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Abstract 

Chromatin, the nucleoprotein complex consisting of DNA and histone proteins, pla y s a crucial role in regulating gene expression by control- 
ling access to DNA. Chromatin modifications are k e y pla y ers in this regulation, as they help to orchestrate DNA transcription, replication, and 
repair. These modifications recruit epigenetic ‘reader’ proteins, which mediate downstream events. Most modifications occur in distinctive 
combinations within a nucleosome, suggesting that epigenetic information can be encoded in combinatorial chromatin modifications. A detailed 
understanding of how multiple modifications cooperate in recruiting such proteins has, ho w e v er, remained largely elusiv e. Here, w e integrate nu- 
cleosome affinity purification data with high-throughput quantitative proteomics and hierarchical interaction modeling to estimate combinatorial 
effects of chromatin modifications on protein recruitment. This is facilitated by the computational workflow asteRIa which combines hierarchi- 
cal interaction modeling , st abilit y-based model selection, and replicate-consistency c hec ks for a st able e stimation of R obust I nter a ctions among 
chromatin modifications. asteRIa identifies se v eral epigenetic reader candidates responding to specific interactions between chromatin modifi- 
cations. For the polycomb protein CBX8, we independently validate our results using genome-wide ChIP-Seq and bisulphite sequencing datasets. 
We provide the first quantitative framework for identifying cooperative effects of chromatin modifications on protein binding. 
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ntroduction 

ukaryotic cells store the genetic material in the nucleus where
t is packaged into chromatin, a nucleo-protein complex made
p primarily of DNA and histone proteins. Both DNA and hi-
tones carry chemical modifications that can either directly af-
ect chromatin structure or recruit so-called epigenetic reader
roteins that mediate downstream events. As these modifica-
ions are involved in the regulation of all DNA-templated pro-
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cesses, such as transcription, DNA replication, or DNA re-
pair, they play central roles in controlling chromatin function
( 1 ). The basic repeating unit of chromatin is the nucleosome,
which coordinates 147 bp of DNA wrapped around an oc-
tamer consisting of two copies each of the core histones H2A,
H2B, H3 and H4 ( 2 ). Nucleosomes are folded into higher-
order structures to form chromatin. Since DNA and histone
modifications show extensive overlap in the genome ( 3 ) and
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decorate histones and nucleosomes in specific combinations
( 4–10 ), it is likely that these modifications act in a concerted
manner. This is supported by the observation that most chro-
matin regulators contain multiple modification binding do-
mains or are part of multi-subunit complexes harbouring mul-
tiple such domains, and are therefore likely to read out mul-
tiple chromatin modifications ( 11 ). Indeed, the idea that com-
binations of histone modifications may form a ‘histone code’
that together with DNA modifications could store epigenetic
information in the chromatin template, thereby expanding the
genetic information encoded in the DNA sequence, has been
around for over two decades ( 12–14 ). 

To date, the functions and readers of a host of individ-
ual chromatin modifications have been described (see, e.g.,
( 15 ,16 ) and references therein for an overview). Moreover,
epigenetic regulators that read the modification status of more
than one epigenetic mark on histones or the DNA have been
described using functional and structural studies ( 17–23 ). Sev-
eral DNA repair factors were also found to recognize dual
histone modification signatures, ranging from individual in-
teractions ( 24–29 ) to combinatorial ones ( 30 ,31 ). One prime
example is the ubiquitin ligase UHRF1, an essential player
in DNA methylation maintenance, that recognizes a triple
modification signature on histone H3 ( 32–34 ) and the DNA
( 35–37 ). 

The gap in knowledge about the combinatorial nature of
factors that read multiple DNA and histone modifications can
be partially attributed to the fact that one of the most pre-
vailing high-throughput technology to study histone modifi-
cations and their readers is chromatin immunoprecipitation
followed by deep sequencing (ChIP-seq). Here, antibodies are
used to detect the localization of specific modifications or
chromatin-binding proteins at a genome-wide scale ( 38 ). De-
spite its groundbreaking influence on our understanding of
the histone code through community efforts such as the NIH
Roadmap Epigenomics Mapping Consortium ( 39 ), ENCODE
( 40 ), and ChIP-Atlas ( 41 ), ChIP-seq alone can only probe a
single modification or reader protein in each experiment, thus
making it difficult to assess combinatorial synergies or an-
tagonistic effects on epigenetic readers. However, careful in-
tegration of multiple genome-wide ChIP-seq experiments of
individual modifications enabled the application of multivari-
ate statistical analysis techniques to uncover chromatin states
and interactions. For example, using hidden Markov modeling
techniques, the ChromHMM method ( 42 ,43 ) revealed cell-type
specific discrete chromatin states that characterize the combi-
natorial presence or absence of modifications on the genome.
Alternatively, sparse partial correlation estimation techniques
were proposed to learn multivariate association networks be-
tween histone modifications ( 44 ). The latter framework was
extended in ( 45 ,46 ) to include both histone modifications and
a small set of chromatin modifiers. Using linear regression and
sparse partial correlation estimation, the studies derived de
novo high-confidence backbones of ‘chromatin signaling net-
works’ from ChIP-Seq data. There, the inferred network edges
are to be interpreted as additive (or main) effects between hi-
stone modifications on chromatin modifiers and vice versa.
The analysis of the derived chromatin signaling networks re-
vealed both histone-protein interactions known from litera-
ture and several novel hypothetical interactions. To show the
power of the network approach, the authors were also able
to experimentally verify the statistically hypothesized interac-
tions between H4K20me1 and members of the polycomb re-
pressive complexes 1 and 2 (PRC1 and PRC2, respectively) 
( 46 ). Nevertheless, none of these ChIP-Seq-based computa- 
tional approaches allow the statistical estimation of how mul- 
tiple histone modifications co-operate in recruiting epigenetic 
regulators. 

In this contribution, we present a statistical interaction 

modeling approach, termed asteRIa , that tackles this chal- 
lenge. Rather than considering genome-wide ChIP-Seq data,
asteRIa uses novel nucleosome affinity purification data 
with high-throughput quantitative proteomics, as provided 

in the Modification Atlas of Regulation by Chromatin 

States (MARCS), to make robust and reproducible predic- 
tions of combinatorial effects of chromatin modifications on 

chromatin-interacting proteins. The MARCS data, available 
at https://marcs.helmholtz-munich.de comprises a collection 

of Stable Isotope Labeling with Amino acids in Cell culture 
(SILAC) nucleosome affinity purification (SNAP) experiments 
( 47 ) that probe the binding of proteins from HeLa S3 nuclear 
extracts to a library of semi-synthetic di-nucleosomes (referred 

to as nucleosomes throughout the manuscript) incorporating 
biologically meaningful combinations of chromatin modifica- 
tions representing promoter, enhancer and heterochromatin 

modification states. Each affinity purification measures the 
relative abundances of nuclear proteins on a modified nucle- 
osome in relation to an unmodified control nucleosome us- 
ing the SILAC labelling and quantitative proteomics as a read 

