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CellRank 2: unified fate mapping in 
multiview single-cell data

Philipp Weiler    1,2,8, Marius Lange    1,2,3,8, Michal Klein1,4, Dana Pe’er5,6 & 
Fabian Theis    1,2,7 

Single-cell RNA sequencing allows us to model cellular state dynamics 
and fate decisions using expression similarity or RNA velocity to 
reconstruct state-change trajectories; however, trajectory inference does 
not incorporate valuable time point information or utilize additional 
modalities, whereas methods that address these different data views 
cannot be combined or do not scale. Here we present CellRank 2, a versatile 
and scalable framework to study cellular fate using multiview single-cell 
data of up to millions of cells in a unified fashion. CellRank 2 consistently 
recovers terminal states and fate probabilities across data modalities in 
human hematopoiesis and endodermal development. Our framework also 
allows combining transitions within and across experimental time points, 
a feature we use to recover genes promoting medullary thymic epithelial 
cell formation during pharyngeal endoderm development. Moreover, we 
enable estimating cell-specific transcription and degradation rates from 
metabolic-labeling data, which we apply to an intestinal organoid system to 
delineate differentiation trajectories and pinpoint regulatory strategies.

Single-cell assays uncover cellular heterogeneity at unprecedented 
resolution and scale, allowing complex differentiation trajectories 
to be reconstructed using computational approaches1–5. While these 
trajectory inference (TI) methods have uncovered numerous biologi-
cal insights6, they are typically designed for snapshot single-cell RNA 
sequencing data and cannot accommodate additional information 
relevant for understanding cell-state dynamics, including experimental 
time points, multi-modal measurements, RNA velocity7,8 and metabolic 
labeling9–13.

We, and others, have developed methods to analyze emerging 
data modalities, such as CellRank14 for RNA velocity, Waddington 
optimal transport (WOT)15 for experimental time points and dynamo16 
for metabolic-labeling data; however, each method only addresses a 
single modality, thereby ignoring much of the upcoming multi-modal 
information for trajectory analysis. This specialization renders many 
biological systems inaccessible; for example, adult hematopoiesis 

violates assumptions of current RNA velocity models17, precluding us 
from applying CellRank to this well-studied system and prompting 
the question of whether the algorithm could be developed further 
to reconstruct differentiation dynamics using another aspect of 
these data.

To address this challenge, we decompose TI into two compo-
nents, modality-specific modeling of cell transitions, followed by 
modality-agnostic TI, and developed CellRank 2, a robust, modular 
framework to analyze multiview data from millions of cells. CellRank 2 
generalizes CellRank to exploit the full potential of alternative sources 
of information, such as pseudotime and developmental potential, and 
new data modalities, such as experimental time points and metabolic 
labels, to study complex cellular state changes and identify initial and 
terminal states, fate probabilities and lineage-correlated genes. Com-
pared to our earlier work, the new framework is modular, applicable to 
many more data modalities and substantially faster (Methods).
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on the dataset and the biological question, we use a single kernel or 
combine several kernels into multiview Markov chains. For an initial, 
qualitative overview of recovered cellular dynamics, we introduce a 
random walk-based visualization scheme (Methods).

For many biological processes, the starting point can be quantified 
robustly and cells ordered along a pseudotime. We propose to use this 
fact by biasing the edges of a nearest-neighbor graph toward mature 
cell states to estimate cell–cell transitions (Methods); developmental 
potentials can be used similarly. CellRank 2 generalizes earlier con-
cepts5,18 to arbitrary pseudotimes and atlas-scale datasets with the 
PseudotimeKernel and CytoTRACEKernel. More complex systems with 
unknown initial states or longer developmental time scales can be cap-
tured faithfully through multiple experimental time points. To recon-
struct the overall differentiation dynamics described by both across 
and within time points, we extend classical optimal transport (OT)15, in 
particular WOT15, with our RealTimeKernel to include within-time-point 
dynamics (Methods). In contrast, metabolic labels offer an experimen-
tal approach to overcome the discrete nature of distinct experimental 
time points9,11,12. Based on this information, we developed an inference 
approach quantifying kinetic rates that allow us to infer cell transitions 
(Methods). In the following, we provide details on each kernel and dem-
onstrate the versatility of our approach through diverse applications. 
Finally, various kernels may be combined to yield a more complete 
picture of cellular dynamics through multiview modeling.

Once we have inferred a transition matrix, we use an estima-
tor module19,20 to uncover cellular trajectories, including initial and 
terminal states, fate probabilities and lineage-correlated genes.  
Critically, estimators are view-independent and are, thus, applicable 
to any transition matrix (Methods). To scale these computations 
to large datasets, we assume that each cell gives rise to only a small 
set of potential descendants. This assumption yields sparse transi-
tion matrices for every kernel and allows CellRank 2 to compute fate 
probabilities 30 times faster than CellRank (Extended Data Fig. 2a 
and Methods).

The modular and robust design makes CellRank 2 a flexible frame-
work for the probabilistic analysis of state dynamics in multiview 
single-cell data; it enables the rapid adaptation of computational 
workflows to emerging data modalities, including lineage tracing21–23 

We demonstrate CellRank 2’s flexibility across a series of applica-
tions: using a pseudotime in a hematopoiesis context, determining 
developmental potentials during embryoid body formation and com-
bining experimental time points with intra-time point information 
for pharyngeal endoderm development. Our approach for incorpo-
rating experimental time recovers terminal states more faithfully 
compared to traditional approaches mapping between time points15, 
allows studying gene expression change continuously across time 
and predicts putative progenitors missed by alternative approaches. 
We also introduce a new computational approach for learning cel-
lular dynamics from metabolic-labeling data and show that it reveals 
regulatory mechanisms by recovering cell-specific transcription and 
degradation rates in mouse intestinal organoids.

Results
A modular framework for studying state-change trajectories
CellRank 2 models cell-state dynamics from multiview single-cell data. 
It automatically determines initial and terminal states, computes fate 
probabilities, charts trajectory-specific gene expression trends and 
identifies lineage-correlated genes (Methods). A broad and extensible 
range of biological scenarios can be studied using its robust, scalable 
and modular design (Methods).

Similar to CellRank14, we employ a probabilistic system description 
wherein each cell constitutes one state in a Markov chain with edges 
representing cell–cell transition probabilities; however, we now enable 
deriving these transition probabilities from various biological priors. 
Following previous successful TI approaches1–5, we assume gradual, 
memoryless transitions of cells along the phenotypic manifold. The 
assumption of memoryless transitions is justified as we model average 
cellular behavior (Methods).

To allow broad applicability, we divide CellRank 2 into kernels for 
computing a cell–cell transition matrix based on multiview single-cell 
data and estimators for analyzing the transition matrix to identify initial 
and terminal states, compute fate probabilities and perform other 
downstream tasks. CellRank 2 provides a set of diverse kernels that 
derive transition probabilities based on gene expression, RNA velocity, 
pseudotime, developmental potentials, experimental time points and 
metabolically labeled data (Fig. 1a and Extended Data Fig. 1). Depending 
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Fig. 1 | CellRank 2 provides a unified framework for studying single-cell 
fate decisions using Markov chains. CellRank 2 uses a modular design. Data 
and problem-specific kernels calculate a cell–cell transition matrix inducing a 
Markov chain (MC); of these kernels, at least one has to be used, but multiple can 
be combined via a kernel combination (Methods). Estimators analyze the MC to 

infer initial and terminal states, fate probabilities and lineage-correlated genes. 
Using fate probabilities and a pseudotime allows for studying gene expression 
changes during lineage priming. Features inherited from the original CellRank 
implementation are indicated in blue and new features are in orange.
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and spatiotemporal data24, the support of new data modalities with 
kernels and the support of new analyses with estimators (Methods).

Overcoming RNA velocity limitations
RNA velocity infers incorrect dynamics in steady-state human hemat-
opoiesis due to violated model assumptions, even though pseudotime 
can be recovered faithfully (Supplementary Fig. 1 and Supplemen-
tary Note 1). Specifically, the assumption of constant rates made 
by conventional RNA velocity models is violated and genes impor-
tant for this system exhibit high noise or low coverage. The remark-
able success of traditional pseudotime approaches in systems with 
well-known initial conditions motivated us to circumvent RNA velocity 
limitations by developing the PseudotimeKernel, which computes 
pseudotime-informed transition probabilities and a corresponding 
vector field (Fig. 2a and Methods). Building upon conceptual ideas 
proposed for Palantir5, our approach generalizes to any precomputed 
pseudotime and uses a soft weighting scheme25.

We applied the PseudotimeKernel to human hematopoiesis26 and 
computed transition probabilities based on diffusion pseudotime 
(DPT)1 for the normoblast, monocyte and dendritic cell lineages (Fig. 2b 
and Extended Data Fig. 3a). The PseudotimeKernel correctly recovered 
all four terminal states and the initial state (Extended Data Fig. 3b,c 
and Methods). To additionally visualize the recovered dynamics, we 
generalized the streamline projection scheme from RNA velocity7,8 
to any neighbor-graph-based kernel (Fig. 2c and Methods). We cor-
related gene expression with lineage-specific fate probabilities to 
identify candidate genes that may be involved in lineage commitment 
(Methods); this approach correctly identified the transcription factors 
RUNX2 and TCF4 as regulators of the plasmacytoid dendritic cell (pDC) 
lineage27,28 (Fig. 2d).

Compared to the PseudotimeKernel, an RNA velocity-based analy-
sis failed to recover the classical dendritic cell (cDC) lineage (Extended 
Data Fig. 3b) and fate probabilities assigned by the VelocityKernel 
violated the known lineage commitment and hierarchy, including 
high transition probabilities from proerythroblast and erythroblast 
cells to monocytes instead of normoblasts (Extended Data Fig. 3d). 
This inconsistency to known ground truth transitions stems from 

violated assumptions of the RNA velocity model (Supplementary Fig. 1 
and Supplementary Note 1). For an additional, quantitative metric, 
we computed the log ratio of the kernels’ cross-boundary correct-
ness (CBC) scores29 (Methods). This metric provides a quantitative 
measure of two kernel-derived cell–cell transition matrices for known 
transitions between cell states. As indicated by the visualization of fate 
probabilities, the PseudotimeKernel significantly outperforms the 
competing approach for most cell state transitions (6 out of 8; Extended 
Data Fig. 3e and Methods). As an alternative comparison, we introduce 
the terminal state identification (TSI) score to quantify the identifica-
tion of known terminal states compared to an optimal identification 
strategy (TSI = 1; Methods). Our pseudotime-based approach again 
outperformed the RNA-velocity-based alternative (TSI = 0.9 versus 
TSI = 0.81; Extended Data Fig. 3f).

Our PseudotimeKernel generalizes to any pseudotime, allowing 
users to choose the algorithm most suitable for their dataset30. In 
systems with simpler differentiation hierarchies and known initial 
states, CellRank 2’s PseudotimeKernel yields additional insights into 
terminal states and fate commitment compared to classical pseudo-
time approaches.

