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After Acute Myocardial Infarction
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BACKGROUND: The immune system'’s role in ST-segment—elevated myocardial infarction (STEMI) remains poorly characterized
but is an important driver of recurrent cardiovascular events. While anti-inflammatory drugs show promise in reducing
recurrence risk, their broad immune system impairment may induce severe side effects. To overcome these challenges, a
nuanced understanding of the immune response to STEMI is needed.

METHODS: For this, we compared peripheral blood mononuclear single-cell RNA-sequencing (scRNA-seq) and plasma protein
expression over time (hospital admission, 24 hours, and 6-8 weeks post-STEMI) in 38 patients and 38 controls (95 995
diseased and 33 878 control peripheral blood mononuclear cells).

RESULTS: Compared with controls, classical monocytes were increased and CD56%™ natural killer cells were decreased in
patients with STEMI at admission and persisted until 24 hours post-STEMI. The largest gene expression changes were
observed in monocytes, associating with changes in toll-like receptor, interferon, and interleukin signaling activity. Finally, a
targeted cardiovascular biomarker panel revealed expression changes in 33/92 plasma proteins post-STEMI. Interestingly,
interleukin-6R, MMP9 (matrix metalloproteinase-9), and LDLR (low-density lipoprotein receptor) were affected by coronary
artery disease—associated genetic risk variation, disease status, and time post-STEMI, indicating the importance of
considering these aspects when defining potential future therapies.

CONCLUSIONS: Our analyses revealed the immunologic pathways disturbed by STEMI, specifying affected cell types and
disease stages. Additionally, we provide insights into patients expected to benefit most from anti-inflammatory treatments
by identifying the genetic variants and disease stage at which these variants affect the outcome of these (drug-targeted)
pathways. These findings advance our knowledge of the immune response post-STEMI and provide guidance for future
therapeutic studies.
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is a major cause of mortality and morbidity. The  inflammatory response.’? Targeting this response has

ST—segment—eIevated myocardial infarction (STEMI)  plaque formation and rupture and in the consequent
immune system is crucial during both atherosclerotic ~ remained challenging due to its complexity and severe
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Nonstandard Abbreviations and Acronyms

CK-MB creatine kinase myocardial band

DE expression differences

e/pQTL expression/protein quantitative trait
locus

LDLR low-density lipoprotein receptor

MMP9 matrix metalloproteinase-9

NT-proBNP N-terminal pro-B-type natriuretic
peptide

PBMC peripheral blood mononuclear cell

PCSK9 proprotein convertase subtilisin/
kexin type 9

scRNA-seq single-cell RNA-sequencing

SNP single-nucleotide polymorphism

STEMI ST-segment—elevated myocardial
infarction

side effects, as seen in the CANTOS (Canakinumab
Anti-inflammatory Thrombosis Outcome Study; anti-IL-
18) and ASSAIL-MI (ASSessing the effect of Anti-IL-6
treatment in MI; anti-IL6R) trials.®* To overcome these
challenges, the pathophysiological mechanisms post-
STEMI should be studied in greater molecular and cel-
lular detail.5¢

Previously, studying cell types relied on bulk analy-
ses using predefined marker genes. Single-cell RNA-
sequencing (scRNA-seq) now facilitates unbiased
transcriptome-wide analysis of 100 000s of individual
cells simultaneously.™ This technology reveals new
insights into the inflammatory response post-STEMI by
concurrently mapping changes in cell type composition,
gene expression level, and downstream pathways at vari-
ous cellular resolutions.

Both normal physiological processes in the heart® and
blood,? and pathophysiological processes during athero-
sclerosis,'®!" and neovascularization,'? have been studied
at the single-cell level. A spatial multi-omics map of the
heart upon STEMI revealed an increased dependency
between lymphoid and myeloid cells in ischemic samples
compared with healthy controls, indicating their commu-
nication during cardiac repair.'® While many aspects of
STEMI have been explored, a detailed single-cell view of
how circulating immune cells are affected during acute
and chronic phases remains lacking.