out. This allows the high-throughput identification of pro- 
teins that are either recruited or excluded by the modifica- 
tion(s), and also indicates the relative extent of the recruitment 
or exclusion. Collectively, the MARCS data set catalogs the 
binding responses of 1915 nuclear proteins to nucleosomes 
carrying 55 different modification signatures. The construc- 
tive nature of these data, paired with an appropriate statis- 
tical model, thus enables the direct analysis of combinatorial 
effects of different modification features on the nucleosome 
binding of the measured proteins. At its core, asteRIa uses a 
linear regression model with pairwise (or ‘two-way’) interac- 
tions among chromatin modifications to predict the binding 
affinities of each protein. Regression models with pairwise in- 
teractions have a long tradition in statistics and experimen- 
tal design ( 48–50 ) but are notoriously difficult to estimate in 

the presence of noisy, scarce data and / or incomplete experi- 
mental designs, and are prone to misinterpretation ( 51 ,52 ). As 
we will show, the asteRIa framework incorporates several 
model and design principles that (i) guard against common 

pitfalls and (ii) take the properties of the MARCS data (and 

biological data in general) into account. Firstly, we posit that 
our framework should work in the underdetermined regime,
i.e. the number of features q (here the chromatin modifica- 
tions) and pairwise interactions exceeds the number of mea- 
surements n . We achieve this by including sparsity-inducing 
penalization of the model coefficients ( 53–55 ). Secondly, we 
assume that the underlying interaction model obeys the so- 
called ‘strong hierarchy’ principle ( 50 , 53 , 56 ), i.e. interactions 
among features are only included in the model if both features 
are present as main effects. Thirdly, we embrace the princi- 
ple of statistical ‘stability’ ( 57–59 ) for model selection, im- 
plying that interactions are only included when they are re- 
producibly identified across subsets of the data. To respect 
the ubiquitous measurement variability of biological systems,
we also require replicate consistency ( 60 ) of our combinato- 
rial models. This means that models with interactions need 

to be (at least partially) consistent across available technical 

https://marcs.helmholtz-munich.de
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r biological replicates, further ensuring the general robust-
ess and validity of the resulting models. While these design
rinciples and the underlying computational workflow, avail-
ble at https:// github.com/ marastadler/ asteRIa.git , are gen-
ral, we illustrate the framework to detect novel combinatorial
nteractions between chromatin modifications on epigenetic
eader recruitment. 

On the MARCS data, we show that considering interaction
ffects between chromatin modifications can consistently im-
rove the predictive performance of the binding profiles of a
ubset of proteins. asteRIa not only recovers known binding
atterns, such as, e.g. the well-known H3K27me3-CBX8 pair-
ng, but also identifies novel interaction effects between chro-
atin modifications on the binding behavior of proteins not

et implicated as epigenetic readers (e.g. ACTL8). Our anal-
sis also allows to define and quantify the extent of distinct
odes of apparent chromatin modification interactions, rang-

ng from synergistic and antagonistic to competitive effects.
ur post-hoc model analysis shows that proteins belonging to

he same protein complexes do read combinatorial chromatin
odification signatures in a similar fashion, thus allowing the
elineation of a protein complex - chromatin modification in-
eraction network. 

Independent confirmation of the identified combinatorial
nteractions is challenging due to the uniqueness of the

ARCS data and the accompanying statistical analysis. Nev-
rtheless, we provide a validation workflow on ENCODE
hIP-Seq, ChIP-Atlas ChIP-Seq and WGBS (Whole Genome
isulfite Sequencing) data that demonstrates that our findings
re not limited to a specific cell type or experimental setup.
pecifically, we show that one of the found combinatorial
nteractions for CBX8 are consistent with these orthogonal
atasets. The latter analysis also illustrates how to validate
ther interactions found in this study, thus inviting the gener-
tion of new ChIP-Seq data collections for previously under-
tudied proteins. 

aterials and methods 

he Modification Atlas of Regulation by Chromatin 

tates dataset 

he Modification Atlas of Regulation by Chromatin States
MARCS), as introduced in ( 61 ), builds on two experimen-
al components: (i) a designed library of engineered di-
ucleosomes (referred to as nucleosomes throughout the
anuscript) comprising combinatorial chromatin modifica-

ions and (ii) nucleosome affinity purifications coupled to
igh-throughput quantitative proteomics measurements em-
loying SILAC labeling (SNAP) ( 47 ). The modified nucle-
somes were assembled from a biotinylated DNA contain-
ng two 601 nucleosome positioning sequences ( 62 ) and his-
one octamers containing semi-synthetic site-specifically mod-
fied histones H3.1 and H4 prepared by native chemical liga-
ion ( 63 ). Some nucleosomes were also assembled using CpG-
ethylated DNA (5mC) or the histone variant H2A.Z. The

omplete library design matrix comprises n total = 55 modi-
ed nucleosomes with thirteen possible chromatin modifica-
ions (see left panel of Figure 1 for a conceptual picture). The
vailable modifications include six lysine residues on the tails
f histone H3 (K4, K9, K14, K18, K23 and K27) and five
n histone H4 (K5, K8, K12, K16 and K20) as well as the
ariant histone H2A.Z and CpG methylated (5mC) DNA on
both DNA strands (symmetric methylation), respectively. The
lysines are modified with acetylation (ac) or mono-, di-, or tri-
methylation (me1, me2, me3). H3-5ac denotes that multiple
acetylations (K9, K14, K18, K23, K27) on the tails of histone
H3 are present. H4-4ac denotes that multiple acetylations
(K8, K5, K12, K16) on the tails of histone H4 are present. For
our computational analysis, we do not consider engineered
nucleosomes that include subsets of acetylations (namely, not
all five acetylations on H3 or not all four acetylations on
H4) since building their mathematical products would result
in perfectly collinear (thus fully redundant, and therefore not
distinguishable) pair-wise interaction features (see Interaction-
modeling strategy for further clarification). Our analysis thus
excludes 22 nucleosomes from the initial nucleosome library
and considers a subset of n = 33 nucleosomes with q = 12
different chromatin modifications, resulting in the design ma-
trix L ∈ {0, 1} 33 × 12 . The (transposed) design matrix L with
the available combinatorial modifications is shown in the top
panel ((Step 1) of Figure 2 ). Note that the design pattern in
L does not follow any particular statistical experimental de-
sign guideline ( 50 ) but is driven by biological expertise about
common modification co-occurrences. 

