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Multimodal techniques and strategies for chemical and 
metabolic imaging at the single-cell level
Ajay Kesharwani1,2 and Vipul Gujrati1,2

Single-cell chemical and metabolic imaging technologies 
provide unprecedented insights into individual cell dynamics, 
advancing our understanding of cellular processes, molecular 
interactions, and metabolic activities. Advances in 
fluorescence, Raman, optoacoustic (photoacoustic), or mass 
spectrometry methods have paved the way to characterize 
metabolites, signaling molecules, and other moieties within 
individual cells. These modalities can also lead to single-cell 
imaging capabilities by targeting endogenous cell contrast or 
by employing exogenous contrast generation techniques, 
including contrast agents that target specific cell structure or 
function. In this review, we present key developments, 
summarize recent applications in single-cell interrogation and 
imaging, and illustrate their advantages, limitations, and 
outlook.
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Introduction
Single-cell imaging (SCI) is critical in biological sciences and 
aims to increase our understanding of cell development, 
function, aging, and disease progression. Optical microscopy 
has been the classical approach to visualizing single cells, 
and when aided by fluorescent proteins or targeted agents 
with specificity to cellular structures and functions, it can 

enable the study of intricate cellular processes and cellular 
dysregulation throughout the course of pathological condi-
tions and responses to therapeutic interventions. Different 
optical methods are considered for SCI, including fluores-
cence imaging, optoacoustic (OA) (photoacoustic) imaging, 
Raman spectroscopic imaging, and mass spectroscopy ima-
ging (MSI). With appropriate implementation, such 
methods can visualize individual cells or reach abilities to 
resolve the distribution of specific molecules within cells 
and the cell microenvironment [1]. With different ad-
vantages, disadvantages, and performance characteristics, 
careful selection of one or more modalities in hybrid mode is 
required depending on the application considered.

Critical differentiating factors of the technology em-
ployed relate to the resolution and sensitivity achieved 
and to whether the method operates with the use of 
external labels (e.g. fluorescent agents), or whether it 
exploits an intrinsic contrast mechanism based on the 
integration of the interrogating energy with an en-
dogenous cellular moiety, that is, label-free operation. 
Imaging performance may also depend on the intricacies 
of biological sample preparation, the contrast-to-back-
ground ratio, and the signal-to-noise ratio achieved. 
When using labels, imaging results also depend on the 
physicochemical and biodistribution characteristics of 
the label selected. Additional factors to consider for se-
lecting a technique for SCI include the compatibility of 
the selected SCI approach and probes with living cells, 
acquisition times required and throughput, the com-
plexity of sample preparation, or the necessity to employ 
multimodal operation that integrates different imaging 
techniques to yield a more complete information profile 
[2]. In this review, we highlight state-of-the-art SCI 
techniques and discuss their applications, advantages, 
limitations, and outlook (Figure 1).

Fluorescence microscopy
Conventional phase-contrast microscopy enhances the con-
trast of colorless and transparent cells and specimens by 
exploiting differences in refractive index in different parts of 
the specimen, thus allowing visualization of cells, their mi-
gration, cell division, and other such cellular functions. 
However, phase-contrast microscopy is limited by a lack of 
molecular specificity and, therefore, cannot visualize specific 
chemical and metabolic processes within single cells. For 
molecular-level imaging applications, fluorescence micro-
scopy is widely exploited using fluorescent proteins or 
probes that selectively bind to specific targets. Because of its 
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submicrometer resolution, fluorescence microscopy is suited 
for single-cell-level observation of cellular processes, meta-
bolic activity, and functional characteristics in real time. 
Common applications of fluorescence SCI include the 
analyses of the spatial distribution, concentrations, and dy-
namics of cellular components such as DNA, RNA, pro-
teins, lipids, ions, and metabolites [3–6]. Various genetically 
employed fluorescent proteins or exogenously administered 
fluorescent agents based on antibody conjugates, ion-sensi-
tive probes, and metabolite-specific probes are used in 
biological and medical research [7–11]. The choice of ima-
ging probe depends on the user’s requirements, as imaging 
probes vary in their target specificities, multiplexing cap-
abilities, in vitro and in vivo compatibilities, and suitability 
for dynamic imaging. 

