from Charles River Laboratories or Janvier or 
bred at the local facilities. Animals were housed in specific 
pathogen-free facilities and in groups of 2–5 animals per 
cage. Mice were held in facilities with a 12 h dark/12 h 
light cycle including a 30 min twilight phase at noise lev-
els below 50 dB. Air velocity was held below 0.2 m/s. Air 
humidity in the facilities was between 45 and 60%, and the 
average temperature was held between 20 and 22 °C. We 
used 5–10 week-old female mice (n = 30) as recipients of 
matching appropriate tumor cell lines as described for each 
experiment. For bioluminescence imaging (BLI), mice were 
anesthetized using an isoflurane–oxygen mixture (1.5–2.5%) 
following intraperitoneal (i.p.) injection of BLI substrate 
(Xenolight D-Luciferin Potassium Salt, PerkinElmer, USA) 
into each mouse, according to the manufacturer’s protocol. 
An in vivo imaging system platform Lumina X5 (IVIS, 
PerkinElmer, USA) was used to measure BLI signal. The 
xenograft model using 2 × 106 U266 tumor cells was estab-
lished by i.v. injection. 2 × 106 active CAR T cells were 
transferred at indicated times and numbers. Mice that had 
to be removed from animal experiments due to non-tumor-
related toxicities (for example, did not have measurable BLI 
signal at the exclusion timepoint) were censored. Censored 
mice are indicated in the respective BLI images. All experi-
ments were carried out randomized. For survival analyses, 
defined criteria (decrease in body weight or in general health 

condition) were taken as surrogates for survival and recorded 
in Kaplan–Meier plots. Percentage of tumor growth inhibi-
tion (TGI) was calculated with the formula [1 − (change of 
tumor volume in treatment group/change of tumor volume 
in control group)] × 100. Detailed experimental procedure 
can be found in the results section as a scheme before each 
experiment.

Preparation of single‑cell suspensions

Harvested organs and material of mice were processed to 
single-cell suspensions as previously described [20, 21]. 
Blood and bone marrow were diluted with PBS followed 
by erythrocyte lysis. Spleens were passed through 30 µm 
cell strainers, followed by erythrocyte lysis. Flow cytometry 
analysis is described above.

Statistical analysis

At least three biological replicates for each experiment 
were analyzed unless otherwise indicated in the figure 
legends. Duplicates or triplicates for each group were 
performed. Two-tailed Student’s t-test was used for com-
parisons between two groups, while two-way ANOVA 
with Bonferroni posttest (multiple time points) or one-
way ANOVA with Tukey’s posttest (single time points) 
was used for comparisons across multiple groups. A log-
rank (Mantel-Cox) test was used to compare survival 
curves. Sample size was determined by t-test (two-tails) 
using the software G*Power 3.1 with given alpha, power, 
and effect size. All statistical tests were performed with 
GraphPad Prism 9 (GraphPad Software Inc., USA). 
p-values < 0.05 were considered statistically significant 
and represented as *p < 0.05, **p < 0.01, ***p < 0.001 
and ****p < 0.0001. Graphs were designed with Graph-
Pad Prism 9 (GraphPad Software Inc., USA) and Adobe 
Illustrator v26.0.2 (Adobe, USA). Where not otherwise 
indicated, results are presented as mean ± standard error 
of the mean (SEM).

Results

Comparative analysis of four anti‑BCMA CAR 
constructs using different target cell lines

In contrast to CD19-positive diseases, only 41BBIC-based 
anti-BCMA CAR products are approved (Suppl. Figure 1A) 
[3–5]. Here, we compared scFv-based BCMA-CAR con-
structs with either CD28 or CD8 as TM and 41BB or CD28 
as ICD (Fig. 1A). We designed a novel anti-BCMA CAR 
with a short instead of a long linker between the VL and 
VH chain of the scFv (Fig. 1A). The long linker design is 
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based on ide-cel; therefore, the long linker CD8TM.41BBIC 
anti-BCMA CAR was used as universal control. All con-
structs were successfully transduced (mean transduction 
efficiency > 60%) into primary human T cells (Fig. 1B + C). 