For each modified nucleosome in MARCS, SNAP experi-
ments are provided in two experimental ‘label-swap’ repli-
cates of the nucleosome affinity purification process, a ‘for-
ward’ (F) and ‘reverse’ (R) nucleosome pull-down. Nucleo-
somes are immobilized on streptavidin beads and incubated
with nuclear extracts from HeLa S3 cells cultured either in iso-
topically light or heavy-labelled SILAC media. In the ‘forward’
experiments the heavy extracts are incubated with the modi-
fied and the light extracts with the unmodified nucleosome, in
the ‘reverse’ experiments the extracts are exchanged. Bound
proteins are eluted from the beads and identified and quan-
tified by mass spectrometry. For each SNAP experiment the
relative abundance of a given protein on the modified nucleo-
some is determined in relation to the unmodified nucleosome
by measuring the ratios between the heavy and the light pep-
tides (H / L ratios) identified for that particular protein ( 47 ).
The H / L ratios indicate binding preferences to the modified
or the unmodified nucleosomes and allow the unbiased iden-
tification of proteins that are either recruited or excluded by
the modification(s) present on the modified nucleosomes. In
addition, the SILAC enrichment ratios also indicate a relative
‘strength’ of the recruitment or exclusion of a given protein by
the modifications. In total, the MARCS dataset comprises the
binding behavior of p = 1915 proteins in the forward (F) and
reverse (R) experiments. For our analysis, we consider the pro-
tein measurement matrices P F , P R ∈ R 

33 ×1915 that correspond
to the subset of n = 33 nucleosomes, described above. 

Interaction modeling strategy 

We aim at predicting the binding profile of each protein cap-
tured in MARCS ( P i ) 1 ≤ i ≤ 1915 (either from the forward or re-
verse experiment) from the combinations of nucleosome mod-
ifications ( L j ) 1 ≤ j ≤ 12 . Given the binary design matrix L , the
baseline model of uncovering (joint) additive effects of the
modifications on a binding profile Y = P i ∈ R 

n , i = 1, …, p ,
is the linear model 

Y = β0 + 

q ∑ 

j=1 

β j L j + ε, (1)

https://github.com/marastadler/asteRIa.git
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Figure 1 . Lef t: T hree e x emplary columns of the design matrix L . Dark gra y bo x es indicate that a modification has been installed on the respectiv e 
nucleosome. Abo v e the design, the binding behavior of an exemplary protein to the modified nucleosomes is shown by color. The shade of red indicates 
the strength of the binding effect. Center: Illustration of two individual binding effects of chromatin modifications j and k on a protein P i (1 and 2). 
Synergistic combinatorial effect of the modifications j and k on protein P i (dark blue) compared to expected binding effect under independence of 
modification j and k (light blue) (3). Right: Model coefficients / estimated binding strength of protein P i for the three scenarios. Light blue bar in scenario 3 
shows the binding strength under independence of modification j and k , βj + βk . Dark blue shows the additional combinatorial effect θjk that goes 
be y ond additiv e combinatorial effects (created with BioR ender.com ). 
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where β0 ∈ R 

n is a protein-specific (constant) intercept, βj is
the effect of modification j on the binding profile Y = P i of
protein i , and ε models the technical and biological noise com-
ponent. In ( 61 ), a simplified version of this baseline model
was investigated through ‘feature effect estimates’ via pair-
wise comparisons of the enrichments of individual proteins on
nucleosomes differing by a single modification feature. This,
however, only allowed robust prediction of the effects of in-
dividual modifications or blocks of modifications and did not
provide any information on combinatorial effects. Here, we
extend the baseline model by including all pairwise interac-
tions between modifications. For each protein binding profile
Y = P i , i = 1, ..., p , the core model in asteRIa thus reads 

Y = β0 + 

q ∑ 

j=1 

β j L j + 

1 

2 

q ∑ 

j=1 

q ∑ 

k =1 

� jk L j L k + ε , (2)

where �jk models interaction effects between epigenetic read-
ers that cannot be captured by linear additive effects. Robustly
and reproducibly estimating non-zero entries in the interac-
tion matrix � from replicated data is at the heart of the as-
teRIa workflow. The sign of the interaction coefficients also
allows a characterization of epigenetic reader interplay. For
example, when 

ˆ � jk > 0 we interpret the two modifications j
and k to have a synergistic binding effect if both βj > 0 and
βk > 0 (see Figure 1 for illustration). 

To guarantee identifiability and interpretability of individ-
ual interaction models, we first need to ensure that the interac-
tion design matrix L j L k has no co-linear columns. In the con-
crete example of the MARCS data, we group modifications of
the complete design matrix to a set of n = 33 non-redundant
nucleosomes (see top panel (Step 1) of Figure 2 ). Secondly,
to enable estimation in the present underdetermined regime
( q ( q + 1) / 2 > n ) with q ( q + 1) / 2 = 78, we perform regu-
larized maximum-likelihood estimation with � 1 -norm (lasso)
penalization ( 64 ) on the linear and interaction coefficients,
respectively. Given the log-likelihood function of the model
l(β0 , β, �) = 

∥∥Y − β0 − Lβ − 1 
2 L �L 

T 
∥∥2 

2 , the (all-pairs) lasso
problem reads 

min β0 ,β, � l(β0 , β, �) + λ ‖ β‖ 1 + 

λ
2 ‖ �‖ 1 , (3) 

where λ > 0 is a tuning parameter and controls the sparsity 
levels of the coefficients β and �, respectively. To further ease 
model interpretability, we follow the statistical principle of hi- 
erarchy (also known as marginality or heredity) and allow the 
presence of an interaction in the model only if the associated 

linear (main) effects are in the model as well (see ( 53 ), and ref- 
erences therein). In mathematical terms, this so-called strong 
hierarchy principle can be expressed as 

ˆ � jk � = 0 ⇒ 

ˆ β j � = 0 and 

ˆ βk � = 0 , 

implying that interaction effects are only present if both lin- 
ear effects enter the model. This hierarchy can be achieved by 
adding a constraint on the interaction effects � j ∈ R 

q and a 
symmetry constraint on �. The corresponding optimization 

problem with hierarchical interactions thus reads 

min β, � l(β0 , β, �) + λ ‖ β‖ 1 + 

λ
2 ‖ �‖ 1 

s.t. � = �T , 
∥∥� j 

∥∥
1 ≤ | β j | . (4) 

To solve the non-convex optimization problem in ( 4 ), we fol- 
low Bien et al. ( 53 ) who proposed a convex relaxation of the 
problem and provide an efficient implementation in the cor- 
responding R package hierNet ( 65 ) (v1.9). In asteRIa , we 
use hierNet to model each protein binding profile Y = P i ,
i = 1, ..., p with hierarchical interactions. Apart from reduc- 
ing the number of spurious interaction effects, a major advan- 
tage of the strong hierarchy constraint is the so called ‘prac- 
tical sparsity’. The strong hierarchy constraint favors models 
that ‘reuse’ measured variables. In the context of the MARCS 
data, this becomes important when generating hypotheses for 
follow-up functional analysis (where experiments are complex 

and costly). Concretely, our models assumes that a protein or 
protein complex must have a domain capable of recognizing 
a particular chromatin modification. Thus, if there exists a re- 
sponse of a protein to an interaction effect between two modi- 
fications, a (possibly small) linear effect to both modifications 
is expected. 

file:BioRender.com
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Figure 2. Graphical representation of the asteRIa w orkflo w f or the robust detection of hierarchical interactions (created with BioR ender.com ). Step 1: 
Design matrix and measured binding behavior for a protein (two replicates F and R). Removal of observations with different signs in the replicates (sign 
consistency). Step 2: Hierarchical interaction modeling with default complementary pairs stability selection (CPSS) parameters. Comparison of selected 
features for each replicate (nested model consistency): The first example shows a protein prediction model that gets filtered out since the selected 
features from the f orw ard and re v erse replicate are neither identical nor nested. The second example shows a ‘consistent’ protein model where the 
selected features learned from the re v erse replicate is a nested subset of the features learned from the f orw ard replicate. Step 3: L east-squares refitting 
on a v eraged replicate data f or final prediction model building. T he intersection of tw o selected feature sets is used f or refitting. Models with adjusted R 