In addition to tracking fluorescent intensities, Förster 
resonance energy transfer or fluorescence resonance 
energy transfer (FRET) [12] has been developed for 
sensing biochemical activity. FRET exploits the transfer 
of light energy from a donor fluorophore, in a certain 
wavelength range, to an acceptor fluorophore that emits 
at a shifted longer wavelength range. Energy transfer 
occurs within a 1- to 10-nanometer radius through di-
pole–dipole coupling. Another fluorescence-based tech-
nique is fluorescence recovery after photobleaching, 
which allows for studying protein dynamics in individual 
cells by selectively bleaching a small region using a high- 

intensity laser pulse [13]. The recovery of fluorescence 
intensity in the bleached region occurs over time due to 
the diffusion or movement of unbleached fluorescent 
molecules from the surrounding areas. This fluorescence 
recovery allows the visualization of molecular dynamics 
and processes (e.g. turnover, mobility, interactions, and 
recovery kinetics) within the cells. 

Fluorescence lifetime imaging microscopy is another 
method developed to sample intracellular processes. It 
senses changes in the temporal emission profile of 
fluorescence molecules due to the molecular environ-
ment where the fluorochrome is immersed. In particular, 
the technique measures the duration for which a fluor-
escent molecule remains at the excited state before re-
turning to the ground state. Since sensing is not based on 
intensity measurements but on the timing characteristics 
of the fluorescence de-excitation process, the method is 
not sensitive to fluorochrome biodistribution and has 
also been used as a reliable method to read FRET. 
Application examples include the study of the metabolic 
response to glucose in living human Langerhans islets, 
spatial-metabolic changes in 3D breast cancer spheroids, 
or plasma membrane dynamics [14–19]. 

Currently, the fluorescence imaging techniques with 
the highest resolution fall under the domain of fluor-
escence super-resolution microscopy (SRM). These 
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techniques, which include stimulated emission de-
pletion (STED) microscopy, photoactivated localiza-
tion microscopy, stochastic optical reconstruction 
microscopy (STORM), and single-molecule localiza-
tion microscopy, achieve resolutions below the dif-
fraction limit, allowing for unprecedented spatial 
resolutions (∼50 nm) sufficient to image subcellular 
compartments in single cells [20]. While all these 
techniques allow for the visualization of fluorescent 
targets, integrating SRM with click-expansion micro-
scopy (ExM) can provide more detailed information 
on the chemical composition of subcellular compo-
nents and the biodistribution of molecules such as li-
pids, glycans, DNA, and RNA in single cells and tissue 
samples. In this approach, ExM physically magnifies 
the samples by severalfold, and click labeling enables 
multicolor imaging (Figure 2a,b) [7,21,22]. To further 
increase the imaging resolution, Shi et al. [23] devel-
oped a multimodal approach, which they termed mo-
lecule anchorable gel-enabled nanoscale imaging of 
fluorescence and stimulated Raman scattering micro-
scopy (MAGNIFIERS). MAGNIFIERS integrates 
ExM with stimulated Raman scattering (SRS) micro-
scopy resulting in ∼7.2-fold tissue expansion, which 
allows imaging of protein, DNA, and lipids in small 
extracellular vesicles (EVs) with a lateral and axial 
resolution of ∼41 nm and ∼194 nm, respectively 
(Figure 2c). However, all ExM techniques require the 
fixation of tissues and are not suitable for in vivo 
imaging. In a recent study, to overcome the alterations 
in regular cell function due to the use of fluorescent 
tags and a lack of significance to the human context, 
Bai et al. [24] used a single-cell metabolic imaging 
platform called an optical photothermal infrared 
(OPTIR) microscope in combination with azide- 
tagged infrared (IR) probes. This approach enabled 
the direct imaging of lipid metabolism with sub-
micrometer resolution and high specificity in various 
human-derived 2D and 3D culture systems 
(Figure 2d). 