Learning vector fields from developmental potentials
Pseudotime inference requires the initial state to be specified. If the 
initial state is not known, CytoTRACE18 can be used to infer a stemness 
score by assuming that, on average, naive cells express more genes 
than mature cells. We found this assumption to be effective for many 
early developmental scenarios, but, critically, CytoTRACE does not 
scale in time and memory usage when applied to large datasets and 
does not resolve individual trajectories through terminal states and 
fate probabilities (Extended Data Fig. 2b). We thus developed the 
CytoTRACEKernel by revising the original CytoTRACE approach, such 
that edges of k-nearest-neighbor graphs point toward increasing matu-
rity and quantify cell–cell transition probabilities on atlas-scale datasets 
(Extended Data Fig. 4a and Methods). Results from our kernel agree with 
the original approach across multiple datasets (Extended Data Fig. 4b,c 
and Methods). Further, we compared computational performance on 
a mouse organogenesis atlas31 containing 1.3 million cells. While the 
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Fig. 2 | Leveraging pseudotemporal ordering for cellular fate mapping. 
a, The PseudotimeKernel biases the edges of a phenotypic similarity-based 
nearest-neighbor graph toward increasing pseudotime, defining cell–cell 
transition probabilities. b,c, UMAP embedding of 24,440 peripheral blood 
mononuclear cells26, colored by cell type (cDC; G/M progenitor, granulocyte/
myeloid progenitor; HSC; MK/E prog, megakaryocyte/erythrocyte progenitors; 
pDC). We illustrate the well-known differentiation hierarchy in black (b) as well 

as projected velocity fields based on the PseudotimeKernel (c, left) and RNA 
velocity (c, right). d, Correlating fate probabilities with gene expression recovers 
known lineage drivers for the pDC lineage27,28. We show lineage-specific trends 
as proposed in our earlier work14 by fitting generalized additive models to gene 
expression (y axis) in pseudotime (x axis); the contribution of each cell to each 
lineage is weighted according to CellRank 2-recovered fate probabilities. Colors 
correspond to lineages as shown in b.
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original implementation failed above 80,000 cells, our adaptation ran 
on the full dataset in under 2 min (Extended Data Fig. 2b).

We applied the CytoTRACEKernel to study endoderm develop-
ment in pluripotent cell aggregates known as embryoid bodies32 
(Fig. 3a). The CytoTRACE-based pseudotime increased smoothly 
throughout all experimental time points, as expected (Fig. 3b and 
Extended Data Fig. 5a) and allowed us to identify 10 of 11 terminal cell 
populations and the correct initial state (Fig. 3c and Extended Data 
Fig. 5b). In contrast, Palantir5 and DPT1 identified a bimodal population 
distribution of early cells in the first stage, resulting in a compressed 
range of pseudotimes for all other populations and stages (Extended 
Data Fig. 5a).

The endoderm gives rise to internal organs; thus, we correlated 
fate probabilities with gene expression to infer lineage-correlated 
genes that may direct organogenesis, identifying the MIXL1, FOXA2 
and SOX17 transcription factors (TFs), in agreement with the original 
publication32 (Fig. 3d). To uncover potential upstream regulators of 
these TFs, we visualize smooth gene expression trends of top-ranked 
lineage-correlated genes of the endoderm trajectory in a heatmap 
and sorted genes according to their peak in CytoTRACE pseudotime 
(Fig. 3e). We found LINC00458, LINC01356, NODAL and nine TFs to peak 
before FOXA2 and SOX17. All are known mouse endodermal develop-
ment genes33,34 and our prediction that LINC00458 expression peaks 
before LINC01356 has also been observed previously33.

CellRank 2’s CytoTRACEKernel allowed us to infer cellular dynam-
ics from a snapshot of endoderm development without having to 

specify an initial state for pseudotime computation. We recovered ter-
minal states, known driver genes and their temporal activation pattern.

Adding a temporal resolution to fate mapping
Single-cell time series are increasingly popular for studying 
non-steady-state differentiation programs. The computational 
challenge lies in matching cells sequenced at different time points 
to reconstruct trajectories of state change. Most previous methods 
have either determined population dynamics35 or used OT15 but ignore 
transitions within time points that contain valuable information for 
directing transitions and detecting terminal states. We developed the 
RealTimeKernel, which combines WOT-computed15 inter-time-point 
transitions with similarity-based intra-time-point transitions to allow 
for multiview modeling (Fig. 4a and Methods). Notably, considering 
inter-time-point transitions enables unbiased identification of terminal 
and initial states from time-course studies through a more granular 
mapping of cell fate (Fig. 4b and Extended Data Fig. 6a–c). To gain a 
preliminary understanding of the underlying differentiation dynamics, 
we visualize high-dimensional RealTimeKernel-derived random walks 
in the embedding space (Extended Data Fig. 6b).

Many OT implementations, including WOT15, use entropic regulari-
zation36 to speed up computation; however, this practice introduces 
dense transition matrices, which slows downstream applications, 
hindering us from analyzing large datasets. We therefore developed 
an adaptive thresholding scheme to sparsify transition matrices 
(Methods), yielding ninefold and 56-fold faster macrostate and fate 
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Fig. 3 | The CytoTRACEKernel recovers temporal gene activation.  
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using the CytoTRACEKernel. d, UMAP embedding colored by fate probabilities 
(top) and gene expression of recovered drivers (bottom) of the endoderm 
lineage. e, Smoothed gene expression along the CytoTRACE pseudotime for 
the automatically identified top 50 lineage-correlated genes, sorted according 
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known drivers (right)32–34 additionally recovered with CellRank 2 are indicated.
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probability computation, respectively, on a mouse embryonic fibro-
blast (MEF) reprogramming dataset15 (Extended Data Fig. 2c). To vali-
date our thresholding scheme, we correlated fate probabilities toward 
the four terminal states, with and without thresholding, and found very 
high correlations within each lineage (Pearson correlation coefficient 
r > 99; Extended Data Fig. 6c and Methods). Overall, we obtained a 
perfect TSI score using the RealTimeKernel (TSI = 1) but a suboptimal 
one for the VelocityKernel (TSI = 0.79) (Extended Data Fig. 6d).

Numerous applications, including gene trend plotting and 
lineage-correlated gene identification, require continuous temporal 
information rather than discrete time points. Thus, we comprised a 
new, real-time informed pseudotime approach, which uses experi-
mental time points but embeds them in the continuous landscape of 
expression changes (Methods). As expected in this system, our new 
pseudotime indeed correlates better with experimental time than 
traditional pseudotime approaches on the MEF reprogramming data 
(Extended Data Fig. 7a–c). Compared to WOT, we enable studying 
gradual fate establishment along a continuous axis (Extended Data 
Fig. 7d–g).

The pharyngeal endoderm, an embryonic tissue, plays a crucial 
role in patterning the pharyngeal region and developing organs37, such 
as the parathyroid, thyroid and thymus38–40. Multiple experimental 
time points can capture its development, making it an ideal candidate 

system for our RealTimeKernel. We analyzed gene expression change 
from embryonic days (E) 9.5 to 12.5 (ref. 37) (Fig. 4c) and automati-
cally recovered the initial state (Extended Data Fig. 8a) and 10 of the 11 
terminal states manually assigned in the original publication (Fig. 4d). 
Additionally, using the RealTimeKernel led to a higher TSI score com-
pared to the VelocityKernel (TSI = 0.92 versus TSI = 0.46, Extended Data 
Fig. 8b). Correlating fate probabilities with gene expression correctly 
recovered known lineage drivers of the parathyroid (Gcm2)41, thyroid 
(Hhex)42 and thymus (Foxn1)37 (Supplementary Fig. 2).

To disentangle the trajectory leading to medullary thymic epithe-
lial cells, a stromal cell type associated with thymic adhesion43, we first 
took the subset of parathyroid, ultimobranchial body, medullary and 
cortical thymic epithelial cells (mTECs and cTECs) and their progeni-
tors (Extended Data Fig. 8c and Methods). We successfully recovered 
the initial state (Extended Data Fig. 8c) and each terminal state and 
scored a higher TSI metric compared to relying on RNA velocity esti-
mates (TSI = 1.0 versus TSI = 0.91; Extended Data Fig. 8d). Computing 
fate probabilities toward terminal states, we discovered a progenitor 
cell cluster with an increased probability of assuming mTEC fate (Fig. 4e 
and Extended Data Fig. 9a,b). It is easy to overlook this putative mTEC 
ancestor cluster in the two-dimensional uniform manifold approxima-
tion and projection (UMAP) embedding, highlighting the importance 
of our high-dimensional fate analysis (Extended Data Fig. 9c). Next, we 
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used our correlation-based analysis to identify possible drivers of this 
fate decision and found TFs (Fos, Grhl3 and Elf5) and genes relevant 
for the thymus lineage among the 20 genes with highest correlation 
(Fig. 4e): Sfn and Perp are part of the p53 signaling pathway control-
ling murine mTEC differentiation44,45; additionally, the TF p63 targets 
Perp and is involved in murine mTEC differentiation46,47. Similarly, we 
recovered previously reported markers of murine mTECs, including 
Grhl3, Pvrl4 and Cd9 (ref. 37,48). In addition to these known markers of 
mTECs in mice, our top-ranked genes also included S100a11 and Fxyd3, 
markers of mTEC subpopulations in different human settings45,49–52, and 
Hspb1, a marker of later-stage murine mTECs53. Notably, the original 
study of our dataset identified the TF Grhl3 as a putative early mTEC 
marker with higher specificity compared to markers traditionally used.

Unlike CellRank 2, WOT relies solely on inter-time-point informa-
tion. Applied to the pharyngeal endoderm data, it failed to identify 
the putative mTEC ancestor cluster. Additionally, even when we lev-
eraged the knowledge of putative mTEC progenitors identified by 
the RealTimeKernel at the earlier experimental time points, classical 
WOT identified fewer driver gene candidates with known functions in 
mTEC development at these time points (Fig. 4f and Extended Data 
Fig. 9d,e). We speculate that this decrease in performance is caused 
by WOT relying on pullback distributions, which assign a likelihood 
to each early-day cell to differentiate into any late-day cell but do not 
take intra-time point dynamics into account. In contrast, CellRank 2 
computes continuous fate probabilities with a global transition matrix, 
combining transitions within and across time points (Methods). Finally, 
classical differential expression testing also recovered fewer known 
driver genes and TFs as our correlation-based analysis (Extended Data 
Fig. 9f).

Our RealTimeKernel incorporates gene expression changes within 
and across experimental time points. Notably, these complementary 
views allowed identifying a putative progenitor population and sub-
stantially more relevant drivers compared to approaches focusing on 
a single data view.