2 

< 0.2 are discarded. 
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Stability-based model selection for hierarchical 
interactions 

One of the core challenges in high-dimensional penalized re-
gression is determining a suitable regularization parameter
λ that trades off sparsity (i.e. interpretability) of the model
coefficients and out-of-sample predictive performance of the
model ( 66 ,67 ). Standard procedures for (hierarchical) inter-
action models include cross-validation ( 53 ) and Informa-
tion Criteria, including the Akaike (AIC) and the extended
Bayesian Information Criterion (BIC) ( 55 ). However, it has
been observed that, both in simulation and practice, cross-
validation and Information criteria tend to select more pre-
dictors (and interactions) than necessary ( 55 ). 

To address this shortcoming, we follow the principle of
stability ( 57 ) in asteRIa and introduce stability selection
( 58 ) for the identification of a reproducible set of predictive
features and interactions. Stability selection has been proven
useful across several scientific applications, ranging from net-
work learning ( 68 ,69 ) to data-driven partial differential equa-
tion identification ( 70 ,71 ). In the regression context, stability
selection repeatedly learns sparse regression models from sub-
samples of the data of fixed size (e.g. n s = � n / 2 � ), records
the frequency of all selected predictors across the models,
and selects the most frequent predictors to fit the final regres-
sion model. Here, we use a variant of stability selection, the
so-called complementary pairs stability selection (CPSS) ( 59 )
which draws B subsamples as complementary pairs {( A 2 h − 1 ,
A 2 h ): h = 1, ..., B }, with A 2 h − 1 ∩ A 2 h = ∅ of samples {1,
...n } of size � n / 2 � . Drawing complementary pairs is particu-
larly beneficial when dealing with unbalanced experimental
designs, as the resulting random splits ensure that individ-
ual subsamples are independent of each other. After apply-
ing a variable selection procedure S (e.g. using the first k pre-
dictors that enter the penalized model), each feature j in the
model gets an individual estimated selection probability ˆ π ( j) ,
given by 

ˆ π ( j) = 

1 

2 B 

2 B ∑ 

h =1 

1 { j∈ ̂ S (A h ) } , (5)

and the final selection set is given by ˆ S CPSS = { j : ˆ π ( j) ≥ πthr } ,
for a threshold πthr defining the minimum selection frequency.
In our workflow we use the corresponding R package stabs
( 72 ) (v0.6-4) that provides an efficient implementation of
CPSS. The CPSS procedure includes the following hyperpa-
rameters: The set of regularization parameters �, a threshold
πthr ∈ [0, 1], the number of predictors k that first enter the
sparse model, and the number of complementary splits B . In
asteRIa , we set as default parameters � to be the internal
λ-path in Bien and Tibshirani ( 65 ), πthr = 0.5, k = 12 and
B = 50, resulting in 100 subsamples. For the MARCS data,
this means that chromatin modifications (as main or interac-
tion effects) are part of the pairwise interaction model 2 for
protein binding profile i , Y = P i , if it is among the k = 12
selected modifications in at least 50 subsamples. While these
default values may need to be tuned in other scenarios, we
verified in a realistic semi-synthetic simulation scenario (see
Supplementary information and Supplementary Figures S1
and S2 for details) that hierarchical interaction modeling with
stability selection greatly outperforms cross-validation, partic-
ularly in terms of false positive rate. 
Replicate consistency 

Biological datasets typically include replicated measurements 
(replicates) to probe different sources of variability in the un- 
derlying experimental procedure or study object ( 73 ). The 
MARCS dataset, for example, comprises two technical repli- 
cates of the SILAC-based protein binding affinities. Replicate 
consistency, i.e. assessing how consistent two or multiple repli- 
cated measurements are in terms of direction or size, is an 

important property to evaluate experimental protocols and 

downstream analysis quality (see, e.g. ( 74 ) for a discussion in 

the context of RNA sequencing data). 
In asteRIa , we propose and include two replicate- 

consistency mechanisms: (i) data sign-consistency and (ii) 
nested model consistency. While there are alternative ways of 
performing filtering, data sign-consistency can be considered 

as a data filtering step that ensures that replicated measure- 
ments agree on the direction, i.e., the sign of the measured 

unit, and removes experiments where sign consistency does 
not hold. In MARCS, we perform data sign consistency for 
each protein P i separately using the forward and reverse repli- 
cates (see Figure 2 , Step 1) and remove nucleosomes (experi- 
ments) where measured protein binding affinities disagree in 

sign. Although this reduction in sample size (for each protein 

n i ≤ n samples are available) decreases the power for subse- 
quent hierarchical interaction modeling, the filtering increases 
the chance of estimating pairs of consistent interaction mod- 
els. In a second post-hoc step, nested model consistency fur- 
ther ensures that only pairs of consistent interaction models 
are considered for downstream analysis. Nested model con- 
sistency deems estimated interaction models valid only if they 
comprise the same set of features (main and interaction co- 
efficients) across replicates or one model comprises a nested 

subset of main and interaction effects of the other model (see 
Figure 2 , Step 2, for illustration). 

The asteRIa workflow 

The asteRIa workflow incorporates the described model 
and design principles as illustrated in Figure 2 on the MARCS 
data. asteRIa comprises three main steps: Step (1) uses sign 

consistency to filter pairs of forward and reverse experiments 
for each protein ( P i ) 1 ≤ i ≤ p = 1915 . Step (2) comprises model es- 
timation using the hierarchical interaction model, CPSS-based 

model selection, and the post-hoc nested model consistency fil- 
ter. Step (3) performs least-squares ‘refitting’ to estimate main 

and interaction effect sizes on the selected model coefficients 
from averaged replicate data. The resulting signed model coef- 
ficients are then used for functional categorization and down- 
stream analysis. 