In summary, fluorescence imaging can image single cells 
with sufficiently high resolution, contrast, and sensitivity 
for the visualization of cellular structures and molecular 
interactions. Despite these advantages, the effective use 
of fluorescence SCI requires careful consideration of its 
inherent limitations, including photobleaching and 
phototoxicity due to the prolonged exposure of laser 
light and limited penetration depth, which restricts the 
imaging of structures deep within thick samples in their 
native form. Improving multifunctional probes for label- 
retention (LR) ExM and adopting appropriate tissue 
fixation methods can prevent the loss of fluorescence 
intensity and enhance resolution [25]. Additionally, in-
tegrating fluorescence imaging with techniques like 
optoacoustic imaging (OAI) and SRS enables deep tissue 
imaging for cellular structures. 

Optoacoustic imaging 
In OAI, also termed photoacoustic imaging, short pulses 
of laser light are used to irradiate biological samples. The 
absorption of the laser pulses by endogenous chromo-
phores (e.g. hemoglobin, melanin, and lipids) or exo-
genous contrast agents in the biological sample causes 
rapid thermal expansion, resulting in the generation of 
acoustic waves. These waves are then detected and 
converted into electric signals by an ultrasound trans-
ducer. The acquired signal is processed and used to re-
construct detailed images of internal structures based on 
the distribution of optical absorption in the tissue  
[26,27]. OAI offers spatial resolutions of up to 5 µm and 
can visualize structures at depths of up to 3–9 mm, which 
is challenging for traditional optical imaging methods  
[28,29]. Single-cell OA microscopy can achieve 
throughputs of approximately 12 000 cells per hour 
without altering the metabolism of the cells while 
maintaining sufficient diffraction-limited lateral resolu-
tion, which is challenging to achieve with traditional 
electrical and fluorescence methods individually [30]. 

Various OAI techniques have been developed for sub-
cellular chemical and metabolic imaging in tissue, of-
fering label-free detection of biomolecules with high 
signal-to-noise ratio (SNR) and contrast-to-noise ratio 
(CNR). This is difficult to achieve with other techniques 
and is limited to certain molecules even when achieved 
by techniques such as mid-IR spectroscopy or SRS mi-
croscopy [31]. For example, mid-infrared optoacoustic 
microscopy (MiROM), which is based on biomolecule- 
specific vibrational transitions, is a novel technique for 
label-free live-cell metabolic imaging and can monitor 
carbohydrates, lipids, and proteins on a subcellular level. 
In MiROM, mid-IR excitation is combined with OA 
detection, producing images with high SNR and CNR 
from the simultaneous acquisition of OA signals and 
biomolecular vibrations. MiROM also offers a high de-
tection limit of metabolites in single cells, with a lower 
risk of phototoxicity (Figure 3a,b) [32]. 

Another notable approach for single-cell OAI is photo-
acoustic flow cytometry (PAFC). PAFC allows non-
invasive, continuous assessment of circulating cells in 
blood vessels and lymphatic vessels in vivo [33]. Figure 
3c showcases the application of this novel PAFC method 
to examine embolus or clot formation in the bloodstream 
of tumor mouse models [34]. PAFC has also been used 
in the evaluation of melanoma metastasis by monitoring 
the melanin content in circulating tumor cells [35]. 

Other new developments in single-cell OAI focus on 
enhancing the compactness, stability, and speed of OAI 
to broaden its applicability in SCI and biomedical re-
search. Of these, a notable new development is a fiber- 
laser-based modality called an optical resolution photo-
acoustic microscope (OR-PAM). OR-PAM has a laser 
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focal zone, which has a diameter comparable to that of a 
single cell and can reach a resolution of ∼5 µm. This 
technique provided high contrast when used to identify 
melanin within a single melanoma cell passing through a 
glass microtube in vitro (Figure 3d) [36]. OR-PAM shows 
potential for applications in both preclinical and clinical 
cancer research [36]. 