Here, we compared scRNA-seq data of 95 995 periph-
eral blood mononuclear cells (PBMCs) from 38 patients
with STEMI (during hospital admission [t0]), 24 hours
[t24h], and 6-8 weeks [t8w] post-STEMI) to 33 878
PBMCs from 38 age- and sex-balanced general popula-
tion controls. This revealed large changes in cell type com-
position, gene and plasma protein expression levels, and
cell-cell communication, both compared with controls and
post-STEMI (Figure S1). Additionally, we found key plasma
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proteins affected by a combination of genetics, disease
status, or disease phase. Altogether, this study presents
the first single-cell view of the circulating immune system
during STEMI and emphasizes the importance of consid-
ering person- and disease-related characteristics to fully
grasp the underlying molecular changes.

METHODS

Methods are available in the Supplemental Material. The ethics
committee of the University Medical Center Groningen (Medical
Ethical Review Committee-UMCG-2012/296) approved this
study. All patients provided written, informed consent.

RESULTS

Patient Characteristics

To dissect the immune response post-STEMI, PBMCs
and plasma from 38 patients with a first STEMI were
collected at t0, t24h, and t8w (Figure 1). Patients with
STEMI were mostly male (84%), 60+11 years old, with
a median body mass index of 26.4+3.5 kg/m? Most
patients presented with 1 stenosed vessel (65%), with
39% showing complete vessel occlusion (Table; Table
S1). These patients were compared to previously pub-
lished scRNA-seq data from 38 age- and sex-balanced
controls in the LifeLines DEEP cohort”

Single-Cell Profiling of Immune Cells in
Patients With STEMI and Controls

Collected PBMCs were used for 10X Genomics scRNA-
seq analysis using v2 and v3 chemistries. We captured an
average of 842 cells/individual/condition after quality con-
trol in patients with STEMI (v2: 831 genes/cell, v3: 1548
genes/cell) and 891 cells/individual in controls (v2: 1012
genes/cell, v3: 1931 genes/cell; Table S2). To annotate
donors to cells and identify doublets, genotype-dependent
demultiplexing was performed, revealing 1 incorrectly omit-
ted donor-time point combination (t8w) and 10.0% dou-
blets on average. Quality control was performed separately
per chemistry due to technical differences. After quality
control, 129 873 cells (95 995 diseased and 33 878 con-
trol) remained in the final data set. K-nearest neighbors
clustering was performed on the normalized, integrated
count data, allowing the identification of cell types.

Monocytes and Natural Killer Cells Show
Compositional Changes Post-STEMI

We identified 10 major cell types in the PBMCs of
patients with STEMI and controls, including B, CDA4T,
CD8T, dendritic cell, hematopoietic stem and progenitor
cell, monocyte, natural killer cell (NK), plasmablast, plate-
let, and other T cells (Figure 2A). These major cell types
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Figure 1. Study overview.

A, Selection of patients with STEMI
(CardioLines biobank) and controls
(LifeLines DEEP biobank). B, Experimental
setup. CABG indicates coronary artery
bypass graft surgery; CVD, cardiovascular
disease; HC, healthy control; PBMC,
peripheral blood mononuclear cell; SCAD,
coronary artery bypass graft surgery;
scRNA-seq, single-cell RNA-sequencing;
and STEMI, ST-segment—elevated
myocardial infarction.
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could be split into 29 minor cell populations (Figure 2B;
Supplemental Methods).