Primary myeloma cells vary in BCMA surface expression 
[25]. Therefore, several MM cell lines were used as target 
cell lines with a range of different BCMA, CD19 and CD33 
expression profiles (Fig. 1D). While RPMI 8226 and U266 
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Fig. 2   Specific CAR T cell activation by BCMA. A + D CD69, B + E 
CD107a (LAMP-1), C + F PD-1 expression as % of CD3+ T cells 
A-C and as MFI D-F, G CD69 ± CD107a (LAMP-1) ± PD-1 expres-
sion and H IFN-γ ELISA after stimulation of anti-BCMA CAR 
T cells (CD28TM.CD28IC: red; CD28TM.41BBIC: yellow; long 
linker CD8TM.41BBIC: blue; short linker CD8TM.41BBIC: green), 
anti-CD19 CAR T cells (gray) and untransduced T cells (black) with 

2.0  µg/ml recombinant BCMA (n = 3 donors). Each experiment of 
subfigures A-H was performed in triplicates. Values in all graphs 
represent means ± SEM (* p < 0.05, ** p < 0.01, *** p < 0.001, **** 
p < 0.0001). Only selected p-values are shown. Statistical comparison 
was performed by a 2-way ANOVA with Bonferroni multiple com-
parison correction
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having the highest BCMA expression, for JJN3 and JK6 
expression was low (Fig. 1D and Suppl. Figure 1B). All cell 
lines were CD19 negative so that an anti-CD19 CAR could 
be used as a negative control CAR for testing specificity 
(Fig. 1A-C). AML cell line THP-1 was used as an antigen-
negative non-B cell or plasma cell-based control cell line 
(Fig. 1D and Suppl. Figure 1B).

CD28 as costimulatory domain mediated a stronger 
activation then 41BB

All anti-BCMA constructs showed specific activation by 
recombinant BCMA after 24 h of stimulation, measured 
by expression of the T cell activation markers CD69 and 
CD107a (LAMP-1) as well as T cell exhaustion marker 
PD-1, which is also a marker of early T cell activation 
(Fig. 2A–F). Expression of CD69 with 93 ± 3% (Fig. 2A) 
and CD107a with 87 ± 4% (Fig.  2B) was the highest 
for CD28TM.CD28IC-based CAR T cells (Fig. 2A–B). 
PD-1 expression was relatively low compared to CD69 
and CD107a (Fig. 2C). CD28TM.CD28IC-based CAR T 
cells also revealed a higher proportion of multifunctional 
(CD69 + CD107a + PD-1 +) cells with 46 ± 7% upon 
activation compared to 41BBIC-based anti-BCMA CAR 
constructs with between 8 and 12% (p < 0.01; Fig. 2G). 
Increased expression of T cell activation markers led to 
higher IFN-γ production of CD28TM.CD28IC-based 
CAR T cells (Fig. 2H) when stimulated with 2.0 µg/ml 
(p < 0.05) of recombinant BCMA. There were no dif-
ferences between 41BBIC-CAR variants or scFv linker 
lengths (Fig. 2A-H).

CD28TM.CD28IC‑based CAR T cells showed higher 
in vitro cytotoxic capacity

We next compared the in vitro cytotoxic capacity. In general, 
all constructs were very potent against the used MM cells 
with an E:T ratio of 0.25:1 (Fig. 3A-D), particularly after 
48 h and 72 h of co-culture reducing the window to per-
form comparative analysis (Suppl. Figure 2 + 3). CD28TM.
CD28IC-based CAR T cells showed a higher cytotoxic 
capacity compared to the other constructs (Fig. 3A–D) 
particularly with RPMI 8226 (CD28TM.CD28IC vs 
CD28TM.41BBIC vs long linker CD8TM.41BBIC vs short 
linker CD8TM.41BBIC: 44 ± 2% vs 14 ± 5% vs 35 ± 4% vs 
30 ± 3% for 24 h). BCMA low-expressing JJN3 and JK6 cell 
lines were killed similarly by the constructs and particu-
larly JJN3 showed unspecific killing by anti-CD19 CAR and 
untransduced T cells due to higher intrinsic T cell sensitivity 
unrelated of targeting (Fig. 3 and Suppl. Figure 2). Simi-
lar effects were seen with E:T ratios of 2:1, 1:1, and 0.5:1 
(Suppl. Figure 3). No clear differences were seen for the two 
linker lengths. As expected, AML cell line THP-1 could not 
be sufficiently killed (Suppl. Figure 4A).