To further improve the resolution of OAI at the single- 
cell level, subwavelength-resolution photoacoustic mi-
croscopy (SW-PAM) was developed by combining OAI 
and optical objective lenses of varying refractive indices, 
providing an optical resolution as high as 220 nm at 
532 nm wavelength [37]. When SW-PAM was applied to 
the in vivo imaging of a nude mouse ear, it was able to 
visualize blood vessels, capillaries, and red blood cells 
(Figure 3e) [37]. SW-PAM could potentially function as 
an in vivo flow cytometer to enumerate red blood cells, 
assess blood flow velocity in capillaries, and monitor 
conditions such as sickle cell disease [37]. 

OAI techniques can provide noninvasive, real-time, 
label-free imaging with deep tissue penetration along 
with functional multimodal imaging of molecular and 
cellular structure within a single cell with high sensi-
tivity and specificity. However, while OAI has been 
shown to achieve submicrometer resolution in vivo in 
tissues [37], molecular specificity at the single-cell level 
without the use of tags remains an area of ongoing de-
velopment. Also, spectra can be difficult to analyze due 
to optical absorption by multiple biomolecules at the 
same wavelengths because of spectral overlap, limiting 
the amount of chemical information that can be gained. 
Research to address these challenges is proceeding at a 
rapid pace, and promising developments are underway 
in contrast agents, machine learning tools, and rapid data 
processing to improve the capabilities of OAI. 

Raman spectroscopic imaging 
Raman imaging is based on the scattering of mono-
chromatic light by molecules, which results in the for-
mation of a unique vibrational spectrum that reflects the 
molecular structure and composition of the targeted 
cells. When used in SCI, Raman imaging provides in-
sights into cellular biochemistry, metabolism, and dis-
ease processes without perturbing cell physiology [38]. 
Many different Raman imaging techniques have been 
developed, each with specific applications, which are 
reviewed in detail by Wang et al. [39] and Liu et al. [40]. 
In this section, we highlight some of the most recent 
advancements in single-cell Raman imaging. 

Metabolic profiling in SCI, whether through MSI-based 
omics approaches or through fluorescence-based ima-
ging, presents numerous challenges. Often, metabolic 
profiling techniques require bulk measurements con-
sisting of millions of cells, which obscure the metabolic 
variations present in individual cells in heterogeneous 
cell environments. Moreover, the existence of broad 
overlapping fluorescence emission spectra impedes the 
accurate resolution of specific metabolite species. To 
address these challenges, hyperspectral SRS (hSRS) 
imaging was developed, using pulse shaping and spectral 
multiplexing to achieve an image in less than one second 
with spectral coverage exceeding 200 cm−1 and a spectral 
resolution of less than 10 cm−1 [41]. In a recent study, 
Tan et al. [42] applied hSRS imaging in combination 
with a hyperspectral image unmixing method called 
least absolute shrinkage and selection operator 
(LASSO). The combined approach was named high- 
content hSRS (h2SRS) imaging. In its first reported use, 
h2SRS facilitated the simultaneous mapping of five key 
biomolecules at the single-cell level: proteins, carbohy-
drates, fatty acids, cholesterol, and nucleic acids (Figure 
4a) [42]. 

State-of-the-art multimodal fluorescence imaging techniques used in SCI. (a) Representative images of cellular organelles and biomolecules to 
highlight the effective resolution of ExM using different super-resolution microscopes. Top row from left to right: ultra-ExM structured illumination 
microscopy (SIM) image of cilia (lateral resolution: 30 nm), ExSTED image of microtubules (10 nm lateral and 50 nm axial resolution), LR-ExSTORM 
image of clathrin-coated pits in a HeLa cell (5 nm lateral and axial resolution), expansion lattice light-sheet (ExLLS) image of neurons (lateral resolution 
∼70 nm). Bottom row from left to right: LR-ExM confocal image of microtubules, mitochondria, and DNA in a U2OS cell; expansion fluorescent in situ 
hybridization (ExFISH) confocal image of a HeLa cell labeled with GAPDH, DNA oligos, and DAPI; ExM image of a telomere in chromatin of an IMCD3 
cell (Bottom row: lateral resolution ∼70 nm). (b) Genetic code expansion, click labeling, and confocal scanning microscope imaging of neurofilaments 
(NFL) in live primary mouse cortical neurons (MCNs). BODIPY-tz, TAMRA-tz, or SiR-tz stained MCNs expressing various click-labeled NFL tags 
(NFLK363TAG-FLAG, NFM, and NES PylRS/tRNACUA