Estimating kinetic rates and fate from metabolic labels
The destructive nature of standard single-cell protocols prohibits 
directly examining gene expression changes over time. Metabolic 
labeling of newly transcribed mRNA molecules9,11,12,31; however, yields 
time-resolved single-cell RNA measurements that should substantially 
improve our ability to learn system dynamics. The temporal resolu-
tion is in the order of minutes to hours and thus much finer compared 
to typical time-course studies. We developed an approach to learn 
directed state-change trajectories from metabolic-labeling data using 
pulse–chase experiments (Fig. 5a and Methods).

Similar to previous approaches9, we model mRNA dynamics 
through a dynamical system, including mRNA molecule transcrip-
tion and degradation rates9. We estimate these rates for each cell and 
gene by considering the dynamical information conveyed through 
metabolic labels (Fig. 5b and Methods). Based on a cell–cell similarity 
graph, for each cell, gene and labeling time, we identify a neighborhood 
in which a sufficient number of cells express the given gene. Next, we 
estimate transcription and degradation rates based on these cell sets by 
minimizing the squared Euclidean distance between observed and esti-
mated transcripts. With these parameters, we infer a high-dimensional 
velocity vector field used to obtain cell–cell transition probabilities 
with the VelocityKernel.

We applied our devised method to data from murine intestinal 
organoids labeled with scEU-seq9, focusing on the enterocyte, enter-
oendocrine, goblet and paneth lineages (Extended Data Fig. 10a and 
Methods). Following parameter estimation, we computed the under-
lying velocity field, inferred transition probabilities and recovered all 
four terminal states (Fig. 5c). Similarly, we recovered all four terminal 
states using classical RNA velocity with the VelocityKernel, that is, 
using CellRank 1 (Extended Data Fig. 10b). We assessed the quality of 

inferred terminal states via cell-type purity, defined as the percentage 
of the most abundant cell type, reasoning that a high cell-type purity 
results from a low inference uncertainty of the underlying transition 
matrix (Methods). Indeed, we observed a high cell-type purity (85% on 
average) for each terminal state using the velocity field derived from 
the metabolic-labeling information but lower cell-type purity (67% on 
average) when relying on classical RNA velocity estimates (Extended 
Data Fig. 10c). Additionally, CellRank 2 outperformed CellRank 1 in 
terms of the TSI score (TSI = 0.81 and TSI = 0.71, respectively; Extended 
Data Fig. 10d).

We compared our approach with dynamo16, an alternative method 
for estimating cellular dynamics based on metabolic-labeling data. In 
contrast to our approach, dynamo relies on a steady-state assump-
tion, only uses a small subset of cells for parameter inference, does 
not estimate cell-specific rates and infers cellular trajectories deter-
ministically. Applied to the organoid data, dynamo only recovered 
the enterocyte population as a terminal state (Fig. 5c, Extended Data 
Fig. 10e and Methods).

Beyond identifying the most mature cell population in each line-
age, we asked whether our approach ranked known lineage drivers 
higher than competing approaches that do incorporate labeling infor-
mation (dynamo) or that do not (CellRank 1 with scVelo’s dynamical 
model of RNA velocity and a random baseline). To assess the quality 
of each method’s gene ranking, we curated an optimally ranked list 
of known regulators and markers54 of each lineage and compared 
each method’s ranking to it (Methods). As dynamo only identified 
enterocytes as a terminal cluster, it could not rank drivers of any other 
lineage. Using CellRank 2 based on labeling information achieved the 
best ranking for each of the four terminal states (Fig. 5d and Extended 
Data Fig. 10f) and notably outperformed competing approaches, 
including CellRank 1, both when correlating gene expression and the 
inferred transcription rates with fate probabilities to identify putative 
driver genes.

The estimated cell- and gene-specific kinetic rates enabled us 
to investigate how these lineage-correlated genes are regulated by 
mRNA transcription and degradation. Analyzing the regulatory strat-
egies of known markers and regulators ranked among the top 100 
lineage-correlated genes for the goblet lineage revealed two different 
regulatory strategies (Fig. 5e). The first strategy increases transcrip-
tion rates with decreasing degradation rates (for example, Spdef, Sytl2 
and Fcgbp) and the second simultaneously increases transcription and 
degradation rates (for example, Atp2a3, Tff3 and Rassf6); both align 
with earlier findings of cooperative (case 1) and destructive (case 2) 
regulation strategies9. Although it is so far not possible to directly 
measure transcription and degradation rates in single-cell sequencing 
protocols, the increase in transcription rate aligns with the role of these 
genes as regulators and markers of the goblet lineage54. Similarly, in 
the enterocyte lineage, this same set of genes predominantly exhibits 
either (1) a decreased transcription accompanied by an increase in 
degradation rate (cooperative) or (2) an increase/decrease of both 
rates (destructive; Fig. 5f).

Discussion
CellRank 2 is a robust, modular and scalable framework to infer and 
study single-cell trajectories and fate decisions. By separating the 
inference and analysis of transition matrices via kernels and estima-
tors, respectively, CellRank 2 accommodates diverse data modali-
ties and overcomes the limitations of single data-type approaches 
in a consistent and unified manner. Our tool successfully performed 
pseudotime-based analysis of human hematopoiesis and deciphered 
gene dynamics during human endoderm development using stemness 
estimates. Notably, the modular and scalable design facilitated the 
rapid integration of each data modality and allowed CellRank 2 to 
analyze much larger datasets compared to previous approaches and 
implementations.
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Developing an efficient OT-based kernel allowed us to integrate 
time-series data, considering both inter- and intra-time point informa-
tion. With this formulation, we identified a putative progenitor popula-
tion of medullary thymic epithelial cells missed by methods that ignore 
dynamics within time points. Recently, time-course studies have been 
combined with genetic lineage tracing55–58 or spatial resolution59–61 and 

emerging computational methods21–24 use this information to map cells 
more faithfully across time. These enhanced inter-time point mappings 
can be used with our RealTimeKernel for further analysis, as demon-
strated for lineage-traced Caenorhabditis elegans data in moslin23 and 
spatiotemporal mouse embryogenesis data in moscot24. These appli-
cations highlight the importance of our view-agnostic framework for 
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Fig. 5 | Quantifying lineage-specific regulation strategies through metabolic 
labeling. a, Cells are metabolically labeled in pulse–chase experiments9 followed 
by simultaneous sequencing. Pulse experiments involve incubation with 
nucleoside analogs for varying durations; in chase experiments, cellular mRNA 
fully incorporates nucleoside analogs during a long incubation, followed by 
washing out of these nucleosides for varying durations. b, For each cell, gene and 
labeling duration, we identify the number of neighbors such that a predefined 
number of cells with non-trivial counts are included in the neighborhood, 
illustrated here for an exemplary cell A. These cells are then used to estimate 
cell and gene-specific transcription and degradation rates α and γ, respectively, 

to model the dynamics of labeled mRNA. c, UMAP embedding highlighting 
terminal states identified using CellRank 2 and dynamo. Green ticks indicate that 
a method recovered the corresponding terminal state, and red crosses indicate 
that the terminal state was not identified. d, Ranking of drivers for each lineage 
identified by different methods. Dynamo identified only enterocytes as terminal 
and, thus, provides a gene ranking only for this lineage. For dynamo, the mean 
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analyzing increasingly large, complex and multi-modal time-course 
studies. Additionally, Mellon62, a recently proposed alternative approach 
for continuous analysis of time-course data, could improve our map-
pings by incorporating their density estimates in the OT problem.

Our kernel-estimator design proved particularly valuable 
when integrating metabolic labeling to estimate cell-specific mRNA 
transcription and degradation rates. We demonstrated the ability 
of metabolic-labeling data to overcome the intrinsic limitations of 
splicing-based velocity inference by successfully identifying all lineages 
in gut organoid differentiation. Combining the inferred kinetic rates 
with CellRank 2 also makes it possible to study gene regulatory strate-
gies underlying cellular state changes, as we showed for the goblet and 
enterocyte lineages. Parallel to our approach, others developed velvet63 
and storm64 to estimate cellular dynamics from metabolic-labeling 
data; however, compared to our approach, velvet does not estimate 
transcription rates and assumes constant degradation rates across 
all cells. While storm relaxes this assumption, it does so only through 
post-processing steps. Additionally, storm relies on deterministic 
downstream analyses. In contrast, CellRank 2 estimates cell-specific 
transcription and degradation rates and offers probabilistic down-
stream analysis through flexible Markov-chain modeling.

Recent experimental advances combine single-cell 
metabolic-labeling techniques with droplet-based assays11,65 or 
split-pool barcoding approaches10,63 to label transcripts at atlas scale 
and demonstrate metabolic labeling for in vivo systems66 and in the 
context of spatially resolved assays13, underscoring the need for scal-
able analytical approaches as proposed in this study. We aim to expand 
our framework further by simultaneously inferring kinetic rates and 
ordering cells along differentiation trajectories.

We have introduced kernels that make use of different types of 
directional information of cellular state changes (Extended Data Fig. 1). 
If metabolic labels from pulse (chase) experiments for at least two 
(three) labeling durations are available, our proposed method to infer a 
metabolic-labeling informed vector field is suitable. The RealTimeKer-
nel is applicable for time series in which time points are closely spaced 
with respect to the underlying dynamical process. The VelocityKernel 
can be used with RNA velocity for systems that meet the assumptions of 
RNA velocity inference methods67,68. Finally, the PseudotimeKernel can 
enhance the understanding of cellular state changes if a unique initial 
state is identifiable and differentiation proceeds unidirectionally, and 
the CytoTRACEKernel can be used when the initial state is unknown. 
Notably, the proposed kernels lead to different results if the underlying 
assumptions are violated or not sufficiently satisfied (Supplementary 
Note 1). For example, the VelocityKernel failed to faithfully recapitulate 
the known differentiation hierarchy of hematopoiesis due to unsatis-
fied assumptions of the RNA velocity model. Different kernels can be 
combined with user-defined global weights if multiple criteria are met, 
as we demonstrated for the RealTimeKernel; other studies used Cell-
Rank 2’s kernel combinations to study the developmental processes in 
epicardioids69 and to reveal the developmental history during human 
cortical gyrification70, for example. In the future, we plan to introduce 
local kernel combinations that would involve kernel weights based on 
the relative position of cells within the phenotypic manifold, allowing 
for context-dependent integration of multiple data sources.