Shortening the scFv linker of 41BBIC‑based 
anti‑BCMA CAR increased cytokine production

Shortening of the scFv linker led to an increased in vitro 
IFN-γ production (Fig. 4). After 72 h of co-culture in an E:T 

Fig. 3   Highest cytotoxic capacity with CD28TM.CD28IC-
based anti-BCMA CAR T cells.  A-D Anti-BCMA CAR T cells 
(CD28TM.CD28IC: red; CD28TM.41BBIC: yellow; long linker 
CD8TM.41BBIC: blue; short linker CD8TM.41BBIC: green) were 
co-cultured with A RPMI 8226, B U266, C JJN3 or D JK6 tumor cell 
lines for 24  h at an indicated E:T ratio of 0.25:1. Anti-CD19 CAR 
T cells (gray) were used as negative controls, respectively. Cell lysis 
was quantified by luciferase-based killing assay. Subfigures show data 
of one representative donor out of three independent experiments. 

Each experiment was performed in triplicates. Values in all graphs 
represent means ± SEM (*p < 0.05, ** p < 0.01, *** p < 0.001, **** 
p < 0.0001). Only p-values for comparison of different anti-BCMA 
CAR constructs were shown except U266. Cytotoxic capacity of anti-
BCMA CAR in comparison to anti-CD19  CAR T cells for RPMI 
8226, JJN3 and JK6 were significant (p < 0.05). Statistical compari-
son was performed by a 2-way ANOVA with Bonferroni multiple 
comparison correction
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ratio of 2:1, short linker CAR T cells displayed a higher IFN-
γ production compared to long linker versions in presence of 
RPMI 8226 (Fig. 4A), U266 (Fig. 4B), JJN3 (Fig. 4C) and 
JK6 (Fig. 4D). Donor variability led to less distinct effects 
when pooled data were analyzed (Suppl. Figure 5). Also, 
highest granzyme B and IL-2 production was seen with short 
linker CD8TM.41BBIC CAR T cells when co-cultured with 
RPMI 8226 for 72 h (Suppl. Figure 6A + B). Co-culture with 
THP-1 revealed a similar cytokine production as T cell only 
conditions (Suppl. Figure 4B-E).

Long‑term co‑culture revealed higher proliferative 
capacity of CD28IC‑based CAR T cells

Previous reports have demonstrated that 41BBIC-based 
CAR T cells typically exhibit a longer persistence com-
pared to CD28IC-based CAR T cells [14]. We assessed the 
impact of a long-term co-culture (> 200 h) with MM cells. 
Remarkably, the CD28TM.CD28IC-based anti-BCMA 
construct showed better proliferative capacity (p < 0.05) 
of all CD3 + T cells (33 ± 16) and CAR T cells (71 ± 34) 
compared to 41BBIC-based T cells (< 10) and CAR T cells 
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Fig. 4   Highest IFN-γ production with short linker CD8TM.41BBIC-
based anti-BCMA CAR. A-D IFN-γ ELISA with 24  h, 48  h, 
and 72  h co-culture supernatants of anti-BCMA CAR T cells 
(CD28TM.CD28IC: red; CD28TM.41BBIC: yellow; long linker 
CD8TM.41BBIC: blue; short linker CD8TM.41BBIC: green), anti-
CD19 CAR T cells (gray) and untransduced T cells (black) with A 
RPMI 8226, B U266, C JJN3, or D JK6 in an E:T ratio of 2:1 for 

one representative donor out of three different donors. Each experi-
ment was performed in triplicates. Values in all graphs represent 
means ± SEM (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). 
Only p-values for comparison of different anti-BCMA CAR con-
structs were shown. Statistical comparison was performed by a 2-way 
ANOVA with Bonferroni multiple comparison correction
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(< 12) (Fig. 5A). No differences were seen of long and short 
linker versions (Fig. 5A). In contrast, the different CAR for-
mats showed similar expression levels of PD-1 (Fig. 5B) 
and cytokine release (Fig. 5C). Analysis of T cell subtypes 
revealed no relevant changes during long-term co-culture 
(Fig. 5D).