On the MARCS data, the experiment filtering step (1) re- 
moves on average 11 experiments across all proteins. In step 

(2), using the internal λ-path in Bien and Tibshirani ( 65 ), and 

CPSS parameters πthr = 0.5, k = 12, and B = 50, aste- 
RIa learns p consistent = 1368 fully consistent regression mod- 
els across forward and reverse replicates, as well as p nested = 

488 models that obey the nested model consistency criterion.
Only p remove = 59 models are inconsistent across replicates.
Among all p c = 1856 consistent models, asteRIa identifies 
58 models that include robust interaction coefficients. The re- 
fitting estimation process in step (3) uses the averaged binding 
affinities as outcome and performs least-squares refitting on 

the intersection of the per-replicate selected features. The refit 
coefficients are the final effect sizes. For downstream analysis,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae361#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae361#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae361#supplementary-data
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steRIa removes poorly-performing prediction models with
djusted R 

2 below 0.2 (three out of 58). 

esults 

nhanced predictive performance of protein 

inding through chromatin modification interaction 

e first quantify the overall predictive performance of aste-
Ia models for all proteins included in the MARCS dataset
nd then assess the degree to which hierarchical interaction
odeling improves overall predictive performance of pro-

ein binding affinities. For a majority of the p = 1915 pro-
ein binding profiles, asteRIa deems main effects models
i.e., the baseline linear model in 1 ) to be sufficient for ro-
ust prediction. For more than 200 proteins, main effects
odels achieve adjusted R 

2 > 0.8, and for more than 500
roteins, main effects models achieve adjusted R 

2 > 0.5 (see
upplementary Figure S4 for a list of top protein binding mod-
ls and associated coefficients). The top-six protein binding
odels achieve near-perfect predictive performance and in-

lude the protein ING5, a dimeric, bivalent reader of histone
3K4 me3 ( 75 ), with an R 

2 = 0.99, the methyl–lysine histone-
inding protein L3MBTL3 ( R 

2 = 0.99), SMARCC2 ( R 

2 =
.99) which is part of the chromatin remodeling complex
NF / SWI, the histone acetyltransferase KAT7 ( R 

2 = 0.98), the
AF2 protein ( R 

2 = 0.98), and the histone lysine demethylase
DM2B ( R 

2 = 0.98). 
However, asteRIa also identifies a set of p ie = 55 mod-

ls that comprise stable interaction effects among modifica-
ions with enhanced predictive performance. This provides
tatistical evidence that cooperative effects between chromatin
odifications may play a crucial role in the binding of spe-

ific reader proteins and thus in controlling chromatin func-
ion. Figure 3 A shows the modification design matrix (left
anel) and binding profiles (both the ‘forward’ and the ‘re-
erse’ experiments) of the 55 proteins explained by interac-
ion models. The proteins are sorted by data density (i.e., in
erms of number of experiments removed due to sign consis-
ency filtering step (1) in asteRIa , Figure 3 A, gray boxes).
igure 3 C shows the corresponding predictive performance
f the models in terms of adjusted R 

2 both for main effects
light blue) and interaction models (dark blue), respectively.

hile the light blue segment denotes the proportion of vari-
nce explained by all selected main effects combined, the dark
lue portion represents the additional explained variance at-
ributed solely to one interaction. We observe that the inclu-
ion of robust interaction among modifications can boost the
erformance of up to 0.5 (e.g., for proteins CDKAL1 and
EX11B). For others, such as, e.g., RFC3, the binding behav-
or can only be sufficiently described by taking into account
nteraction effects. While the improvement is less dramatic for
roteins with well-performing main effects models, asteRIa
till provides evidence for stable interactions among modifi-
ations. Figure 3 B illustrates the stabilities (inclusion proba-
ilities) ˆ π of all model coefficients for the protein CBX8. On
oth forward and reverse experimental data, asteRIa esti-
ates a high selection probability ( ≈0.7) of an interaction ef-

ect between DNA methylation m5C and H3K9me3 while all
ther interaction effects emit a low inclusion probability. For
etailed model inspection, we provide similar stability plots
or all other proteins in the Supplementary Material . To illus-
rate the improvement in binding prediction, Figure 3 C (right
panel) shows predicted vs. observed binding profiles for the
protein RNF2. Comparison of the fits of both the main ef-
fect (light gray) and interaction model (dark blue) visually
and quantitatively ( R 

2 = 0.76 versus R 

2 = 0.9) confirm the
enhanced predictive performance of the interaction model. 

Modes of chromatin modification interactions 

To categorize the interaction effects uncovered in asteRIa ,
we establish potential modes of chromatin modification in-
teractions. This is achieved by contrasting the effects of indi-
vidual chromatin modifications (modification j and k ) on the
binding behavior of specific proteins, represented by the lin-
ear model coefficients ˆ βj and 

ˆ βk with the combinatorial effects
identified during our analysis, represented by ˆ �j,k for the cor-
responding pair (see Figure 4 A and B). We define three major
modes: synergistic combinatorial behavior, antagonistic com-
binatorial behavior, and conflicting combinatorial behavior.
We further divide these into two sub-modes each of which
describes the direction of the combinatorial effect, either to-
wards binding (b, �j , k > 0) or towards repulsion (r, �j , k <

0). The direction and strength of the combinatorial effect is
color-coded in Figure 4 B. 

The ‘Synergy b+b+b’ category (shown in blue in Figure 4 )
includes proteins that bind to two modifications individually
and exhibit particularly strong binding, i.e., stronger than the
sum of the two individual effects when both modifications are
present. For example, we uncover that UHRF1 (Figure 4 B, 1st
quadrant) responds in a synergistic way to an interaction ef-
fect between DNA methylation m5C and H3K9me3. UHRF1
is a RING-type E3 ubiquitin ligase that plays an essential
role in DNA methylation by mediating the recruitment of the
maintenance DNA methyltransferase DNMT1 ( 76 ). UHRF1
is known to bind to H3K9me3 via a tandem tudor domain
and to recognize hemi-methylated DNA via a SRA domain.
Our analysis therefore validates previously known binding be-
haviors and, additionally, unveils that there is a true syner-
gistic effect between H3K9me3 and DNA methylation in the
recruitment of UHRF1. 

For the maintenance DNA methyltransferase DNMT1 ( 77 ),
we identify an individual binding effect to H3K9me3 and a
modest individual binding to DNA methylation. Furthermore,
we also identify an interaction effect between DNA methyla-
tion m5C and H3K9me3. In this case, however, the addition
of DNA methylation m5C leads to a reduction in binding of
DNMT1 to H3K9me3. We define this behavior as ‘Antag-
onism b+b+r’ or preferential binding (pink category in Fig-
ure 4 ). UHRF1 and DNMT1 were found to interact with
each other (see references in ( 76 )), and binding of DNMT1
to H3K9me3 is likely mediated through UHRF1 (see above).
Both UHRF1 and DNMT1 are flexible multi-domain proteins,
that consist of several different domains and can change their
shape or structure. They are involved in a complex network
of interactions, both within themselves (intra-molecular) and
with each other (inter-molecular). This network helps con-
trol their function through allosteric regulation events in-
volving conformational rearrangements of autoinhibitory do-
mains (changes in the structure of certain domains within
the proteins) in both molecules ( 76 ,78 ). The antagonistic ef-
fect of DNA methylation on the recruitment of DNMT1 to
H3K9me3 indicates that while symmetric DNA methylation
stimulates binding of UHRF1 to the doubly modified nucle-
osomes (see above), it disrupts the interaction with DNMT1.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae361#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae361#supplementary-data
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Figure 3. ( A ) Observed protein binding profiles (forward and reverse experiment) for the p ie = 55 proteins for which interactions between modifications 
ha v e been detected. Proteins are arranged from left to right based on data density (number of non-zero measurements), with proteins with the highest 
dat a densit y being on the left. ( B ) St abilit y plots for CBX8 of the hierarchical interaction model with complement ary pairs st abilit y selection (CPSS). 
Vertical lines show the threshold for the selection probability threshold πthr = 0.5. Stability plots for all proteins are provided in Extended (B). ( C ) 
A djusted R 

2 f or all p ie = 55 proteins of the main effect (light blue) and interaction model (dark blue) (lef t panel). Scat ter plot of observed vs. predicted 
v alues f or the protein RNF2 (right panel). Scatter plots f or all proteins are pro vided in Extended (C). 
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This suggests a mechanism within DNMT1 that senses sym-
metrically methylated DNA (the end product of the DNA
methylation reaction) and triggers the release from chromatin
upon completion of its enzymatic reaction. Apart from the cat-
alytic domain of DNMT1, which is responsible for the main
activity of the protein, this observed behavior could involve
a CXXC domain that has a special ability to bind to cer-
tain DNA sequences, specifically sequences that contain un-
methylated CpG nucleotides, and could contribute to sensing
the DNA methylation status. 