Identifying putative driver genes is another aspect that can be 
extended in future work. Currently, we rank putative driver genes 
by correlating fate probabilities with gene expression. Although this 
approach has proven powerful, as shown in various applications, it is 
solely based on correlation. To unravel the causal mechanisms link-
ing molecular properties and changes to fate decisions, perturbation 
data and causal inference71 can be combined with CellRank 2. This 
combination will ultimately enhance our understanding of underlying 
molecular drivers. Overall, we anticipate our framework to be crucial in 
understanding and conceptualizing fate choice as single-cell datasets 
grow in scale and diversity.
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Methods
CellRank 2: a unified framework to probabilistically model 
cellular state changes
To overcome the inherent limitations of RNA velocity and unify TI 
across different data views, we developed CellRank 2; our framework 
describes cellular dynamics probabilistically, as proposed in our earlier 
work14. Specifically, we introduced the first probabilistic modeling 
framework that automatically determines the direction of cellular state 
changes to extend TI beyond normal development. Generalizing this 
paradigm to different biological priors and guaranteeing applicability 
in many scenarios required us to rethink the CellRank structure entirely. 
To this end, we base our new version on three key principles:

 1. Robustness: fate restriction is a gradual, noisy process requir-
ing probabilistic treatment. Therefore, we use Markov chains 
to describe stochastic fate transitions, with each state of the 
Markov chain representing one cell.

 2. Modularity: quantifying transition probabilities between cells 
is independent of analyzing them. Thus, we modularized the 
CellRank framework into kernels to compute transition prob-
abilities and estimators to analyze transition probabilities. This 
structure guarantees flexibility in applications and is easily 
extensible.

 3. Scalability: we assume each cell can transition into a small set of 
possible descendant states. Consequently, transition matrices 
are sparse, and computations scale to vast cell numbers  
(Extended Data Fig. 2).

Innovations in CellRank 2. Our design principles allowed us to improve 
our original work in three major aspects:

 1. We design a modular interface that allows us to decouple the 
construction of a Markov chain from the process of formulating 
a hypothesis based on the Markov chain.

 2. We introduce the PseudotimeKernel, CytoTRACEKernel and 
RealTimeKernel, as well as a method to infer kinetic rates 
from metabolic-labeling data, to render CellRank 2 applica-
ble beyond RNA velocity; we do so by using a pseudotime, a 
measure of developmental potential, time-course data and 
metabolic-labeling information, respectively.

 3. We make our framework faster by accelerating our main estima-
tor by one order of magnitude, easier to use by refactoring our 
codebase and more interpretable by visualizing kernel dynam-
ics via random walks.

Key outputs of CellRank 2. Although inputs to CellRank 2 are 
kernel-dependent (Extended Data Fig. 1), outputs are consistent across 
all kernels:

•	 Initial, intermediate and terminal states of cellular trajectories.
•	 Fate probabilities, quantifying how likely each cell is to reach 

each terminal (or intermediate) state.
•	 Gene expression trends specific to each identified trajectory.
•	 Putative driver genes of fate decisions through correlating gene 

expression with fate probability.
•	 Dedicated visualization tools for all key outputs, for example, 

circular embeddings for fate probabilities, heatmaps for cas-
cades of trajectory-specific gene expression and line plots for 
gene trends along different trajectories.

A conceptual overview of kernels in CellRank 2. Decoupling infer-
ence of transition probability from their analysis. The typical CellRank 
2 workflow consists of two steps: (1) estimating cell–cell transition 
probabilities and (2) deriving biological insights based on these esti-
mates. Previously, we tied these two steps together14 but realized that 
decoupling them yields a much more powerful and flexible modeling 

framework. Treating each step separately is possible as analyzing transi-
tion matrices is independent of their construction. For example, esti-
mating transition probabilities based on RNA velocity or a pseudotime 
does not change how initial and terminal states are inferred or fate prob-
abilities estimated. Consequently, modularizing our problem-specific 
framework generalizes the corresponding analysis tools to other data 
modalities. The two steps of our inference workflow are conceptualized 
by kernels and estimators, respectively.

Kernels estimate transition matrices T ∈ ℝnc×nc at a cellular resolu-
tion with nc denoting the number of cells; row Tj,: represents the transition  
probabilities of cell j toward putative descendants. With CellRank 2,  
we provide means to quantify fate probabilities based on RNA velocity 
(VelocityKernel), pseudotime (PseudotimeKernel), a developmental 
potential (CytoTRACEKernel), experimental time points (RealTimeK-
ernel) and metabolic labeling (metabolic-labeling-based vector field 
with the VelocityKernel).

Initial state identification. Kernel-derived transition matrices quan-
tify probabilities of cell transitions to putative progenitor states. To 
estimate initial states, instead, we work with the transposed transi-
tion matrix, thereby quantifying transition probabilities from pro-
genitor cells to their putative ancestors. Each kernel automatically 
row-normalizes the transposed transition matrix.

Kernel combination. Different data modalities may capture different 
aspects of biological processes. To take advantage of multiple data 
modalities, kernels can be combined to quantify the likely state change 
in a single, aggregated transition matrix. Consider two kernels k(1) 
and k(2) with corresponding transition matrices T(1) and T(2), respec-
tively. CellRank 2 allows combining the two kernels into a joint kernel 
k defined as k = αk(1) + (1 − α)k(2) with a weight parameter α ∈ [0, 1]. The 
corresponding normalized transition matrix T is computed automati-
cally and is thus, given by

Tjk = αT (1)
jk + (1 − α)T (2)

jk .

The terminal state identification score for kernel comparison. If ter-
minal states of the studied system are known a priori, kernels can 
be compared by considering how well the kernels identify terminal 
states with an increasing number of macrostates; an optimal strategy 
identifies a new terminal state with every added macrostate until all 
terminal states have been identified. We summarize the performance 
of an arbitrary kernel relative to such an optimal identification with 
the TSI score: consider a system containing m terminal states and the 
function f that assigns each number of macrostates n the correspond-
ing number of identified terminal states. In the case of a strategy that 
identifies terminal states optimally, fopt describes the step function

fopt(n) = {
n, n < m

m, n ≥ m.

We define the TSI score for an arbitrary kernel κ as the area under 
the curve fκ relative to the area under the curve fopt, that is

TSI(κ) =
∑Nmax
n=1 fκ(n)

∑Nmax
n=1 fopt

= 2
m(1 + Nmax −m)

Nmax

∑
n=1

fκ(n),

with maximum number of macrostates assessed Nmax.

Kernel comparison via the cross-boundary correctness score. While the 
CellRank 2 framework aims at quantifying cell trajectories, correct 
transitions between coarse cell states, such as cell types, are sometimes 
known a priori. In such cases, the CBC score29 can be used to compare 
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two kernels: Consider two cell states C1 and C2, where C2 is a progenitor 
state of C1, a precomputed nearest-neighbor graph with weights wjk 
between observations j and k and denote the neighborhood of observa-
tion j by N( j ). The representation of observation j is denoted by xj; all 
cell representations are collected in the matrix X. We define the bound-
ary of C1 to C2 as all cells with at least one neighbor in C2 and denote it 
by ∂1→2C1, that is

∂1→2C1 = { j ∈ C1|∃k ∈ N( j ) ∶ k ∈ C2}

For every boundary cell, we empirically define the velocity v(j) of obser-
vation j ∈ C1 as

v( j ) = ∑
k∈N( j )∩C2

wjk (xk − xj) .

Similarly, for a given kernel κ, we estimate the velocity of observa-
tion j via

v(κ)( j ) = T (κ)
j,∶ X − xj,

where T (κ)
j,∶  denotes the jth row of the transition matrix computed with 

kernel κ. The CBC score β(κ)(j) of cell j under kernel κ is then given by the 
Pearson correlation between v(j) and v(κ)(j).

To compare two kernels κ1 and κ2, for each observation, we com-
pute the log ratio of the corresponding CBC scores β(κ1)( j ) and β(κ2)( j ). 
If the velocity estimate based on kernel κ1 aligns more with the empirical 
estimate, the log ratio is positive and negative otherwise. A one-sided 
Welch’s t-test can be used to test if kernel κ1 significantly outperforms 
kernel κ2.

Visualizing kernel dynamics: random walks and projections. Although 
inferred transition probabilities are predominantly used for more 
in-depth data analyses based on estimators, we also provide means 
to visualize cellular dynamics directly based on the kernel out-
put. These visualizations are intended to provide a preliminary  
understanding of the underlying dynamics and serve as a starting 
point for further analyses. Here, we enable studying the evolu-
tion of cellular state change either based on random walks in the 
high-dimensional gene expression space or a projection of the 
high-dimensional vector field onto a low-dimensional latent space 
representation of the data.

Transition matrices induce random walks modeling the evolution 
of individual cells. Given a cell j, we successively sample its future state 
k under the given transition matrix. Starting cells for random walks can 
be sampled either at random or from a user-defined early cell cluster. 
We terminate random walks when a predefined maximum number of 
steps has been performed or when a predefined set of terminal cells 
has been reached. By studying multiple random walks, the expected 
dynamics are revealed. Random walks, including their start and final 
cells, can then be visualized in a low-dimensional representation of the 
data. Within our framework, random walks are computed efficiently 
via a parallel implementation.

Previously, the most popular approach for visualizing RNA velocity 
has been the projection of the high-dimensional vector field onto a 
low-dimensional latent space representation7. With CellRank 2, we 
generalize this concept to any kernel based on a k-nearest-neighbor 
graph, that is, the PseudotimeKernel, CytoTRACEKernel and Veloci-
tyKernel. The projection for a given cell is calculated as follows: Con-
sider a transition matrix T, cell j with neighborhood N( j )  and kj 
neighbors and latent representation zj. The projected velocity vj is then 
given by

vj = ∑
n∈N( j)

(Tjn −
1
kj
) (zn − zj).

While we provide the option to visualize the projected velocity 
stream in low dimensions for specific kernels, we caution against the 
analysis thereof. Previous work7,72,73 highlighted how the projected 
velocity stream is sensitive to many parameters, including the gene 
set, the embedding technique and more (Supplementary Note 1). 
Instead, we encourage visualizing cellular dynamics through random 
walks, sampled independently of the embedding, or through initial 
and terminal states, fate probabilities and other quantities inferred in 
high dimensions through our estimator modules.

A conceptual overview of estimators in CellRank 2. Based on transi-
tion matrices provided by kernels, we enable data-driven knowledge 
discovery. To this end, estimators first identify initial, intermediate and 
terminal states using the precomputed transition matrices. States are 
identified using concepts and results from the rich theory of Markov 
chains. Following this, we enable visualizing trajectory-specific gene 
expression trends and cascades of gene activation14, clustering expres-
sion trends14 or arranging cells in a circular embedding14,74 to summarize 
fate probabilities. We provide the necessary tools for each step of the 
downstream analysis as part of CellRank 2.

The generalized Perron cluster cluster analysis estimator. As in our 
previous work, we compute macrostates and classify them as initial, 
intermediate and terminal by coarse-graining the cell–cell transition 
matrix. This approach is based on generalized Perron cluster cluster 
analysis19,20 (GPCCA), a method initially developed to study conforma-
tional protein dynamics.