CD8TM.41BBIC CAR T cells had a higher proportion 
of central memory‑like T cells

We further assessed the phenotypic composition of the T cell 
product. For analysis of T cell subtypes, the CD8 to CD4 
T cell ratio was similar for CD28IC-based and 41BBIC-
based anti-BCMA CAR T cells after co-culture with MM 
cells (Fig. 6A). After co-culture with tumor cells, a trend 
towards a higher proportion of central memory-like T cells 

for CD8TM.41BBIC-based CAR T cells was seen compared 
to the CD28TM-based CAR T cells (Fig. 6B). Single marker 
analysis of activation and exhaustion marker expression was 
similar for all conditions (Fig. 6C), while the proportion of 
multifunctional T cells (CD69+ 41BB+ PD-1+) and exhausted 
T cells (PD-1+ TIM-3+) was highest for CD28TM.CD28IC 
CAR T cells, albeit without reaching statistical significance 
(Fig. 6D + E).

Prolonged in vivo persistence and tumor control 
of CD28TM.41BBIC‑based CAR T cells

To assess in vivo persistence and proliferation of anti-BCMA 
CAR T cell constructs, U266-bearing immunodeficient NSG 
mice were treated with 2 × 106 active anti-BCMA CAR T 
cells or PBS (Fig. 7A). In the first days after treatment, 
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Fig. 5   CD28TM.CD28IC-based anti-BCMA CAR T cells performed 
superior in long-term co-cultures. A Proliferative capacity, B PD-1 
expression, C IFN-γ release and D T cell subtypes of anti-BCMA 
CAR T cells (CD28TM.CD28IC: red; CD28TM.41BBIC: yellow; 
long linker CD8TM.41BBIC: blue; short linker CD8TM.41BBIC: 
green), anti-CD19 CAR T cells (gray) and untransduced T cells 
(black) co-cultured for more than 200  h with U266 measured by 
FACS. A Proliferation is shown as T cells per bead, CAR T cells 

per bead or untransduced T cells per bead ratio and was normalized 
to conditions without tumor measured by FACS. Data is shown for 
three independent donors (n = 3). Each experiment was performed in 
triplicates. Values in all graphs represent means ± SEM (*p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001). Statistical comparison 
was performed by a 2-way ANOVA with Bonferroni multiple com-
parison correction
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CD28TM.CD28IC-based CAR T cells cleared the tumor 
slightly quicker than the 41BBIC-based CAR constructs 
(Fig. 7B-D). However, tumor clearance was comparable for 
all tested CAR constructs with a complete clearance of the 

tumor after 13 days compared to the PBS group (p < 0.0001) 
(Fig. 7B-D) and tumor growth inhibition (TGI) of nearly 
100% (Fig. 7E).
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To better evaluate T cell persistence, we re-challenged 
the anti-BCMA CAR T cell-treated survivor mice again 
with U266 cells on day 46 (+ 0) after initial T cell injection 
(Fig. 7F). Mice initially treated with PBS (black color) were 
not re-challenged (Fig. 7B, right column). As control mice 
for the re-challenge experiment (gray color), U266 tumor 
cells were injected into new NSG mice that had neither 
been treated with T cells nor PBS (Fig. 7G, right column). 
Remarkably, the CD28TM.41BBIC CAR T cells showed 
the best tumor control (Fig. 7G + H). Despite short linker 
CD8TM.41BBIC CAR T cells, anti-BCMA CAR T cell-
treated groups showed better tumor control than the tumor 
only control group (gray; p < 0.05) in the re-challenge set-
ting. No advantage in survival was seen as most of the mice 
were still alive at time point of termination (Fig. 7I). Weight 
analysis revealed (Fig. 7J + K) a significant reduction for 
CD28TM.41BBIC-based CAR T cells. At termination, 
BCMA+ tumor cells were only detectable in the bone mar-
row of the original PBS-treated mice (day 97) and the tumor 
only control mice for the re-challenge experiment (day 51 
after re-challenge) (Fig. 7L). Bleeding of mice in the first 
and second week after T cell injection did not indicate dif-
ferences for T cell detection (Fig. 7M). Upon termination 
of the experiment, detection of both T and CAR T cells in 
blood, bone marrow and spleen was only possible for the 
CD28TM.41BBIC and long linker CD8TM.41BBIC anti-
BCMA CAR T cells (Fig. 7N + O), which was particularly 
evident for CAR T cells in the spleen (p < 0.05). In summary, 
shortening of the scFv linker did not lead to an advantage 
in an in vivo setting.