Pyl). In the TAMRA-tz panel, the background staining of lysosomes is highlighted in both 
NFLK363TAG-expressing neurons (arrows) and in nontransfected neurons (arrowheads). Z-stack images are shown as maximum intensity projections. 
Scale bars: 20 µm. (c) Label-free nanoscale imaging of chemical compositions in a human lung organoid using MAGNIFIERS. Top row: spectrally 
unmixed C-H channels for protein (left), lipids (middle), and DNA (right). Middle row from left to right, two-color overlay images of zoomed-in areas 
outlined by the yellow box. Arrows indicate EVs containing lipids and DNA. Images were collected using a 1.05 NA objective (4.5-fold expansion). 
Scale bar: 2 µm. Bottom: SRS spectral analysis of the cell area (blue) and EV (red) in the human lung organoid (left) scale bar 10 µm and background- 
subtracted SRS spectra (right). Arrow indicates a side peak at ∼2865 cm–1 contributing from the CH2 signal of lipids in small EVs. (d) Lipid metabolism 
was monitored using OPTIR microscopy and IR probes. Representative total lipids (1744 cm−1), newly synthesized lipids (2096 cm−1), and BODIPY 
imaging from a single cell (top). OPTIR images at 1744 cm−1 and 2096 cm−1 of human neuroglioma H4 cells after incubation in azide-palmitic acid (PA) 
and PA-containing media, along with corresponding brightfield images (bottom). Scale bar: 20 µm. GAPDH, Glyceraldehyde 3-phosphate 
dehydrogenase; DAPI, 4’,6-diamidino-2-phenylindole; IMCD3 cells, Inner medulla collecting duct 3 cells; NFM, Neurofilament medium chain; NES: 
Nuclear export signal; BODIPY, Fluorinated Boron-Dipyrromethene. 
(a) Adapted from Zhuang and Shi [22] under a CC-BY 4.0 license. (b) Adapted from Arsić et al. [7] under a CC-BY 4.0 license. (c) Adapted from Shi 
et al. [23] under a CC-BY 4.0 license. (d) Adapted from Bai et al. [24] under a CC-BY 4.0 license.   
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To enhance the sensitivity and speed of hSRS, Ge et al.  
[43] developed a multimodal approach, which combines 
hSRS with single-cell isotope probing and two-photon 
fluorescence in situ hybridization (FISH). This approach, 
known as SRS-FISH, enabled high-throughput analysis 
of single-cell metabolism in the human gut microbiome 
with imaging speeds ranging from 10 to 100 ms per cell, 
surpassing the capabilities of previous state-of-the-art 
methods by twofold to threefold [43]. 

The abovementioned developments have served to 
greatly improve the capabilities of Raman spectroscopic 
imaging in the SCI space. Despite these improvements, 
Raman imaging is still associated with considerable 
challenges. To unmix Raman spectra, prior knowledge 
of chemical composition is required. Furthermore, 
Raman techniques have limited penetration depth, 
making deep tissue imaging difficult if not impossible. 
Combining Raman imaging with techniques such as OAI 
and MSI in a multimodal sensing concept can help in 
overcoming these obstacles [44]. 

Mass spectrometry imaging 
Mass spectrometry is a chemical analysis technique that 
separates ionized molecules from a sample based on 
their mass-to-charge ratio, creating a mass spectrum. 
MSI can map the distribution of chemicals across a 
sample surface by generating an image where each pixel 
is one mass spectrum. In SCI, MSI can be used to 
analyze the molecular composition of a single cell, pro-
viding high-resolution information about the subcellular 
distribution of metabolites and biomolecules [45]. MSI 
stands out as a potent technology for single-cell analysis 
due to its remarkable sensitivity, selectivity, and cap-
ability to simultaneously monitor multiple chemicals and 
molecules of interest. MSI-based methods applied in 
SCI are reviewed in detail by Xu et al. [45], Wang et al.  
[46], Yao et al. [47], and Yin et al. [48]. 