To conduct a robust cell type composition analysis,
we initially focused our analyses on the 6 most abun-
dant cell types (Table S3), after which we zoomed
in on the subtypes for the significant changes (Fig-
ure 2C and 2D). Compared with controls, monocytes
from patients with STEMI during admission increased
(Holm'’s adjusted P=6.0x107°) and NK cells decreased
their relative abundance (Holm's adjusted P=0.029;
Figure 2C and 2D; Table S4). These changes pri-
marily stemmed from compositional shifts within the
classical monocytes (Holm's adjusted P=6.0x1075)
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and the NKdim (Holm’s adjusted P=0.040) subtypes
(Figure 2C and 2D; Table S4). Similarly, during the
disease course, we observed composition changes in
monocytes (decrease t0-t8w: Holm's adjusted P=0)
and NK cells (decrease t0-t24h: Holm's adjusted
P=3.6x107?) that stemmed from changes in classical
monocytes (Holm’s adjusted P=8.0x10°) and NKdim
(Holm’s adjusted P=0.047; Figure 2C and 2D). Addi-
tionally, CD4T cells exhibited an increase (t0-t8w:
Holm's adjusted P=2.2x1072 Figure S4) that could
not be attributed to a specific cell subtype (Table S4).
These analyses indicate the importance of analyzing
compositional changes at higher resolution.
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Table. Baseline Characteristics

STEMI Controls,
Characteristics patients, n=38 | n=38 P value
Female sex, No. (%) 6 (16) 6 (16) 1 (FE)
Age, mean (SD), y 60.1 (11.2) 59.2 (12.0) | 0.52 (KS)
BMI, mean (SD), kg/m?> | 26.4 (3.5) 25.4(3.3) | 0.17 (KS)
Cardiovascular related history, No. (%)
Hypertension 3(8) 4 (15)* 1 (FE)
Hypercholesterolemia | 3 (8) 2 (6)* 1 (FE)
Smoking status
Never 12 (32) 17 (44.7) 0.20 (FE)
Current 14 (37) 1(2.6)
Former 10 (26) 20 (52.6)
Unknown 2 (5) 0(0)
Family history 18 (47) 6 (100)* <0.0001 (FE)
Diabetes 0(0) 0(0) 1 (FE)

Significant values were determined using Fisher's exact test (FE) or a 2-sample
Kolmogorov-Smirnov (KS, continuous variables) test. STEMI indicates ST-
segment—elevated myocardial infarction.

“Percentage of participants answered yes out of total answers.

Largest Gene Expression Changes Occur in
Monocytes

To assign gene expression differences (DE) at STEMI
t0 versus controls, we conducted pseudobulk DE
analysis on the 6 major cell types using Limma Dream
(Table Sb). CD4T cells (690 genes) and monocytes
(681 genes) showed the largest and B cells the least
amount of change (62 genes; Figure 3A). Overall, more
genes were downregulated (Figure 3A), and the majority
were uniquely identified in monocytes (Figure 3B). We
then split the DE genes into an up- or downregulated
set and conducted pathway enrichment analysis sepa-
rately (Table S6). The largest enriched pathway category
was the immune response (Figure S6). Therefore, we
focused on this category and observed that the strongest
enrichment in monocytes was found among the upregu-
lated DE genes; both pro- (IL-1) and anti-inflammatory
(IL-4, IL-10, and IL-13) interleukins, chemokines, and the
CLECT7A inflammasome pathway (acting upstream of
IL-1) were enriched (Figure 3E and 3F).

Subsequent comparisons of DE post-STEMI revealed
a general decrease in the number of DE genes from
t24h to t8w (Figure 3C). Again, monocytes, but not
CDAT cells, had the largest amount of total and unique
DE genes post-STEMI (Figure 3C and 3D; Table Sb).
Similarly, these upregulated genes in monocytes were
mostly enriched for immune response pathways (Fig-
ure 6S). During the disease course, the enrichment for
anti-inflammatory pathways remained stable (IL-4 and
IL-13) or further increased (IL-10), whereas genes
involved in monocyte chemoattraction peaked at t24h
(CCL7, CX3CRT; Figure 3E and 3F). Together with, but
independently of, the observed cell type composition
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changes (Figure 2C and 2D), these results indicate that
monocytes contribute significantly to the immunologic
changes observed post-STEMI.