Discussion

While commercial scFv-based anti-BCMA CAR T cell 
products have achieved excellent clinical results in pivotal 
studies, therapeutic failure and relapse are still observed [6]. 
CAR T cell therapy has evolved in recent years due to con-
tinuous improvements in CAR vector design [7, 8]. How-
ever, the optimal construction of an anti-BCMA CAR has 
yet to be defined. To evaluate the impact of CAR structure 
variations, we set out to perform a BCMA-target specific 
comparison on CAR T cell activity in vitro and in vivo so 
as to determine an optimized scFv-based anti-BCMA CAR 
design. We evaluated different scFv linker lengths and 
costimulatory domains.

In preclinical studies, anti-BCMA CAR T cell prod-
uct ide-cel (bb2121) showed low antigen-independent 
signaling and potent in vitro killing of multiple myeloma 
tumor cells across a range of BCMA expression levels 
[26]. In comparison with studies testing CD28-based 
anti-BCMA CAR T cells, 41BB-based CAR T cells dis-
played improved persistence and a lower rate of toxicities 
including cytokine release syndrome (CRS) and immune 
effector cell-associated neurotoxicity syndrome (ICANS) 
[27]. Even though this and other clinical studies revealed 
promising results leading to approval of two commercial 
41BB-based anti-BCMA CAR products, durable persis-
tence of scFv-based anti-BCMA CAR T cells is gener-
ally poor and recurrence is common (for ide-cel median 
progression-free survival was 8.5 months and the median 
overall survival was 12.5 months in the real-world setting) 
[28]. Therefore, scFv-based anti-BCMA CAR constructs 
still require optimization.

Optimization of CAR design to enhance synthetic 
receptor-driven T cell functionality has been an impor-
tant focus of the field [7–10]. Even though commercial 
CAR T cell products and preclinical CAR T designs share 
common features, all of them slightly differ from each 
other. Each part including the scFv, the hinge/spacer and 
TM domain and the ICD of the CAR can influence the 
functionality [11, 12]. While first-generation CAR T cells 
had only the CD3ζ chain, introduction of ICD particu-
larly of CD28 and 41BB (CD137) markedly improved 
CAR T cell functionality [7]. CD28IC-containing CAR 
constructs were associated with enhanced levels of Th2-
like cytokines like IL-4 and IL-10, and their kinetics of 
activation are more rapid than CAR vectors using 41BB 
as costimulatory domains [29–31]. Rapid activation of 
CD28IC-containing CAR T cells may make these cells 
more likely to initiate early-onset CRS in treated patients. 
Comparison of CAR constructs with identical scFvs in 
tumor treatment models revealed that 41BBIC-containing 
CAR T cells developed into more central memory-like T 