Performance improvements of CellRank 2. Faster computation of 
fate probabilities. After estimating cell–cell transition probabilities 
through a kernel and identifying terminal states through an estimator, 
we assess cellular fate toward these terminal states. For each cell, we 
quantify its fate probability, that is, how likely it is to differentiate into 
one of the terminal states. Given our Markov-chain-based framework, 
fate probabilities can be computed in closed form using absorption 
probabilities; however, calculating absorption probabilities directly 
scales cubically in the number of cells. To overcome this computational 
burden, in our previous work, we reformulated the underlying problem 
as a set of linear systems. These linear systems are then solved in paral-
lel using a sparsity-optimized iterative algorithm75; this reformulation 
scales near-linearly14.

Even though our previously proposed reformulation for comput-
ing absorption probabilities achieved a significant increase in per-
formance compared to a naive implementation, we still encountered 
increased runtimes when analyzing larger datasets (Extended Data 
Fig. 2a). To reduce the runtime further, we devised an alternative but 
equivalent approach: Given a terminal state, we previously identified 
nf representative cells, computed absorption probabilities toward 
them, and aggregated them across the nf representative cells to assign 
a single, lineage-specific probability. In CellRank 2, we first combine 
the nf representative cells into a single pseudo-state and compute 
absorption probabilities toward it instead. While the corresponding 
results are mathematically equivalent, ignoring parallelization, this 
new approach is nf times faster. Therefore, with nf = 30 by default, our 
improved implementation results in a 30-fold speed-up.

Extensibility of CellRank 2. While we already provide multiple kernels 
tailored to different data modalities, current and future technologies 
provide additional sources of information. Concrete examples include 
spatially resolved time-course studies59–61 and genetic lineage-tracing 
data55–58, previously already integrated in the CellRank 2 ecosystem23,24. 
Our modular interface makes CellRank 2 easily extensible toward (1) 
alternative single-cell data modalities by including new kernels and (2) 
alternative trajectory descriptions generating different hypotheses 
through new estimators.
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The PseudotimeKernel: incorporating previous knowledge on 
differentiation
Aligning cells along a continuous pseudotime mimicking the under-
lying differentiation process has been studied in many use cases. 
In particular, a pseudotime can be computed for systems where a 
single, known initial cellular state develops unidirectionally into a 
set of unknown terminal states. Based on the assigned pseudotime 
values, we quantify transition probabilities between cells using the 
PseudotimeKernel.

Given a similarity-based nearest-neighbor graph with a corre-
sponding adjacency matrix ̃C , the PseudotimeKernel biases graph 
edges toward increasing pseudotime: consider a reference cell j, one 
of its neighbors k, the corresponding edge weight ̃Cjk and the difference 
between their pseudotimes Δtjk. To favor cellular transitions toward 
increasing pseudotime, the PseudotimeKernel downweighs graph 
edges pointing into the reference cell’s pseudotemporal past while 
leaving the remaining edges unchanged. Edge weights are updated 
according to

Cjk = ̃Cjk f(Δtjk),

with a function f implementing the thresholding scheme. In CellRank 
2, we implement soft and hard thresholding. The soft scheme continu-
ously downweighs edge weights according to

f(Δt) = {
2

ν√1+ebΔt
, Δt < 0

1, Δt ≥ 0.

By default, the parameters b and ν are set to 10 and 0.5, respectively. 
This concept is similar to the scheme proposed by the TI method VIA25. 
In contrast to soft thresholds, hard thresholding follows a stricter 
policy inspired by Palantir5, discarding most edges that point into the 
pseudotemporal past.

The CytoTRACEKernel: inferring directionality from 
developmental potential
CytoTRACE assigns each cell in a given dataset a developmental 
potential18. Score values range from 0 to 1, with 0 and 1 identify-
ing mature and naive cells, respectively. Inverting the score, thus, 
defines a pseudotime for developmental datasets. In CellRank 2, the 
CytoTRACEKernel computes the CytoTRACE score and constructs the 
corresponding pseudotime to calculate a transition matrix as described 
for the PseudotimeKernel.

Adaptation of the CytoTRACE score. When calculating the 
CytoTRACE score on larger datasets, we found the score construc-
tion either intractable due to long runtimes (40,000 to 80,000 cells) 
or failed to compute the score at all (more than 80,000 cells) (Extended 
Data Fig. 2b). Thus, to ensure computational efficiency when recon-
structing the CytoTRACE score for larger datasets, we sought an alter-
native, computationally efficient and numerically highly correlated 
approach.

Conceptually, CytoTRACE proposes that the number of expressed 
genes decreases with cellular maturity. This assumption is biologically 
motivated by less-developed cells regulating their chromatin less 
tightly18. The computation of the CytoTRACE score c with CellRank 2 
is composed of three main steps (Extended Data Fig. 4a). Consider the 
gene expression matrix X and the smoothed gene expression matrix 
X(smoothed) found by nearest-neighbor smoothing as implemented in 
scVelo8 or MAGIC76. For each cell j, we compute the number of genes it 
expresses (GEC ∈ ℕnc), that is

GECj =
ng
∑
k=1

(Xjk > 0),

with indicator function (⋅). The indicator function equates to one if 
its argument holds true and zero otherwise. Next, for each gene, we 
compute its Pearson correlation with GEC, select the top L genes 
(default 200) and subset X(smoothed) to the identified L genes. Finally, we 
mean-aggregate each cell’s gene expression

̃cj =
L
∑
k=1

̃Xjk,

with ̃X ∈ ℝnc×L  denoting the subsetted, smoothed gene expression 
matrix X(smoothed). The CytoTRACE score c is then given by scaling ̃c  to 
the unit interval

cj =
̃cj −min ̃c
max ̃c ,

and the corresponding pseudotime pcyt by inverting c, that is

pcyt = 1 − c.

Comparison of the CytoTRACE score construction. Considering 
the nearest-neighbor-smoothed gene expression matrix, instead of 
an alternative, computationally more costly imputation scheme, is the 
main difference between our adaptation and the original CytoTRACE 
proposal. To impute gene expression, the original implementation 
solves a non-negative least squares regression problem and simulates 
a diffusion process18.

To confirm that our adapted scheme yields numerically similar  
results, we compared the CytoTRACE scores of the original and 
our approach to ground truth time or stage labels on six data-
sets previously used to validate CytoTRACE18 (Extended Data 
Fig. 4b,c). The considered datasets are bone marrow77 (using 10x and  
SmartSeq2), C. elegans embryogenesis78 (subsetted to ciliated  
neurons, hypodermis and seam, or muscle and mesoderm) and 
zebrafish embryogenesis79. For each dataset, the original CytoTRACE 
study derived ground truth time labels using either embryo  
time, stages (C. elegans and zebrafish embryogenesis) or a manual 
assignment (bone marrow). The concordance of each approach with 
ground truth was confirmed by calculating the Spearman rank cor-
relation between the CytoTRACE score and ground truth time or 
stage labels.

The RealTimeKernel: resolving non-equilibria systems 
through time-series data
Commonly used single-cell sequencing protocols are destructive by 
design and offer, thus, only a discrete temporal resolution. Recent 
advances allow reconstructing transcriptomic changes across experi-
mental time points using OT15; however, these approaches focus only 
on inter-time-point information; conversely, the RealTimeKernel incor-
porates both inter- and intra-time-point transitions to draw a more 
complete picture of cellular dynamics.

To quantify inter-time-point transitions, the RealTimeKernel relies 
on WOT15. For each tuple of consecutive time points tj and tj+1, WOT 
identifies a transport map πt j ,t j+1, assigning each cell at time tj its likely 
future state at time tj+1. In addition, we rely on transcriptomic similarity 
to study transcriptomic change within a single time point tj. We com-
bine WOT-based inter-time point transport maps πt j ,t j+1  with 
similarity-based intra-time-point transition matrices ̃Tt j ,t j in a global 
transition matrix T which contains cells from all time points. In the 
global transition matrix T, we place WOT-computed transport maps 
on the first off-diagonal, modeling transitions between subsequent 
time points, and similarity-based transition matrices on the diagonal, 
modeling transitions within each time point (Fig. 4a). We normalize 
each row to sum to one, giving rise to a Markov chain description of 
 the system.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02303-9

Thresholding transport maps for scalability. In the single-cell 
domain, most OT-based approaches, including WOT, rely on entropic 
regularization36 to speed up the computation of transport maps; how-
ever, entropic regularization leads to dense transport maps πt j ,t j+1, 
rendering downstream computations based on the RealTimeKernel 
extremely expensive for larger datasets (Extended Data Fig. 6c); most 
of the entries found in πt j ,t j+1 are extremely small, though. As a result, 
these entries contribute only marginally to the observed dynamics 
(Extended Data Fig. 6d).

To ensure fast RealTimeKernel-based computations, we devised an 
adaptive thresholding scheme resulting in sparse transition matrices. 
Transition probabilities falling below a certain threshold are set to 
zero, all others are kept unchanged. Per default, we identify the small-
est threshold τ that does not remove all transitions for any cell, that is

τ = min
j,k∈{1,…,nc}

Tjk, s.t.∀j ∈ {1,… ,nc} ∑
k∈{1,…,nc}

(τ ≥ Tjk) ≥ 1,

with indicator function (⋅). Alternatively, the same heuristic can be 
applied for each time point independently or a user-defined threshold 
may be used. Following thresholding, we re-normalize the transition 
matrix such that rows sum to one again.

To verify that thresholding the transition matrix does not alter 
biological findings, we compared fate probabilities derived from the 
original and the thresholded transition matrix on a dataset of MEF 
reprogramming15. For each terminal state, we computed the Pearson 
correlation between fate probabilities estimated by each approach 
(Extended Data Fig. 6d).

Estimating cellular fate from time-resolved single-cell RNA 
sequencing data
Traditional single-cell sequencing protocols include cell lysis and 
are, thus, destructive by nature. Consequently, the transcriptome 
can only be measured once, resulting in snapshot data. Recently, 
metabolic-labeling approaches have been extended to single-cell 
resolution, providing an opportunity to overcome this challenge by 
measuring newly synthesized mRNA in a given time window80. To 
label transcripts, current protocols rely on the nucleoside analogs 
4-thiouridine (4sU; scSLAM-seq12, sci-fate10, NASC-seq81, scNT-seq11, 
Well-TEMP-seq82 and others83) or 5-ethynyl-uridine (5EU; scEU-seq9, 
spinDrop65, TEMPOmap13 and others66).

Our study considers two types of labeling experiments: pulse and 
chase9. Pulse experiments consist of labeling n cell cultures, starting at 
times tj, j ∈ {1, …, n}. Conversely, in chase experiments, cells are exposed 
to nucleoside analogs for long enough (for example, more than 24 h), 
resulting in only labeled transcripts. Following, these labeled transcripts 
are washed out, starting at times tj. Similar to the pulse experiment, 
chase experiments include, in general, washing out at n different times. 
Finally, in both types of experiments, all cells are sequenced at a time tf, 
naturally defining the labeling time (or duration) by τ( j )l = tf − t j.