Monocytes Show Most Potential Differential
Cell-to-Cell Communication Post-STEMI

As many of the enriched pathways were related to cell-
to-cell communication (Figure 6S), we next defined how
interactions among immune cell types could underlie
these observed gene expression changes post-STEMI.
For this, we used a cell-to-cell communication tool that
identifies potential interactions by assuming that ligand-
receptor interactions can be predicted based on ligand
expression in 1 cell type and downstream gene expres-
sion changes of a known ligand-receptor interaction in
another celltype (Table S7).'#In the acute phase (t0-t24h)
of STEMI, the outcoming communication was largely
balanced among the cell types, whereas the incoming
communication was largest in the CD8T cells and mono-
cytes (Figure 4A). In the chronic phase (t24h-t8w), the
dendritic cells and B cells were the largest senders, and
the NK cells and monocytes were the largest receivers
(Figure 4B). Most of these ligand-receptor pairs were
uniquely involved in communication by just 1 cell type;
similar to the DE analyses, the monocytes showed the
most unique interactions (Figure 4C and 4D). While this
bioinformatically informed communication is solely a pre-
diction and additional experimental follow-up would be
needed for confirmation, the analyses have been con-
ducted in a comparative fashion. Therefore, any method-
derived biases will be comparable in each comparison
and are not expected to affect the identified results.

Cardiovascular Disease-Associated Proteins
Change Post-STEMI

As changes in plasma proteins provide additional insights
on the systemic consequences and are easily monitored
in clinical follow-up, we then analyzed during the dis-
ease course the plasma levels of 92 proteins that are
known or exploratory human cardiovascular and inflam-
matory markers. This revealed changes in 14 of 92 pro-
teins during the first 24 hours (8 up and 6 down) and
28 of 92 proteins during the first 8 weeks (22 up and
6 down) post-STEMI. The top 3 upregulated proteins
within the first 24 hours were NT-proBNP (N-terminal
pro-B-type natriuretic peptide), IL1RL1, and CHI3L1
(Figure 5; Table S8). Both NT-proBNP and the soluble
form of IL1RL1 are well-known proteins upregulated in
response to increased wall stress during STEML.'® More-
over, both are independent predictors of heart failure
and cardiovascular death.®'” CHI3L1 is an extracellu-
lar matrix protein involved in atherosclerosis and plaque
rupture.'® This indicates that CHISL1 upregulation could
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Figure 2. Cell type composition changes.

Peripheral blood mononuclear cells (PBMCs) of patients with ST segment—elevated myocardial infarction (STEMI) (t0, t24h, and t6—8w)

and controls presented in uniform manifold approximation and projections (UMAPs): A, showing the 10 major; B, 29 minor cell types. C,
Proportions of monocytes (major class and its 2 subtypes) and (D) natural killer (NK) cells (major class and its 2 subtypes) in controls and
post-STEMI. ASDC indicates AXL SIGLEC6 dendritic cell; C, control; cMono, classical monocytes; CTL, cytotoxic T cell; cDC, conventional
dendritic cell; HSPC, hematopoietic stem and progenitor cell; ILC, innate lymphoid cell; MAIT, mucosal associated invariant T cell; ncMono,
nonclassical monocytes; pDC, plasmacytoid dendritic cell; TCM, T-central memory; and TEM, T-effector memory. Significant Holm’s adjusted
P value *P<0.05, **P<0.01, ***P<0.001. Each donor’s proportion depicts a cell count-weighted data point, each boxplot the weighted median,

25th and 75th percentile.

contribute to STEMI, whereas NT-proBNP and IL1RL1
reflect STEMI-induced mechanical stress on cardiomyo-
cytes. The top 3 downregulated proteins during the acute
phase were SPON1 (spondin-1), AZU1 (azurocidin 1),
and IGFBP1 (insulin-like growth factor-binding protein
1). Each of these has been previously associated with
processes preceding STEMI (eg, atherosclerosis for
AZU1'® and IGFBP1'9) or resulted from unsuccessful
STEMI treatment (eg, worsened systolic heart function
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for SPON129). Therefore, their sustained downregula-
tion may indicate effective treatment, leading to restored
blood flow and eventually preserving heart function.
During the chronic phase, the top 3 upregulated
proteins were NT-proBNP, PCSK9 (proprotein conver-
tase subtilisin/kexin type 9), and MMP2. The increased
NT-proBNP levels may reflect further increased wall
stress.’® PCSKO is involved in degradation of the LDLR
(low-density lipoprotein receptor)?! and might therefore
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Figure 3. Enriched differential expression (DE) genes and pathways.