Two proteins, MAD2L2 and ACTL8, exhibit a similar be-
havior with respect to DNA methylation m5C and H3K9me3.
However, for these proteins, DNA methylation m5C exhibits
a slight repulsive effect on its own. These proteins belong to
the category ‘Conflict, dominated by repulsion b+r+r’ (grey
category in Figure 4 ). 

Proteins in the ‘Conflict, dominated by binding b+r+b’ cat-
egory (yellow category in Figure 4 ) are repelled by one mod-
ification and bind to another modification if they are consid-
ered individually. In combination, these modifications show
a stronger binding effect on the protein than expected un-
der additivity. The chromodomain-containing protein CBX8,
which is a component of the polycomb repressive complex 1
(PRC1) ( 79 ), also falls into this category. Our analysis reveals
that DNA methylation m5C enhances the binding of CBX8
to H3K27me3, while DNA methylation m5C itself exhibits
a slight repulsive effect on CBX8. The association of CBX8
with both DNA and H3K27me3 has been investigated in Con- 
nelly et al. ( 80 ). Here, the authors identified a dual interaction 

mechanism for the CBX8 chromodomain, where the engage- 
ment of both DNA and H3K27me3 mediates the association 

of CBX8 with chromatin. Similar binding behaviors are ob- 
served for the PRC1 subunits RNF2 and RING1. However,
in contrast to CBX8, RNF2, and RING1 are shared among 
multiple complexes, including the canonical polycomb repres- 
sive complex 1 (PCR1) and various non-canonical versions of 
the complex (ncPRC) ( 79 ). The nucleosome binding profiles 
of these shared subunits reflect a superposition of the bind- 
ing profiles of all the complexes they are associated with. This 
introduces additional complexity to the interpretation of com- 
binatorial effects. 

Chromatin modification interaction in the 

recruitment of proteins and complexes 

Our analysis suggests that proteins within the same protein 

complex tend to exhibit similar binding patterns not only to 

individual chromatin modifications, but also with regards to 

interaction effects of modifications. 
Our analysis reveals seven distinct combinations of chro- 

matin modifications demonstrating a robust combinatorial ef- 
fect on the shortlisted 55 proteins (see Figure 5 A). While six 

of the discovered interactions affect multiple proteins, H2A.Z 

incorporation appears to interact solely with H4K20me2,
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Figure 4. ( A ) Six combinations of combinatorial interaction effects of two modifications on the binding behavior of chromatin-associated proteins 
(created with BioRender.com ). The top row illustrates what would be expected under a purely additive dependence of the effects in a scenario where a 
protein shows individual binding effects to two distinct chromatin modifications (overall additive effect is the sum of both individual binding effects, b + 

b) (left) and where a protein is repelled by two distinct chromatin modifications (right). The rows below shows different modes of deviations due to 
(directional) interaction effects. ( B ) Scatter plot of protein binding effects with unspecific linear effects βj and βk on the x - and y -axis and corresponding 
interaction effect �j , k represented by color. For some example proteins detailed information is provided. 
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Figure 5. ( A ) Clustered representation of robustly estimated linear and interaction coefficients for p I = 55 proteins for which interaction coefficients 
ha v e been identified. P roteins belonging to notable protein comple x es are highlighted. ( B ) Selection probabilities ˆ π for all proteins in the TFIID and PRC1 
comple x es. Selection probability plots for all protein complexes are provided in Extended (B). ( C ) Sankey diagram of mean selection probabilities ( > 0.2) 
for interaction effects for proteins within a complex. 
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influencing only the protein FBXO38. Given FBXO38’s no-
tably low data density (see Figure 3 A, last column), we did not
investigate this interaction further. Notably, TAF10 and TBP,
which are both part of the Transcription Factor II D (TFIID)
complex, respond similarly to the combination of H4K20me2
and H3K4me3. Similarly, members of the PRC1 complex, such
as CBX8, RNF2, RING1, CBX2, and PCGF2, are found to re-
spond to the combination of H3K27me3 and DNA methyla-
tion m5C (Figure 5 A). In addition to examining the effect sizes
obtained from asteRIa , our approach allows for the inter-
pretation of protein-specific selection probabilities for each in-
dividual chromatin modification and each interaction between
chromatin modification combinations. The selection proba-
bility indicates how stable a feature is in predicting a proteins
binding profile across subsamples. 

We observe that proteins belonging to the same complex
show similar modification selection probability patterns (see
Figure 5 B for an illustration using the TFIID and PRC1 com-
plex, respectively). These similarities in selection probability
patterns justify the exploration of mean selection probabilities
over proteins within the same complexes, leading to a more
general analysis of how entire complexes respond to interac- 
tion effects between chromatin modifications (see Figure 5 C).

One major discovery is that the Ada-Two-A-containing 
(A T A C), Spt-Ada-Gcn5 acetyltransferase (SA GA), and TFIID 

complexes exhibit multiple combinations of co-operative 
chromatin modifications that stimulate their binding (Fig- 
ure 5 C). Notably, our analysis reveals several interactions 
where H4K20me2 is involved, particularly in conjunction 

with H3K4me3, H3-5ac and H4-4ac. 
SAGA is a highly conserved transcriptional co-activator 

with four distinct functional modules. Its enzymatic functions,
including histone acetylation and deubiquitination modules,
play crucial roles in chromatin structure and gene expres- 
sion ( 81 ). The A T AC complex, which shares subunits with 

SAGA, also exhibits histone acetyltransferase activity ( 81 ).
TFIID, another essential transcription factor, is also a histone 
acetyltransferase, but additionally recognizes core promoter 
sequences, recruits the transcription pre-initiation complex,
and interacts with SAGA subunits. TFIID contributes to tran- 
scription initiation and gene expression by collaborating with 

cofactors, gene-specific regulators, and chromatin modifica- 
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ions associated with active genomic regions ( 82 ). As such
 T A C, SA GA and TFIID are all protein complexes that pos-

ess activities that are intricately involved in the process of
ranscription initiation and that thereby contribute to the reg-
lation of chromatin structure and gene expression. 
H4K20me2 is a pervasive modification found on 80% of

ll histone H4 proteins, marking nearly every nucleosome
hroughout the genome. Since newly incorporated histone H4
s unmodified at K20 (H4K20me0), the H4K20me2 modifica-
ion serves as a marker of not yet replicated ‘old’ chromatin,
hile H4K20me0 marks newly replicated chromatin during

he cell cycle. This modification is used by the DNA repair
achinery to determine between different DNA repair path-
ays in different cell cycle phases ( 83 ). The synergistic effect
etween H4K20me2 and active modifications in recruiting
rotein complexes associated with transcriptional initiation
s therefore surprising and hints to a so far unknown possi-
le function of this modification in the context of promoter
egulation. 