Pulse and chase experiments allow measuring the production of 
mRNA. Here, we estimate cell-specific transcription and degradation 
rates, similar to a previous proposal in the scEU-seq study9. Specifically, 
for a particular gene, we assume mRNA levels r to evolve according to

̇r = α − γr,

with transcription rate α and degradation rate γ. The corresponding 
solution is given by

r(t) = r0e−γt +
α
γ (1 − e

−γt) .

Note that here, we assume gene-specific models, that is, gene–
gene interactions are neglected. In the following, we will identify mRNA 

measurements from pulse and chase experiments by the superscripts 
(p) and (c), respectively.

Pulse experiments. Pulse experiments study the production of labeled 
RNA. As labeling starts at tk, and no labeled transcripts exist before, the 
abundance of labeled mRNA rl at times tk and τ(k)l  is given by

r(p)l (tk|α, γ) = 0,

and

r(p)l (τ(k)l |α, γ) = α
γ (1 − e

−γτ(k)l ) .

Chase experiments
In chase experiments, mRNA degradation is studied by washing out 
labeled transcripts. Thus, labeled mRNA r(c)l  at time τ(k)l  follows

r(c)l (τ(k)l |α, γ, r0) = r0 −
α
γ (1 − e

−γτ(k)l ) ,

where r0 corresponds to the mRNA level when starting to wash out 
labeled transcripts. Before washing out labeled mRNA, no unlabeled 
transcripts are present, and thus, their abundance at time τ(k)l  is mod-
eled as

r(c)u (τ(k)l |α, γ) = α
γ (1 − e

−γτ(k)l ) .

Parameter inference. Considering measurements from both chase 
and pulse experiments, we denote the respective set of cells by C  and 
P. To estimate cell j and gene g specific model parameters α(j, g), γ(j, g), 
and r( j,g)0 , we proceed as follows:

 1. Consider cell j and its principal component analysis (PCA) 
representation z(PCA)j . For each labeling duration k, we deter-
mine the distance in PCA space between the reference cell j to 
each cell with labeling duration τ(k)l . For each gene g, we then 
identify the 20 nearest cells with non-trivial expression in g. 
These cells, as well as all closer neighbors (with zero counts), 
define the set N(k)g , which we consider for parameter inference.

 2. To estimate model parameters, we minimize the quadratic loss 
ℓ defined as

ℓ (r( j,g)0 ,α( j,g), γ( j,g)) = ∑
k

∑
j∈N(k)g

[rl, j (τ(k)l ) − ( j ∈ C)r(c)l (τ(k)l |α, γ, r0)

− ( j ∈ P)r(p)l (τ(k)l |α, γ)]
2
.

 
Here, (x ∈ X) denotes the characteristic function equaling to 1 if x ∈ X , 
and 0 otherwise. We note that estimating the parameters of a pulse 
(chase) experiment requires at least two (three) labeling durations.

Our approach differs from the scEU-seq study9 mainly in two ways. 
First, we base our analysis on total RNA, not spliced RNA. We reasoned 
that this approach circumvents limitations of identifying unspliced and 
spliced counts. Second, we infer rates for all genes and not only those 
changing substantially during development.

Method comparison. To benchmark the performance of different 
approaches, we identified and ranked potential drivers of every lineage 
using each approach. We compared this ranking to a curated list of 
known lineage markers and regulators. If the literature-based gene set 
were complete, an optimal method would rank the corresponding 
genes highest. Consequently, for each method, we quantified its 
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performance as follows. First, consider a lineage, a set of known drivers 
D and a method m. Further, denote the set of genes by G, and for g ∈ G, 
identify its assigned rank by a superscript, for example, g(j) for the jth 
ranked gene g. Next, for each threshold N ∈ ℕ  and N ≤ |G|, we  
computed how many known markers/regulators were ranked among 
the top N genes with

φ(m)(N ) = ||{ g ( j )| j ≤ N ∧ g ( j ) ∈ D}|| .

Thus, we call an assignment optimal when

φ(opt)(N ) = {
φ(m)(N ) + 1, N < |D|

|D|, otherwise .

Next, for each method m, we computed the area under the curve, 
AUC(m) of φ(m), that is

AUC (m) =
|G|
∑
N=1

φ(m)(N)

and its relative area under the curve, AUCrel(m) as

AUCrel(m) =
AUC(m)
AUC∗ ,

with

AUC∗ = |D|(|D| + 1)
2 + (|G| − |D|)|D|,

that is, the area under the curve of an optimal assignment.

Datasets
Unless stated otherwise, all functions were run with default parameters. 
We ran our analyses in Python, relying on the standard single-cell 
biology tools Scanpy84 and AnnData85; we specify other relevant pack-
ages where applicable. For Scanpy-based workflows84, we computed 
PCA embeddings, neighbor graphs and UMAP embeddings86 with the 
scanpy.tl.pca, scanpy.pp.neighbors and scanpy.tl.umap functions, 
respectively.

For analyses based on CellRank 2 kernels, the kernel method com-
pute_transition_matrix computed transition probabilities, and the ker-
nel method cbc the CBC score. We used the GPCCA estimator functions 
to compute macrostates (compute_macrostates)20 and the TSI score 
(tsi), define terminal states (set_terminal_states), compute fate prob-
abilities (compute_fate_probabilities) and identify lineage-correlated 
genes (compute_lineage_drivers). To order the putative regulators 
according to their peak expression in pseudotime, we first fitted gener-
alized additive models to describe gene expression change over pseu-
dotime with cellrank.models.GAM. Following this, we visualized the 
putative cascade of regulation with the cellrank.pl.heatmap function.

Human hematopoiesis. All analyses were conducted on the dataset 
preprocessed by the original study26, subsetted to the normoblast, 
dendritic and monocyte lineages according to the provided cell type 
annotation (‘HSC’, ‘MK/E progenitors’, ‘Proerythroblast’, ‘Erythroblast’, 
‘Normoblast’, ‘cDC2’, ‘pDC’, ‘G/M prog’ and ‘CD14+ Mono’).

Pseudotime-based analysis. After subsetting the data, we computed the 
nearest-neighbor graph on the precomputed MultiVI84,87 latent space 
and the UMAP embedding with Scanpy. Following this, we computed 
15 diffusion components88 (scanpy.tl.diffmap) to then assign diffusion 
pseudotime values using Scanpy’s dpt1,88 function with n_dcs=6. We 
identified the root cell as the hematopoietic stem cell with the largest 
fifth diffusion component.

We computed the transition matrix with CellRank 2’s Pseudo-
timeKernel and thresholding_scheme=‘soft’ and computed six 
macrostates20. We defined the terminal states ‘pDC’, ‘CD14+ Mono’, 
‘Normoblast’ and ‘cDC2’ that corresponded to the four macrostates 
with the largest macrostate purity. After quantifying fate probabilities, 
we identified putative pDC lineage drivers with our correlation-based 
procedure, restricted to the hematopoietic stem cell (HSC) and pDC 
clusters (lineages=[‘pDC’] and clusters=[‘HSC’, ‘pDC’]). We quantified 
the corresponding gene trends in the same way as described in our 
previous work14.

RNA velocity-based analysis. To infer RNA velocity, we generally fol-
lowed the instructions provided by scVelo’s8 tutorials. First, we filtered 
for genes expressed in at least 20 cells in both unspliced and spliced 
counts with scVelo’s scvelo.pp.filter_genes function and normalized 
counts with scvelo.pp.normalize_per_cell. The neighbor graph was 
again computed on the MultiVI latent space, followed by count impu-
tation through first-order moments with scVelo’s scvelo.pp.moments 
function. We then inferred RNA velocity with the scvelo.tl.recover_
dymanics function.

To quantify cellular fate, we computed transition matrices with the 
VelocityKernel and ConnectivityKernel and combined them with 0.8 
and 0.2 weight, respectively, as proposed by the CellRank 1 workflow. 
We computed macrostates and fate probabilities using the GPCCA 
estimator as described for the pseudotime-based analysis. As the 
RNA-velocity-based analysis did not identify the cDC cluster as a mac-
rostate (Extended Data Fig. 3b,f), we computed three macrostates cor-
responding to the terminal states normoblasts, monocytes and pDCs.

Embryoid body development. Data preprocessing. We followed Scan-
py’s workflow to process the raw count matrix. As a first step, we filtered 
out genes expressed in fewer than ten cells (scanpy.pp.filter_genes 
with min_cells=10). Following, we removed cells with more than 17,500 
counts, cells for which more than 15% of counts originate from mito-
chondrial genes and cells expressing more than 3,500 genes. Following, 
we size normalized cells to 10,000 (scanpy.pp.normalize_total with 
total_sum=1e4), applied a log1p-transformation (scanpy.pp.log1p) and 
annotated highly variable genes with scanpy.pp.highly_variable_genes. 
We based all further analyses on these highly variable genes and the 
marker genes identified by the study introducing the embryoid body 
development dataset32. The neighbor graph was computed for 30 
neighbors using 30 principal components (PCs).

CytoTRACEKernel analysis. To compute the CytoTRACE score18, we first 
imputed the normalized count matrix by first-order moments with 
scVelo’s scvelo.pp.moments function; the score itself was calculated 
with the compute_cytotrace method of the CytoTRACEKernel. We 
computed the transition matrix with the soft thresholding scheme 
(thresholding_scheme=‘soft’) and nu=5. Putative drivers of the endo-
derm lineage were identified by focusing on the stem cell and endo-
derm clusters (lineages=[‘EN-1’] and clusters=[‘ESC’]).

Pseudotime construction. To compute DPT1, we calculated diffusion 
components (scanpy.tl.diffmap) and identified the putative root cell 
as the minimum in the first diffusion component. We then assigned 
DPT values using Scanpy’s dpt function.

For the Palantir pseudotime5, we used the corresponding Python 
package and followed the steps outlined in its documentation. As a first 
step, we computed the first five diffusion components with palantir.
utils.run_diffusion_maps with n_components=5. Following this, we 
identified the multi-scale space of the data (palantir.utils.determine_
multiscale_space) and imputed the data using MAGIC76 (palantir.utils.
run_magic_imputation). Finally, we computed the Palantir pseudotime 
via palantir.core.run_palantir using the same root cell as for our DPT 
analysis, and num_waypoints=500.
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Mouse embryonic fibroblast reprogramming. Data preprocessing. 
For analyzing the dataset of MEF reprogramming toward induced pluri-
potent stem cells15, we subsetted to the serum condition and added the 
category ‘MEF/other’ to the cell set annotations. Then, we computed 
the PCA embedding and nearest-neighbor graph.

WOT-based analysis. To construct transport maps, we used the wot 
package15 and followed the provided tutorials. First, we instantiated 
an OT model (wot.ot.OTModel with day_field=‘day’) and computed 
the transport maps next (compute_all_transport_maps). We defined 
the target cell sets based on the provided cell type annotation and 
quantified WOT-based fates toward the last experimental time point 
through the OT model’s fates function with at_time=18.