Fig. 6   Phenotypic changes of CAR T cells after activation. Phe-
notype of anti-BCMA CAR T cells (CD28TM.CD28IC: red; 
CD28TM.41BBIC: yellow; long linker CD8TM.41BBIC: blue; short 
linker CD8TM.41BBIC: green), anti-CD19 CAR T cells (gray) and 
untransduced T cells (black) are shown after 48 h of co-culture in the 
presence of U266, JJN3 and JK6 or no tumor cells (T cell only con-
ditions) of three donors (n = 3). A CD8+ and CD4+ T cell subtypes 
are shown. B T cell subpopulations for T cell differentiation status are 
shown. Naïve-like T (TN) cells were defined as CD45RA+CCR7+ , 
central memory-like T (TCM) cells as CD45RA-CCR7+ , effec-
tor memory-like T (TEM) cells as CD45RA-CCR7- and effector-like 
T (TEff) cells as CD45RA+CCR7-. Changes in T cell subtypes and 
T cell subpopulations for anti-BCMA CAR T cells were not signifi-
cant (ns). C Expression of 41BB (CD137), CD69, PD-1 and TIM-3 
is shown. Only p-values for comparison of different anti-BCMA 
CAR constructs were shown. Comparison was not significant (ns). 
D Expression of CD69 ± 41BB ± PD-1 is shown. Changes for anti-
BCMA CAR T cells were not significant (ns). E Expression of 
PD-1 ± TIM-3 is shown. Changes for anti-BCMA CAR T cells were 
not significant (ns). Each experiment was performed in triplicates. 
Values in all graphs represent means ± SEM (*p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001). Selected p-values are shown in the 
figures or described in the Results section. Statistical comparison was 
performed by a 2-way ANOVA with Bonferroni multiple comparison 
correction

◂
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cells [14] with enhanced respiratory capacity, increased 
fatty acid oxidation, enhanced mitochondrial activity and 

better persistence compared to CD28IC-containing CAR 
T cells [14]. For now, two commercial 41BBIC-based 
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anti-BCMA CAR products are approved. However, as 
persistence of these CAR T cells is generally poor [28], 
further improvement is required. We tested different com-
binations of CD28 and CD8 for TM domains as well as 
CD28 and 41BB for ICD for scFv-based anti-BCMA CAR 
constructs based on the design of the commercially avail-
able ide-cel product. In our study, CD28-based CAR T 
cells outperformed the 41BBIC-based CAR T cells regard-
ing in vitro cytotoxicity, proliferative capacity, and overall 
activation status. Overall cytotoxicity after 48 and 72 h 
of co-culture was very high for all constructs. The long-
term cytotoxic experiments cannot reasonably differenti-
ate between the role of proliferation; therefore, prolifera-
tion might be a confounding factor regarding cytotoxicity. 
However, we observed better persistence of 41BBIC-based 
CAR T cells in vivo, as expected. These discrepancies may 
be model-related and therefore might be evaluated also 
with other cell lines in vivo or simply related to the uti-
lized scFv as all constructs are based on the ide-cel scFv. 
By changing the scFv, the effect could be different due to 
a different ability for tonic signaling as well as avidity and 
affinity towards the target antigen.

Besides therapy-associated toxicities, another reason for 
leaking CAR T cell efficiency is tonic signaling by antigen-
independent clustering of a CAR on the T cell [9, 10]. Mul-
tiple domains of the CAR have been associated with pro-
voking or at least contributing to tonic signaling [10]. It can 
mediate spontaneous release of effector cytokines and the 
expression of surface markers associated with T cell exhaus-
tion [10]. This led to poor in vivo activity and lack of in vivo 
function particularly when CD28 is used as ICD [10] due to 