In contrast, members of the repressive PRC1 and HUSH
omplexes show a response to an interaction effect between
3K27me3 and DNA methylation m5C and an interac-

ion effect between DNA methylation m5C and H3K9me3,
espectively. 

The human silencing hub (HUSH) complex is well-
stablished for its role in transcriptionally repressing long in-
erspersed element-1 retrotransposons (L1s) and retroviruses
hrough the modification of histone H3 lysine 9 trimethylation
H3K9me3) ( 84 ). Our analysis not only confirms H3K9me3
o be an important binding determinant, in line with previous
ndings, but it also reveals the involvement of DNA methyla-
ion m5C in this regulatory process. Furthermore, our analysis
ncovers a previously unreported synergistic interaction be-
ween these two modifications, indicating a more complex in-
erplay between H3K9me3 and DNA methylation m5C than
reviously known. 
As a last example, we find that for several members of the

RC1 complex, there is an increased likelihood of respond-
ng to an interaction between H3K27me3 and DNA methyla-
ion m5C, as previously discussed for CBX8 and the subunits
NF2 and RING1. The PRC1 complex is known to be capable
f recognizing H3K27me3 and facilitating transcriptional re-
ression ( 79 ), while there are no known associations between
he PRC1 complex and methylated DNA. Our results sug-
est a distinct behavior of DNA methylation and H3K27me3
n regulating the recruitment of the PRC1 complex, with
NA methylation m5C having minimal or even a slightly

epulsive effect and H3K27me3 having a binding effect on
heir own. However, in combination, our analysis reveals an
nteraction between these two modifications that enhances
inding. 

alidation of the effects of H3K27me3 and DNA 

ethylation on the binding of CBX8 with ChIP-seq 

nd WGBS data 

o validate and compare our findings with orthogonal data
ources, we leverage publicly accessible ChIP-seq and WGBS
Whole Genome Bisulfite Sequencing) datasets from the EN-
ODE project ( https://www.encodeproject.org ) ( 40 ,85–87 )
nd ChIP-Atlas ( https://chip-atlas.org ) ( 88–90 ). Specifically,
e design a validation workflow that compares partial cor-
relations from modification co-occurrence patterns with as-
teRIa ’s linear and interaction coefficients. 

Given the unique design of the MARCS data, our ability
to independently validate our discoveries hinges on the avail-
ability of ChIP-seq / WGBS experiments that encompass chro-
matin modifications for which we have identified interaction
effects and are available in the same cell type. After a compre-
hensive search, we have identified only the trio of H3K27me3
(ChIP-seq), methylated DNA (WGBS), and the CBX8 protein
(ChIP-seq) as the only adequate data set. 

As previously described, asteRIa reveals a modest inter-
action effect between H3K27me3 and methylated DNA con-
cerning the binding of CBX8 in the nucleosome binding data.
This interaction effect is categorized as ’conflict, dominated
by binding b+r+b’ (see Figure 4 A). We detect a slight repul-
sive effect of methylated DNA on CBX8 and a recruitment
to H3K27me3. Notably, we identify an additional positive in-
teraction effect on CBX8 binding when methylated DNA and
H3K27me3 co-occur. Consequently, our results indicate a sub-
tle enhancing effect on CBX8 binding when methylated DNA
co-occurs with H3K27me3 (see Figure 4 B, lower right corner),
resulting in improved predictive accuracy (see Figure 3 C). 

For this combination, we found matching ChIP-seq and
WGBS experiments in A549 (human lung carcinoma epithe-
lial cells), K562 (human myelogenous leukemia cells), and
H1 cells (human embryonic stem cells) on ENCODE. Addi-
tionally, we use mES cell (mouse embryonic stem cells) data
from ChIP-Atlas. For these four cell types, we perform the
following analysis workflow: (i) We calculate averages of
WGBS data and averages of fold-change values to a refer-
ence genome in the ChIP-seq data within consecutive genome
bins of 1000 base pairs (bp) with no spacing between bins.
We accomplish this by utilizing the ‘bins’ mode within deep-
tools on the Galaxy web platform ( 91 ), and we ensure the
exclusion of blacklisted regions (hg38 for A549, K562 and
H1 cells and mm9 for mES cells) during these calculations.
(ii) We then conduct a genome-wide analysis of the behav-
ior of H3K27me3 and methylated DNA in CBX8 peak re-
gions. We observe increased H3K27me3 fold-changes and si-
multaneously decreased DNA methylation values (decreased
in K562, A549 and mES; unaffected in H1) in CBX8-bound
regions across all cell types under investigation (see Figure 6 A
and Supplementary Figure S3 ). This substantiates the (lin-
ear) dependencies identified in the asteRIa workflow. (iii)
W e compute Kendall’ s partial correlations ( 92 ) (package ver-
sion v1.1) of the genome-wide co-occurrence patterns be-
tween CBX8, methylated DNA, H3K27me3, and the ‘interac-
tion’ between methylated DNA and H3K27me3 (i.e. the prod-
uct of WGBS and H3K23me3 ChIP-seq values, denoted by
H3K27me3:WGBS). We use this rank-based correlation coef-
ficient to account for the fact that WGBS and ChIP-seq data
are measured and interpreted on different scales. The resulting
partial correlations patterns are shown in Figure 6 B. The in-
terpretation of the partial correlation coefficients aligns with
the coefficients in asteRIa ’s interaction model. Specifically,
the first column of each partial correlation matrix (CBX8)
can be understood as follows. The partial correlation between
CBX8 and H3K27me3, as well as between CBX8 and the
WGBS abundances, reflects the individual (linear) effects of
these modifications on CBX8 binding (after conditioning on
all other effects). We observe that they are (moderately) posi-
tive for CBX8 and H3K27me3 across all cell types, and nega-

https://www.encodeproject.org
https://chip-atlas.org
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae361#supplementary-data
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Figure 6. ( A ) Heatmap for score distributions across CBX8 IDR (Irreproducible Discovery Rate) thresholded peaks in K562 cells created with deeptools 
on the Galaxy web platform. ( B ) Kendall’s partial correlation between CBX8, H3K27me3, WGBS data and the product between H3K27me3 and WGBS 
for A549, K562, H1 and mES cells. The first column in each partial correlation plot recapitulates the main and interaction effects, derived by asteRIa . 
For ENCODE and ChIP-Atlas identifier see caption of Supplementary Figure S3 . 
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tive for CBX8 and WGBS (b+r pattern). Furthermore, the par-
tial correlation between CBX8 and the product of WGBS and
H3K27me3 ChIP-seq values represents the additional combi-
natorial interaction effect, complementing the individual ef-
fects. This partial correlation is positive across all cell types,
leading to the b+r+b pattern observed in asteRIa , Further-
more, it tends to be larger in magnitude than the negative par-
tial correlation between the CBX8 and WGBS data, which
also aligns with the asteRIa results on the CBX8 nucleo-
some binding data. 