This section will highlight recent multimodal approaches 
used to study the spatial distribution of molecules in the 
same tissue [49–51]. Gorman et al. [49] combined matrix- 
assisted laser desorption/ionization mass spectrometry ima-
ging (MALDI-MSI) with secondary ion mass spectrometry 
(SIMS) to analyze changes in spatial lipidomics and metal 
compositions in the tissue of a mouse model of ovarian 
cancer, and to examine the effect of a therapeutic approach 
for ovarian cancer treatment (Figure 4b). 

To enhance the spatial resolution and broad molecular 
coverage of MSI, and to study lipid metabolism, Lv et al.  
[50] combined a segmented temperature controller (STC) 
with a modified desorption electrospray ionization (DESI) 
method. The resulting method, named STC-DESI, was 
able to detect low-abundance small metabolites and neutral 
lipids with a remarkable spatial resolution (20 µm) in brain 
tissue. In another approach, Dunne et al. [51] were able to 
study the metabolic changes in the extracellular micro-
environment and cellular composition simultaneously con-
tributing to the tissue pathology in a disease by combining 
and testing different antibody-mediated single-cell spatial 
omics techniques such as immunohistopathology staining, 
Geomax, and imaging mass cytometry combined with 
MALDI-MSI. 

Despite these unprecedented advancements, MSI is 
associated with several critical challenges. One common 
challenge is that MSI approaches are not quantitative on 
their own; the units of collected data are ‘counts’, which 
are affected by the rate at which different molecules 
ionize. Using standards of known concentrations can 
help quantify MSI data, such as in the study by 
Vandenbosch et al. [52], where a stable isotope analog 
was used as an internal standard to quantify lipids in 
brain tissue using both positive and negative ion 
MALDI. This approach also provided an approximately 
fourfold increase in mass resolution compared with time- 
of-flight and Orbitrap mass spectrometers. 

State-of-the-art multimodal OAI techniques used in SCI. (a) Representative MiROM micrographs demonstrating the monitoring of induced lipolysis in 
differentiated 3T3-L1 adipocytes. Two regions of interest (ROIs) enclosing individual adipocytes are indicated by a green dashed circle for ROI 1 and a 
red dashed circle for ROI 2. The white arrow traces the process of lipid droplet remodeling in a single adipocyte within ROI 1. Time and the presence of 
isoproterenol (ISO) are noted at the bottom corners of each frame. Scale bars: 40 µm. (b) MiROM micrographs of 3T3-L1 cells showcasing 
endogenous lipid contrast (CH2 vibration) and protein contrast (amide II). An enlarged view of a single adipocyte is highlighted by a dashed red square, 
with two spots (red cross: lipid droplet and blue cross: culture medium) earmarked for spectral analysis and fine-tuning of the imaging wavelength. OA 
spectra in the CH vibrational region for the specified spots are presented. Scale bars: 40 µm. (c) In vivo real-time PAFC detection of emboli in tumor- 
induced nude mouse ear. A representative OA image of a mouse ear showing blood capillaries and veins (upper left). The bar graph represents the 
detection rate of white emboli in 16 melanoma-bearing mice and 14 tumor-free mice (upper right). The rate of emboli detection in melanoma-bearing 
mice was 0,51  ±  0,18 emboli/10 min. Label-free detection of emboli using PA signals for positive (CTC or red embolus), negative (white embolus), and 
combined (CTC-embolus aggregate) contrast is shown at the bottom. (d) OR-PAM detection of label-free melanoma cells in flowing bovine blood in 
vitro. B-scan OA image showing two melanoma cells at x = 588 and 720 µm. M-mode OA image tracking three melanoma cells acquired through the 
center of a glass microtube. (e) Ex vivo image of a nude mouse ear using SW-PAM showing microvasculature at single-cell resolution. From left to 
right: SW-PAM image of a nude mouse ear with clearly visible blood vessels and capillaries; SW-PAM image of mouse ear; zoomed-in SW-PAM image 
of mouse ear where red blood cells (RBCs) can be identified. The magnified image shows the biconcave structure of RBCs. 
(a) Adapted from Pleitez et al. [32]. (b) Adapted from Pleitez et al. [32]. (c) Adapted from Juratli et al. [34] under a CC-BY 4.0 license. (d) Adapted with 
permission from Wang et al. [36]. (e) Adapted with permission from Zhang et al. [37] © Optical Society of America.   
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MSI’s position as a combined chemical analysis and 
imaging technique also presents additional challenges. 
Although MSI can achieve high sensitivities, the sensi-
tivity of MSI is dependent on the abundance of the 
analyte, resulting in lower SNRs and higher errors when 
measuring low-abundance molecules. Also, to date, there 
has yet to be an MSI technique that can examine living 
cells, as MSI requires samples to be fixed and possibly 
embedded in resin before analysis. Other challenges 
include balancing spatial resolution with the speed of 
analysis and ensuring reproducible sample preparation. 
These techniques also typically generate large amounts 
of data, needing advanced processing, data analysis tools, 
and training even when imaging single cells. Therefore, 