distinct receptor biochemistry (not linker-driven clustering) 
of these CD28IC-based CARs [32, 33]. Replacement of a 
CD28 ICD with a 41BB ICD prevented the development of 
CAR T cell dysfunction suggesting a protective impact of 
tonic 41BBIC-based CAR signaling. Singh and colleagues 
could demonstrate that antigen-independent tonic signaling 
improved the function of 41BBIC-based anti-CD22 CAR T 
cells and can be enhanced by shortening the linker length 
between the VL and VH chain of the scFv part [13]. This 
shortening of the linker does not universally lead to clus-
tering in every CAR product [13]. As such, it was recom-
mended that each new CAR and target antigen should likely 
be evaluated individually for clustering and tonic signaling 
[13]. Thus, we evaluated the effect of the linker shorten-
ing in CD8TM.41BBIC-containing scFv-based anti-BCMA 
CAR T cells. We could not see a superior effector function 
of short linker CAR T cells except for a trend towards an 
increased in vitro cytokine production. This trend was not 
superior in a long-term co-culture setting measuring IFN-
γ. The decay of the protein over time will underestimate 
the absolute amount produced. While decay will not be 
influenced by the CAR design, allowing direct comparison 
between constructs, it does not correct for cell numbers, nor 
for potential differences between cell populations in IFN-γ 
production. The findings of superior cytokine production 
in short-term co-cultures are in line with short linker anti-
CD19 CAR T cells showing no tonic signaling with equiva-
lent in vitro and in vivo cytotoxicity against CD19 + tumor 
cells but higher cytokine production compared to the long 
linker versions [13]. The superior short linker anti-CD22 
CAR had a VH–VL composition [13], while the here tested 
anti-BCMA CAR had a VL–VH composition which may also 
influence the ability to perform intermolecular VL and VH 
pairing [34]. Each variable domain of the scFv contains 
three complementarity-determining regions (CDRs) form-
ing loops and making up the unique antigen-binding site 
[35]. Additionally, four framework regions (FRs) in the scFv 
comprising beta-strands and additional loop regions are cru-
cial for scFv stability [35]. The VH–VL orientation is often 
favored because it leaves more distance between the scFv 
linker and the third CDR of the heavy chain, which usually 
is crucial for antigen-binding. However, VL–VH orientation 
has been associated with increased expression and antigen-
binding in some cases [36]. In other cases, similar surface 
expression and antigen-binding have been reported for either 
orientation [37]. Therefore, an ideal orientation of the VL 
and VH domains in scFvs still must be evaluated. The linker 
length itself heavily influences the oligomerization behavior 
of scFvs.

The scFv of most CARs is murine-derived and therefore 
can lead to host immunogenic responses and engineered T 
cell disappearance. Development of less immunogenic CAR 
constructs like CARs composed of camelid heavy-chain 

Fig. 7   In vivo efficiency of anti-BCMA CAR T cells. A Experimen-
tal layout for B-E. Anti-BCMA CAR T cells (CD28TM.CD28IC: red; 
CD28TM.41BBIC: yellow; long linker CD8TM.41BBIC: blue; short 
linker CD8TM.41BBIC: green) or PBS (black) were intravenously 
(i.v.) injected in U266-bearing NSG mice. B BLI images, C + D 
quantification of tumor burden and E percentage of tumor growth 
inhibition (% of TGI) in U266 tumor-bearing mice after treatment 
with different CAR  T cells (n = 5 mice per group). F Experimental 
layout for (G–O). G BLI images, H quantification of tumor burden, I 
survival curves and J + K body weight analysis of U266 bearing mice 
re-challenged 46  days after initial T cell injection with again tumor 
cells (n = 5 mice per group) and treatment naïve tumor only control 
mice (n = 5 mice per group). PBS-treated mice of A-B underwent no 
re-challenge. L BCMA + tumor cells per bead ratio for blood, bone 
marrow and spleen at time point of termination of the experiment on 
day 97 (+ 51), M T cells per bead ratio for blood in the first week 
and second week after CAR T cell injection. N T cells per bead ratio 
and O CAR T cells per bead ratio for cells detected in blood, bone 
marrow and spleen at time point of termination of the experiment. 
Values in all graphs represent means ± SEM (*p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001). Selected p-values are shown in the 
figures. Statistical comparison except for survival curves was per-
formed by a 2-way ANOVA with Bonferroni multiple comparison 
correction. For Kaplan–Meier curves, statistical significance was cal-
culated with log-rank test

◂
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variable domains (VHH) has the potential to overcome this 
obstacle. Replacement of the targeting domain of a CAR 
with a single-chain antibody such as VHHs can also prevent 
tonic signaling as domain swapping and oligomerization 
is intrinsically not possible [38, 39]. Because VHH-based 
CARs are intrinsically not capable to oligomerize, shorten-
ing their linker length probably will not exert a major effect.