RealTimeKernel-based analysis. For our RealTimeKernel-based analysis, 
we relied on the transport maps computed with wot. When construct-
ing the transition matrix, we considered within-time-point transitions 
for every experimental time point and weighed them by 0.2 (self_
transitions=‘all’, conn_weight=0.2).

To construct the real-time-informed pseudotime, we symmetrized 
the global transition matrix and row-normalized it. The symmetrized 
matrix defined the _transitions_sym attribute of Scanpy’s DPT class. 
Following, we computed diffusion components with the DPT class’ 
compute_eigen function. The root cell for DPT was identified as an 
extremum of the most immature cell state within the first experimen-
tal time point in diffusion space. Here, we selected the maximum in 
the first diffusion component. Finally, we computed DPT itself with 
scanpy.tl.dpt.

We computed fate probabilities toward the four terminal states 
according to our canonical pipeline (identification of four macrostates 
followed by fate quantification).

Pseudotime construction. To assign each observation its DPT1 value, 
irrespective of experimental time points, we computed diffusion maps 
(scanpy.tl.diffmap) and identified the root cell as the maximum value 
in the first diffusion component. Then, we computed DPT with scanpy.
tl.dpt.

For constructing the Palantir pseudotime5, irrespective of experi-
mental time points, we followed the same steps as described for the 
embryoid body development data.

Pharyngeal endoderm development. Data preprocessing. The 
pharyngeal endoderm development dataset provided by the original 
study37 had already been filtered for high-quality cells and genes. Con-
sequently, we directly quantified highly expressed genes using Scanpy’s 
highly_variable_genes function. Then, we computed the PCA embed-
ding and nearest-neighbor graph based on 30 PCs and 30 neighbors 
(n_pcs=30, n_neighbors=30).

RealTimeKernel-based analysis. To study the pharyngeal endoderm 
development dataset with the RealTimeKernel, we followed the WOT 
tutorials to compute transport maps. First, we instantiated an OT model 
(wot.ot.OTModel with day_field=‘day’) and computed the transport 
maps next (compute_all_transport_maps). For the RealTimeKernel, we 
considered within-time-point transitions for every experimental time 
point and weighed them by 0.1 (self_transitions=‘all’, conn_weight=0.1).

We estimated terminal states using the GPCCA estimator with 
default settings by computing 13 macrostates and selecting the known 
terminal clusters. After calculating fate probabilities, for each line-
age, we identified lineage-correlated genes as candidate driver genes 
with GPCCA.compute_lineage_drivers by restricting the analysis to 
progenitors of the corresponding lineage and excluding cell cycle, 
mitochondrial, ribosomal and hemoglobin genes89.

To study mTEC development, we subsetted to the early thymus, 
ultimobranchial body (UBB), parathyroid, cTEC and mTEC clusters and 

processed the data as described for the entire dataset. We computed 
the UMAP embedding using Scanpy’s umap function. To compute the 
transition matrix, we proceeded in the same manner as described for 
the entire dataset. For TSI, fate quantification, and driver analysis, we 
followed the standard CellRank 2 pipeline.

WOT-based analysis. To identify putative drivers of the mTEC 
lineage with WOT, we used the same transport maps as in our 
RealTimeKernel-based analysis. We defined the target cell sets based 
on the provided cell type annotation considering only observations 
from the last time point and computed the pullback distribution from 
the mTEC cluster at embryonic day (E) 12.5 to E10.5 cells as it consists 
of progenitor cells (pull_back). The sequence of ancestor distributions 
was quantified with the transport model’s trajectories method. WOT 
identifies putative drivers of the mTEC lineage as genes differentially 
expressed in cells most fated toward the mTEC cluster. We used the wot.
tmap.diff_exp function to construct the corresponding gene ranking.

Classical differential expression analysis. As an alternative means to 
identify putative drivers of the mTEC lineage based on the fate prob-
abilities assigned by our RealTimeKernel-based analysis, we defined 
two groups of cells within the general progenitor pool, those with 
mTEC fate probability greater than 0.5 and all other progenitor cells. We 
then identified differentially expressed genes between putative mTEC 
progenitors and all others with Scanpy’s rank_genes_groups function.

Intestinal organoids. Data preprocessing. To preprocess the dataset of 
intestinal organoids, we first excluded dimethylsulfoxide control cells 
and cells labeled as tuft cells. Following, we removed genes with fewer 
than 50 counts, size normalized total and labeled counts, and identified 
the 2,000 most highly variable genes with scvelo.pp.filter_and_nor-
malize. The neighbor graph was constructed based on 30 PCs and 30 
neighbors. Finally, we computed first-order-smoothed labeled and 
total mRNA counts.

Parameter estimation. To estimate kinetic rate parameters, we made use 
of our new inference scheme for metabolic-labeling data implemented 
as part of the scVelo package. We first masked observations according 
to their labeling time with scvelo.inference.get_labeling_time_mask. 
Next, we computed pairwise distances between observations in PCA 
space and sorted observations in ascending order for each time point 
using scvelo.inference.get_obs_dist_argsort. This information allowed 
us to identify, for each cell and gene, how many neighbors to consider 
during parameter estimation to include 20 non-zero observations 
smoothed by first-order moments. This calculation was performed 
via scvelo.inference.get_n_neighbors. Finally, we estimated model 
parameters based on smoothed labeled counts with scvelo.inference.
get_parameters.

Labeling velocity-based analysis. To quantify cell-specific fates, we first 
computed labeled velocities based on the estimated parameters. Then, 
we computed a transition matrix by combining the VelocityKernel 
and ConnectivityKernel with a 0.8 and 0.2 weight, respectively. We 
then inferred 12 macrostates and fate probabilities toward the known 
terminal states. Lineage-specific drivers were identified by restricting 
the correlation-based analysis to the corresponding terminal state and 
stem cell cluster. For putative driver gene ranking based on gene expres-
sion, we correlated fate probabilities with smoothed labeled counts.

Dynamo-based analysis. To analyze the intestinal organoid data with 
dynamo16, we followed the tutorials provided in the documentation 
of the Python package. As a first step, this required us to compute the 
ratio of new to total RNA with dynamo.preprocessing.utils.calc_new_
to_total_ratio followed by first-order moment imputation of total and 
new RNA using dynamo.tl.moments with our connectivity matrix and 
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group=‘time’. Dynamo’s dynamo.tl.dynamics estimated the veloci-
ties with function arguments model=‘deterministic’, tkey=‘time’ and 
assumption_mRNA=‘ss’.

Following velocity estimation, we quantified fixed points by 
following dynamo’s corresponding pipeline. First, we projected the 
high-dimensional velocity field of new RNA onto the UMAP embedding 
using dynamo.tl.cell_velocities with ekey=‘M_n’ and vkey=‘velocity_N’. 
Fixed points were then identified by calling dynamo.tl.VectorField with 
basis=‘umap’ and dynamo.vf.topography. As a final step, we identified 
all stable fixed points.

Given the stable fixed points of the system, we identified 
lineage-correlated genes regulating cell differentiation toward them 
using dynamo’s least action path analysis. As a first step, this workflow 
required us to compute a UMAP embedding based on new RNA with 
dynamo.tl.reduceDimension and layer=‘X_new’, followed by the projec-
tion of the velocity field onto the PCA space (dynamo.tl.cell_velocities 
with basis=‘pca’) and learning a vector field function based on this 
projection (dynamo.tl.VectorField with basis=‘pca’). Next, we defined 
terminal states as the 30 nearest neighbors in UMAP space of each sta-
ble fixed point. For initial states, we computed the 30 nearest neighbors 
of unstable fixed points of the stem cell cluster. To compute the least 
action paths and account for uncertainty in initial and terminal state 
assignment, we randomly sampled ten pairs of initial and terminal cells 
and estimated the paths between them with dynamo.pd.least_action. 
Dynamo’s dynamo.pd.GeneTrajectory class then identified genes asso-
ciated with the emergence of a terminal state. The pairwise sampling 
of initial and terminal cells defined the confidence bands of dynamo’s 
gene rankings shown in Fig. 5d.

RNA velocity-based analysis. Conventional RNA velocity was estimated 
with scVelo’s dynamical model8 by running scvelo.tl.recover_dynam-
ics. To execute this function, we first preprocessed the raw data with 
scvelo.pp.filter_and_normalize to remove genes expressed in fewer 
than 50 cells (min_counts=50), size-normalizing spliced and unspliced 
counts and subsetting to the 2,000 most highly variable genes (n_top_
genes=2000). Then, we computed the PCA embedding, calculated the 
neighbor graph with 30 PCs and 30 neighbors and smoothed unspliced 
and spliced counts by first-order moments (scvelo.pp.moments).

We combined the VelocityKernel and ConnectivityKernel weighted 
by 0.8 and 0.2, respectively, to estimate the cell–cell transition matrix. 
Next, we identified terminal states and corresponding fates and 
lineage-correlated gene rankings following the canonical CellRank 
2 pipeline.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data presented in this study are publicly available via the original 
publications; we provide additional access to each dataset, that is, the 
peripheral blood mononuclear cell, embryoid body development, MEF, 
pharyngeal endoderm development and intestinal organoid data, via a 
figshare collection at https://doi.org/10.6084/m9.figshare.c.6843633.
v1 (ref. 90).

Code availability
CellRank 2 is released under the BSD-3-Clause license, with code avail-
able at https://github.com/theislab/cellrank and deposited via Zenodo 
at https://zenodo.org/doi/10.5281/zenodo.10210196 (ref. 91). The 
inference of kinetic rates based on metabolic-labeling data is imple-
mented as part of the scVelo package (https://github.com/theislab/
scvelo). Code to reproduce the results in the paper can be found at 
https://github.com/theislab/cellrank2_reproducibility and deposited 
via Zenodo at https://doi.org/10.5281/zenodo.10809425 (ref. 92).
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Extended Data Fig. 1 | Guiding kernel choice in CellRank 2. CellRank 2  
implements various kernels suitable for different data modalities and 
experimental designs. The diagram may be used as a guide to identify the most 

suitable kernel. Note that assumptions change as methods evolve; for example, 
more recent inference schemes for RNA velocity account for non-constant 
kinetic rates93.
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Extended Data Fig. 2 | CellRank 2 scales to large cell numbers. a. Runtime 
(left) and peak memory consumption (right) to compute fate probabilities 
with CellRank (orange) and CellRank 2 (blue). Both methods were run on 
subsets of a reprogramming dataset containing over 100, 000 cells94. Box plots 
indicate the median (center line), interquartile range (hinges), and whiskers 
at 1.5x interquartile range (N = 10 runs each). b. The CellRank 2 adaptation of 
CytoTRACE scales to a mouse organogenesis atlas of 1.3 million cells31, whereas 
CytoTRACE fails above 80, 000 cells. Box plots indicate the median (center 