standard protocols and calibrated methods should be 
developed to ensure reliable and reproducible results. 

Other multimodal methods 
This section briefly discusses other advanced molecular 
biology methods for comprehensive single-cell analysis. 
Although these techniques do not traditionally generate 
images, they can be used in conjunction with conven-
tional imaging methods to provide insights into cellular 
heterogeneity and molecular interactions at the single- 
cell level. 

Individual omics methodologies such as MSI are unable 
to tag specific cells and continually monitor their 

Figure 4  

Current Opinion in Biotechnology

State-of-the-art Raman spectroscopy, mass spectroscopy, and spatial multiomics techniques used in SCI. (a) Single cancer cell metabolic profiling by 
using hSRS spectroscopy. hSRS images representing mapped proteins, carbohydrates, fatty acids, cholesterol, and nucleic acids, as well as the 
merged image of metabolites for U87 brain tumor cells using different hyperspectral image unmixing methods. The application of LASSO unmixing 
significantly enhanced the accuracy of chemical mapping for nucleic acids, cholesterol, and carbohydrates compared with multivariate curve 
resolution (MCR) or least squares (LS) fitting in U87 cells. Each channel has the same contrast and shares a color bar. The ranges of color bars are 0 to 
150, 0 to 8, 0 to 3, 0 to 5, 0 to 2, and 0 to 0.6, respectively. Scale bar: 20 µm. (b) Detection of heme and iron (Fe) in an ovarian cancer mouse model as 
proof of concept a MALDI-MSI-SIMS multimodal approach. Using this approach, Heme [C34H32N4O4

56Fe]+ was detected using MALDI-MSI and 
compared with the Fe+ detected by SIMS in ovarian tissue from an ovarian cancer mouse model. The segmentation maps show the distributions of 
heme and Fe+ (yellow) and the distribution of Fe+ alone (green). Scale bars are 2 mm. (c) Spatial maps of molecularly defined cell types across the adult 
mouse brain using a multi-omics technique called STARmap PLUS. A zoomed-in view of a brain tissue slice where each dot represents a DNA 
amplicon generated from an RNA molecule, color-coded by its cell-type identity. Brain region abbreviations are based on the Allen Mouse Brain 
Reference Atlas (top). A zoomed-in view of the habenula region with cell boundaries outlined and a mesh graph of physically neighboring cells 
connected by edges (bottom left). A representative fluorescent image of the habenula region highlighted from the first cycle of sequencing by litigation 
with error reduction. Each dot represents an amplicon (bottom right). 
(a) Adapted from Tan et al. [42] under a CC-BY-NC 4.0 license. (b) Adapted with permission from Gorman et al. [49] Copyright 2023 American 
Chemical Society. (c) Adapted with permission from Shi et al. [56] under a CC-BY license.   
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metabolism in tissues. To address these limitations, re-
cent research has focused on single-cell multiomics 
techniques, also referred to as multimodal omics [53]. 
These techniques involve the simultaneous examination 
of various molecular datasets using multiple techniques, 
which encompass genomics, transcriptomics, proteomics, 
metabolomics, and epigenomics. Multimodal omics play 
a crucial role in elucidating the pathogenesis of diseases 
involving somatic genetic alterations, such as cancer, 
Alzheimer’s, and Parkinson’s disease [54–57]. In a recent 
study, Hu et al. [55] developed an approach (scSpaMet) 
incorporating a three-dimensional spatially-resolved 
metabolic profiling framework for untargeted spatial 
metabolomic analysis and imaging mass cytometry for 
targeted multiplexed protein imaging. In combination 
with MSI, scSpaMet was also used to profile the mi-
gration of individual immune and cancer cells in human 
lung cancer tissues and into tonsil tissue at submicron 
resolution. In another multi-omics approach, Shi et al.  
[56] used a new spatial gene mapping method combined 
with histological staining (STARmap PLUS) and single- 
cell RNA sequencing to spatially resolve the tran-
scriptomic profile of murine central nervous system cells 
at molecular resolution (Figure 4c). 