Another reason for the divergent results could be the tar-
get antigen itself as BCMA is a cell surface receptor and 
therefore has a different structure and function as CD19 and 
CD22, respectively. Since BCMA is primarily expressed 
on normal and malignant plasma cells and some mature B 
cells, it represents a suitable target for MM [40]. In this 
work, low BCMA expressing cell lines were also cleared 
by anti-BCMA CAR T cells. Primary myeloma cells vary 
in BCMA surface expression [25, 41]. Preclinical data of 
ide-cel (bb2121) revealed robust in vitro killing of MM cells 
independent of the BCMA expression levels or the presence 
of soluble BCMA [26, 27] also described by others [41]. 
Additionally, in the CARTITUDE-1 trial testing cilta-cel 
(NCT03548207), response rates were also independent of 
baseline BCMA expression [5]. Also, tumor cell killing is 
dictated by T cell and tumor cell intrinsic characteristics. 
In this specific setting, it seems that JJN3 and JK6 have a 
higher intrinsic T cell sensitivity unrelated to antigen target-
ing compared with RPMI 8226 or U266. We reasoned that 
these differences are not linked to BCMA nor BCMA target-
ing. A further promising target for MM is GPRC5D [42, 43]. 
Profound comparison of different CAR constructs designs 
and scFv linker lengths should also be performed with this 
clinically relevant target [42, 43]. It could be shown that 
structural alterations (biallelic loss of BCMA or GPRC5D) 
and antigen loss resulting from non-truncating missense 
point mutations in BCMA extracellular domain also medi-
ate resistance to targeted immunotherapies [44].

Here, we used a c-Myc tag in the CAR construct to 
detect transduction efficiency. Antigen-based CAR expres-
sion is difficult to standardize and can be very CAR-
dependent. Adding a c-Myc tag to the CAR sequence does 
not seem to negatively influence CAR performance in dif-
ferent CAR constructs [17, 19, 21]. Any minute alteration 
to a CAR sequence may potentially have functional conse-
quences. The strategy was used by many in the meantime 
[45–47]. However, a systematic comparison on the CAR 
performance has not been performed to date.

In this present study, detailed analysis of in vitro and 
in vivo functionality of the anti-BCMA CAR constructs 
was performed; however, no further analysis concerning 
biophysical properties of CAR binding was conducted (i.e., 
affinity, avidity, and antigen density). Affinity and avidity 
can also substantially influence efficacy [48, 49]. It could be 
shown that moderate-affinity antigen-binding domain CAR 
have less off-target toxicity but were more effective [48]. The 

positive effects of short linker-mediated tonic signaling were 
reduced when using an affinity enhancement approach [13]. 
This could further help to understand the role of the CAR 
design and its interaction with the target antigen for CAR T 
cell effector function.

Our findings on anti-BCMA CAR T cells are not only 
relevant for MM but also for B cell NHL, as BCMA is also 
expressed in a relevant percentage of lymphoma samples 
[26]. It was shown that anti-BCMA CAR T cells do not react 
with normal PBMCs [26]. However, as many CD19, CD20 
and/or CD22 targeting CAR T cell products are currently 
under investigation and four different anti-CD19 CAR T cell 
products are already approved, the role of BCMA as target 
antigen for the treatment of B cell lymphoma is for now 
less clear compared to CD19. Nonetheless, CD19/BCMA 
dual-targeting CAR approaches have been already tested for 
relapsed/refractory B cell NHL [50].

Anti-BCMA CAR are not functionally very sensitive to 
alterations in structure when BCMA-targeting scFv is con-
served. While CD28 and 41BB (CD137) costimulation come 
with different in vitro and in vivo characteristics, we did 
not observe consistent domain-specific differences in terms 
of outcomes in the examined murine model. Shortening of 
the amino acid linker between the VL and VH chain of the 
scFv part of 41BBIC-based CAR is promising for CAR T 
cell therapy. However, the short scFv linker strategy could 
not relevantly improve the clinically approved scFv-based 
anti-BCMA CAR construct in this study. This may indicate 
that the scFv linker design of this CAR cannot be further 
improved by altering the length of the amino acid linker as 
proposed here and would require more elaborate modules 
such as cytokine signaling (so-called armored or fourth-
generation CARs). This study showcases the need to study 
the influence of different CAR architectures based on an 
identical scFv individually. Optimizing anti-BCMA CAR 
constructs may improve outcomes; however, there are many 
variables that limit the success.
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