In summary, this analysis provides evidence that asteRIa ’s
estimated main and interaction effects can be recapitulated us-
ing other high-throughput experimental data. Moreover, this
type of analysis provides a recipe for further validation and
invites to perform new ChIP-Seq experiments for other candi-
date proteins that show evidence of combinatorial interaction
effects. 

Discussion 

While many functions and readers of individual chromatin
modifications have been described ( 15 ,16 ), the understanding
of how multiple modifications cooperate in recruiting epige-
netic regulators has remained largely elusive. To gain insights
into these cooperative effects, we have introduced asteRIa ,
a workflow for the robust statistical detection of interaction
effects, and applied the workflow to the recently published
MARCS nucleosome binding dataset. The MARCS data com-
prise a library of semi-synthetic di-nucleosomes followed by
nucleosome affinity purification with high-throughput quan-
titative proteomics measurements. Despite MARCS’ unique
approach to probe the binding behavior of proteins to com- 
binatorial chromatin modifications at a large scale, the im- 
balanced design matrix and the low sample size pose con- 
siderable challenges for consistent statistical interaction esti- 
mation. asteRIa presents a first step toward identifying ro- 
bust combinatorial effects between chromatin modifications 
and is tailored specifically to address these challenges. At its 
core, asteRIa combines the lasso for hierarchical interac- 
tions ( 53 ) with the complementary pairs stability selection 

(CPSS) concept ( 59 ), and incorporates replicate consistency 
mechanisms to minimize the identification of spurious inter- 
action effects. We also confirm in a realistic synthetic sim- 
ulation scenario that combining the interaction model with 

CPSS reduces the number of spurious effects considerably 
and leads to more robust results compared to the standard 

cross-validation procedure (see Supplementary information 

and Supplementary Figures S1 and S2 ). 
By employing asteRIa in conjunction with the MARCS 

dataset, our study provides the first quantitative framework 

for the identification of cooperative effects of chromatin mod- 
ifications on protein binding. We identify a list of 55 epige- 
netic reader candidates that likely respond to combinatorial 
modification effects. For the set of 55 proteins we confirmed 

that interactions enhance predictive performance of protein 

binding. 
To evaluate the validity of asteRIa ’s data consistency 

checks, we performed a sensitivity analysis, comparing aste- 
RIa ’s sign-consistency checks to distance-based consistency 
filtering and no data filtering. Our analysis demonstrates that 
requiring data sign-consistency results in the largest number 
of replicate consistent models and gives the largest set of ro- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae361#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae361#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae361#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae361#supplementary-data
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ustly identified proteins responding to chromatin modifica-
ion interactions (see Supplementary Figure S5 ). 

For the 55 proteins identified, we observed consistent re-
ponses to these combinations across multiple proteins within
he same protein complex, further substantiating the robust-
ess of our findings. The derived candidate set also allowed
or a quantitative categorization of different modes of poten-
ial chromatin modification interactions. 

While our analysis is naturally limited to combinations of
hromatin modifications that co-occur in at least one MARCS
xperiment, we were able to both recapitulate established ef-
ects of chromatin modifications on protein binding behav-
or and discover novel interaction effects between chromatin
odifications, potentially promising candidates for future

unctional analyses. An intriguing finding of our analysis is the
iscovery of several combinations of cooperative chromatin
odifications that elicit responses of the A T A C, SA GA and
FIID complexes. In particular, we identified several inter-
ctions involving the H4K20me2 modification, especially in
ombination with H3K4me3, H3-5ac, and H4-4ac. Another
ntriguing finding from our analysis is the similar binding pro-
le observed for the proteins DNMT1, MAD2L2 and ACTL8
 all exhibiting a repulsive combinatorial effect in response
o DNA methylation m5c and H3K9me3. The function of
CTL8 has not been extensively studied. However, its anal-
gous behavior to MAD2L2 and especially DNMT1 provides
n initial hint to a potential function of ACTL8. 

We demonstrated the generalizability of our findings be-
ond a specific cell type or experimental setup by compar-
ng the interaction effect of H3K27me3 and methylated DNA
n CBX8, as identified by asteRIa , using publicly available
hIP-seq and WGBS data from K562, A549, H1 and mES
ells sourced from ENCODE and ChIP-Atlas. Our analysis
evealed that, even with the modest improvement in predic-
ive accuracy observed for CBX8 when considering the iden-
ified interaction effect between H3K27me3 and methylated
NA, similar patterns are consistently observed in ChIP-seq

nd WGBS experiments across these diverse cell types. 
However, it is important to note that the majority of combi-

atorial chromatin modification interaction effects identified
y asteRIa , particularly those characterized by strong inter-
ction effect sizes, are not present in publicly available ChIP-
eq datasets. Consequently, we posit that our study serves as
 first unbiased attempt to identify chromatin regulators that
espond to more than one modification and thereby act as a
ypothesis generator, suggesting specific combinations of pro-
eins and chromatin modifications worthy of further investi-
ation in future biological experiments. In particular, we rec-
mmend focusing on proteins that exhibit relatively poor pre-
ictive accuracy when considering individual chromatin mod-

fication effects alone. For instance, proteins like RFC2, RFC3,
FC4 and RFC5 show a substantial enhancement in predic-

ive accuracy when considering the identified interaction effect
etween H4K20me2 and H3K4me3. 
Moreover, asteRIa functions as a versatile tool that can

e readily updated whenever new nucleosome affinity purifi-
ation experiments become available. As tools are developed
o conduct a greater number of experiments with additional
ombinations of modifications, our workflow can be conve-
iently extended to explore more and higher-order interac-
ion effects between chromatin modifications, allowing a more
omprehensive understanding of the combinatorial complex-
ty of chromatin modifications. 
Even though our statistical workflow has been specifically
designed and optimized for the MARCS dataset, its methodol-
ogy and approach can be broadly applied in scenarios where
robust assessment of hierarchical interactions is required, par-
ticularly in data-scarce regimes with high levels of noise. 

In conclusion, our study provides compelling evidence that
large-scale SILAC nucleosome affinity purification data, when
combined with asteRIa , is a potent resource for generating
hypotheses related to epigenetic reader candidates. 

Data availability 

The asteRIa workflow, the processed data, and the code
for reproducing all figures and results are available at https://
figshare.com/ articles/ software/ asteRIa/ 25003103 and (partly,
without large files) at https:// github.com/ marastadler/ asteRIa.
git . The MARCS data is available at https://marcs.helmholtz-
munich.de . Mass spectrometry data for MARCS was submit-
ted to the PRIDE database ( https:// www.ebi.ac.uk/ pride/ ) (ac-
cession number: PXD018966). 
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Supplementary Data are available at NAR Online. 
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