line), interquartile range (hinges), and 1.5x interquartile range (whiskers) 
(50, 000 cells, original: N = 6 runs; 60, 000 cells, original: N = 8 runs; 80, 000 
cells, original: N = 9 runs; otherwise: N = 10 runs). c. Runtime for calculating 
macrostates and fate probabilities using the RealTimeKernel with (brown) and 
without (green) thresholded transition matrix. Box plots indicate the median 
(center line), interquartile range (hinges), and 1.5x interquartile range (whiskers) 
(N = 10 runs each).
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Extended Data Fig. 3 | Performance of the VelocityKernel compared to the 
PseudotimeKernel. a. UMAP embedding of entire hematopoiesis dataset26. Cell 
types are colored according to the original publication (HSC: hematopoietic 
stem cell, MK/E prog: megakaryocyte/erythrocyte progenitors, G/M progenitor: 
Granulocyte/Myeloid progenitor, pDC: plasmacytoid dendritic cell, cDC2: 
classical dendritic cells). b. Terminal states identified by the PseudotimeKernel 
(left) and VelocityKernel with RNA velocity (right) inferred using scVelo’s 
dynamical model8. c. Initial state identified by the PseudotimeKernel. d. 
Fate probabilities towards each identified terminal state based on the 
PseudotimeKernel (top) and VelocityKernel (bottom). The VelocityKernel does 
not identify the cDC terminal state. e. Log-transformed ratio of cross-boundary 
correctness of cell type transitions of the PseudotimeKernel and VelocityKernel 
(HSC: hematopoietic stem cell, MK/E prog: megakaryocyte/erythrocyte 
progenitors, G/M progenitor: Granulocyte/Myeloid progenitor, pDC: 

plasmacytoid dendritic cell, cDC2: classical dendritic cells). Values larger than 
zero correspond to the PseudotimeKernel outperforming the VelocityKernel; 
significance was tested using one-sided Welch’s t-tests (Methods). Box plots 
indicate the median (center line), interquartile range (hinges), and 1.5x 
interquartile range (whiskers) (HSC to pDC: N=62 cells, p = 0.12; HSC to cDC: 
N=38 cells, p = 0.11; HSC to G/M progenitor: N=659 cells, p = 1.48 × 10−15; G/M 
progenitor to CD14+ monocytes: N=435 cells, p = 2.51 × 10−9; HSC to MK/E 
prog: N=489 cells, p = 1.88 × 10−13; MK/E prog to proerythroblast: N=513 cells, 
p = 1.38 × 10−9; proerythroblast to erythroblast: N=1052 cells, p = 4.93 × 10−75; 
erythroblast to normoblast: N=499 cells, p = 1.19 × 10−10). f. The number of 
identified terminal states is plotted against the number of macrostates specified. 
In the optimal scenario (dashed black), a new terminal state is identified for every 
added macrostate. The terminal state identification score (TSI) is defined by the 
area under a given curve relative to the optimal identification (Methods).
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Extended Data Fig. 4 | Developing the CytoTRACEKernel. a. Similar to the 
CytoTRACE publication18, we compute the CytoTRACE score by (i) calculating 
the number of genes expressed per cell (GEC), (ii) computing each gene’s 
Pearson correlation with GEC, (iii) mean-aggregating imputed expression of 
the top 200 correlated genes (Methods). Box plots indicate the median (center 
line), interquartile range (hinges), and 1.5x interquartile range (whiskers); the 
shown box plots are schematics. b. Force-directed layout embedding (FLE) of 
22, 370 Caenorhabditis (C.) elegans muscle and mesoderm cells undergoing 
embryogenesis, colored by estimated embryo time78 (left; 130 − 830 minutes), 
CytoTRACE pseudotime computed using CellRank 2 (middle) and the original 

implementation (right). c. Quantitative comparison of the two implementations 
of the CytoTRACE pseudotime on bone marrow77 (using 10x and SmartSeq2), 
C. elegans embryogenesis78 (subsetted to ciliated neurons, hypodermis and 
seam, and muscle and mesoderm), and zebrafish embryogenesis79. The x axis 
(y axis) displays Spearman’s rank correlation between CellRank 2-CytoTRACE 
(original CytoTRACE) and ground-truth (GT) time labels. Ground-truth labels 
were derived from either embryo time or stages as in b. (C. elegans and zebrafish 
embryogenesis) or from manually assigned maturation labels from the original 
CytoTRACE study18 (bone marrow).
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Extended Data Fig. 5 | The CytoTRACEKernel recovers developmental 
progression, and terminal and initial states faithfully. a. Distribution of 
pseudotimes from the CytoTRACEKernel (left), DPT (center), and Palantir 
(right), stratified by embryo stage (top row) and colored according to Fig. 3a. 
Box plots indicate the median (center line), interquartile range (hinges), and 1.5x 

interquartile range (whiskers) (E0-E3: N = 4574 cells, E6-E9: N = 7368 cells, E12-E15: 
N = 6241 cells, E18-E21: N = 6543 cells, E24-E27: N = 6302 cells); UMAP embeddings 
(bottom) are colored by pseudotime. b. Terminal states (left) and initial state 
(right) inferred using the CytoTRACEKernel.
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Extended Data Fig. 6 | Developing the RealTimeKernel. a. Force-directed 
layout embedding (FLE) of 165, 892 mouse embryonic fibroblasts (MEFs) 
reprogramming towards various endpoints during an 18-day time course15, 
colored according to modified original annotations (IPS: induced pluripotent 
stem; left) or sequencing time points (right). Dotted (solid) circles indicate 
known initial (terminal) states. b. FLE showing simulated random walks from 
day 0 cells without (left; corresponds to WOT15) and with (right; corresponds 
to the RealTimeKernel) intra-time point transitions; black (yellow) dots denote 

a random walk’s start (end); green ticks (red crosses) indicate known terminal 
states that are (are not) explored by random walks. c. Initial state identified by 
the RealTimeKernel. d. Evaluation of the effect of thresholding the transition 
matrix in the RealTimeKernel. Each dot corresponds to one cell’s fate probability 
towards one of four terminal states, computed with thresholding (x axis) 
and without thresholding (y axis). The color coding is in agreement with a.e. 
Identification of terminal states with increasing number of macrostates using the 
VelocityKernel (CR 1; blue) or RealTimeKernel (CR2; orange).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | The RealTimeKernel models fate decisions on a 
continuous domain. a. Force-directed layout embedding (FLE) of 165, 892 
mouse embryonic fibroblasts (MEFs) reprogramming towards various 
endpoints during an 18-day time course15, colored according to modified original 
annotations (IPS: induced pluripotent stem; left) or sequencing time points 
(right). Dotted (solid) circles indicate known initial (terminal) states. b,c. Violin 
plots showing pseudotime distribution for each of 36 experimental time points, 
using CellRank 2’s real-time-informed pseudotime (b.), DPT1 (c., left), or Palantir5 
(c., right) (Methods). Box plots indicate the median (center line), interquartile 
range (hinges), and whiskers at 1.5x interquartile range. c. DPT1 (center), or 
Palantir5 (right) (Day 0: N = 4556 cells, Day 0.5: N = 3449 cells, Day 1: N = 3648 
cells, Day 1.5: N = 1956 cells, Day 2: N = 6981 cells, Day 2.5: N = 6734 cells, Day 3: 
N = 6777 cells, Day 3.5: N = 7355 cells, Day 4: N = 8962 cells, Day 4.5: N = 7127 cells, 

Day 5: N = 7227 cells, Day 5.5: N = 6550 cells, Day 6: N = 8422 cells, Day 6.5: N = 3111 
cells, Day 7: N = 6507 cells, Day 7.5: N = 5061 cells, Day 8: N = 3815 cells, Day 8.25: 
N = 3829 cells, Day 8.5: N = 3573 cells, Day 8.75: N = 3088 cells, Day 9: N = 2982 
cells, Day 9.5: N = 2266 cells, Day 10: N = 2051 cells, Day 10.5: N = 1941 cells, Day 
11: N = 2238 cells, Day 11.5: N = 2164 cells, Day 12: N = 2429 cells, Day 12.5: N = 2253 
cells, Day 13: N = 2145 cells, Day 13.5: N = 2034 cells, Day 14: N = 3758 cells, Day 14.5: 
N = 2723 cells, Day 15: N = 3717 cells, Day 15.5: N = 4851 cells, Day 16: N = 3422 cells, 
Day 16.5: N = 4645 cells, Day 17: N = 3678 cells, Day 17.5: N = 4068 cells, Day 18: 
N = 3799 cells). d-g. Cell-specific fate change over pseudotime (RealTimeKernel, 
left) or experimental time (WOT, right) for the IPS (d.), neural (e.), stromal (f.), 
and trophoblast lineage (g.). For the RealTimeKernel, dashed vertical lines 
denote the mean pseudotime over all cells from a given experimental time point, 
recapitulating the correct ordering from b.
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Extended Data Fig. 8 | Initial and terminal state identification of pharyngeal 
endoderm development. a. UMAP embedding of pharyngeal endoderm 
development dataset (left) and identified initial state population (right). Cells 
are colored according to cell types identified in the original study37. b. Identified 

number of terminal states with increasing number of macrostates using the full 
pharyngeal endoderm development dataset. c. UMAP embedding of subsetted 
pharyngeal endoderm dataset (right) and identified initial state (right); cells are 
colored according to the original study37. d. Same as b. but for the subsetted case.
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Extended Data Fig. 9 | Putative mTEC progenitors. a. UMAP embedding 
of subsetted pharyngeal endoderm dataset; cells are colored according to 
the original study. b. The fate probabilities towards each terminal state are 
estimated using the RealTimeKernel. c. A cluster of putative mTEC progenitors is 
identified by cells with fate probabilities towards mTEC larger than 0.5. d. UMAP 

embedding colored by WOT’s pullback at E10.5 clipped to the 99 percentile. e. 
Gene ranking of potential mTEC drivers based on WOT’s pullback distribution at 
E11.5, compared to the gene ranking based on the pullback at E10.5, as shown in 
Fig. 4f. f. Gene ranking when performing classical differential expression analysis 
on clusters ‘mTEC progenitors’ and ‘Other progenitors’ as shown in c.
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Extended Data Fig. 10 | Terminal state analysis for metabolically labeled 
intestinal organoids. a. UMAP embedding of intestinal cells colored according 
to their cell type (TA cells: transit-amplifying cells) according to the original 
publication9; black arrows indicate the known differentiation hierarchy. b. UMAP 
embedding highlighting terminal states identified with CellRank 1. c. Terminal 
state purity resulting from our metabolic-labeling-based vector field (CellRank 2) 
or classical RNA velocity (Cellrank 1). d. Terminal state identification using either 

CellRank 1 (CR 1) or CellRank 2 (CR 2) compared to an optimal identification 
(Optimal ident.) strategy. e. UMAP embedding highlighting terminal states 
identified by dynamo16. f. The ranking score metric for each method and terminal 
state. The metric quantifies the degree of optimality of a gene ranking compared 
to an optimal ranking. Dynamo only identified the trajectory leading up to 
enterocytes.
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