Despite the immense potential of multimodal omics 
approaches, several limitations remain. These limitations 
include limited throughput, sample loss at various stages 
(e.g. sample preparation, fractionation, and sorting), 
difficulty in achieving high spatial resolution while 
maintaining high sensitivity and specificity, and com-
plicated data analyses [57]. Improving sequencing 
technologies and multiplexed imaging methods, stan-
dardizing sample preparation protocols, and developing 
sophisticated computational tools and algorithms for data 
integration will facilitate the wider application of multi- 
omics techniques in biomedical research. 

Other multimodal approaches, such as in-cell nuclear 
magnetic resonance (NMR) spectroscopy, are used to 
investigate chemical and metabolic processes at the 
atomic level in living cells [58]. In a recent study, Ikari 
et al. [59] combined 19F nanoprobes, used for site-spe-
cific labeling of the membrane protein H-Ras, with in- 
cell NMR. In a separate study, the time-dependent 
cellular distribution of the H-Ras protein was first con-
firmed by fluorescence imaging after labeling H-Ras 
with Alexa-488. The combination of NMR spectroscopy 
and fluorescence imaging not only improved on the low 
specificity of in-cell NMR spectra but also enabled the 
structural examination of H-Ras within cells. 

NMR spectroscopy is a noninvasive and nondestructive 
technique that offers unique advantages when combined 
with chemical and metabolic imaging techniques, as it 
allows for the acquisition of quantitative and structural 
information from target molecules. However, analyzing 

and interpreting NMR spectra can be challenging due to 
interference from overlapping biomolecular signals. 
Also, NMR instruments are expensive, limiting the 
system’s availability. 

A comparative analysis is summarized in Table 1, con-
sidering the recent developments in the context of 
technical complexity, quantitative capability, scalability 
and throughput, resource requirements, and costs asso-
ciated with the advanced state-of-the-art techniques 
in SCI. 

Conclusion and outlook 
Single-cell chemical and metabolic imaging has benefited 
from advancements in technology, particularly the devel-
opment of methodologies that achieve higher spatial and 
temporal resolution, speed, and data analysis. Cutting-edge 
technologies, including single-cell fluorescence imaging, 
advanced Raman spectroscopy, combined multimodal OAI, 
MSI, and NMR spectroscopy, contribute to a more detailed 
understanding of cellular composition and dynamics. While 
no individual technique is flawless, combining multiple 
techniques can help mitigate their respective limitations to 
allow simultaneous assessment of various aspects of the 
cellular microenvironment. These multimodal techniques 
can enable the examination of cellular and extracellular in-
teractions within a single tissue [49,51], or the pairing of 
single-cell expression analysis with the measurement of the 
tissue’s physical properties [60]. Such techniques ultimately 
enhance spatiotemporal resolution and enable deep tissue 
imaging at the individual cell level [24,32]. Also, the de-
velopment of computational tools for data analysis and in-
terpretation plays a crucial role in extracting meaningful 
insights from the complex datasets generated in SCI studies  
[1]. Overall, the development of multimodal approaches 
holds promise for unlocking deeper insights into cellular 
heterogeneity, functional dynamics, and metabolic processes 
at the single-cell level. 
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