A, The number of up- and downregulated DE genes/cell type at ST-segment—-elevated myocardial infarction (STEMI) t0 (n=37) vs controls
(n=38) or (C) in patients with STEMI over time (=37 t24h, n=38 t8w). B, Overlap of DE genes in cell types at t0 vs controls or (D) in patients
with STEMI over time (taking all DE genes significant in at least one of the comparisons [t0-t24h or t0-t8w]). E, Top enriched inflammatory
pathways in monocytes between conditions. F, Heatmap showing the LFC of the maximum 10 most significant up and down DE genes in
monocytes that are involved in the immune system pathway. Genes are hierarchically clustered and the LFC is only provided for significant
differences. C indicates control; DC, dendritic cells; logFC, log fold change; and NK, natural killer cells.

reflect hyperlipidemia or patients’ statin treatment®
MMP2 acts in the fibrotic pathway?® and is involved in
cardiac remodeling.?* Both SPON1 and AZU1 continued
to be downregulated at t8w. Additionally, MPO (myeolo-
peroxidase) was found to be downregulated, a protein
contributing to plaque destabilization through local oxi-
dative tissue injury.® Together, these changes suggest
a sustained restoration of heart function and blood flow.

When trying to assign the potential cell type respon-
sible for these differential protein changes using scRNA-
seq data, we could only replicate 4 of 34 DE proteins

Circ Genom Precis Med. 2024;17:e004374. DOI: 10.1161/CIRCGEN.123.004374

(75% concordant) in at least 1 cell type within the same
condition comparison (Table S8). This low mRNA-protein
replicability may reflect the inherent differences in what
is captured: bulk plasma proteins (reflecting the secre-
tome of PBMCS but also other blood cells or even other
tissues) versus single-cell PBMC-derived mRNAs.

In a comparable cohort of 48 patients with STEM|,
the same plasma proteins were compared at hospital
admission and 3 months post-STEMI, showing 29 of 92
DE proteins.?® Twelve replicated in our study (100% con-
cordant) and were mainly involved in STEMI-associated
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Figure 4. Differential putative cell-to-cell communication post-ST-segment-elevated myocardial infarction (STEMI).

Differential incoming (receiver) and outgoing (sender) putative cell-to-cell communication at t0-t24h (A) and t24h-t8w (B). An active cell-to-
cell communication link is counted as being a ligand-receptor (L-R) link that has resulted in differential downstream gene expression. For each
active L-R link in A (t0-t24h) and B (t24h—-t8w), the sharedness of ligands among the major cell types is depicted in C and D, respectively.
The number of participants in each condition is 38, 37, and 38 for t0, t24h, and t8w, respectively. DC indicates dendritic cells; and NK;,

natural killer cells.

processes, like the immune response and tissue remod-
eling, indicating robustness (Table S8).

Gene and Protein Expression Profiles Were Not
Associated to Biochemical-Defined Infarct Size

Patients with STEMI exhibit variable symptoms upon pre-
sentation. Despite our study's criteria narrowing clinical vari-
ation (Table), donor-to-donor variation persists, influenced
by factors like age, sex, infarct size, and genetics. To assess
the correlation between infarct size and molecular mea-
surements, we used plasma peak CK-MB (creatine kinase
myocardial band) levels as proxy?” This biomarker reaches a
peak within 24 hours and predicts left ventricle dysfunction.
Neither cell type proportions nor monocyte gene expres-
sion showed a significant association with peak CK-MB at

Circ Genom Precis Med. 2024;17:e004374. DOI: 10.1161/CIRCGEN.123.004374

any time point. However, NT-proBNP was positively asso-
ciated with peak CK-MB (t24h: r>-adjusted=0.49, Holm's
adjusted P=2.8x107%; Table S9). This marker for myocar-
dial wall stress is commonly measured to assess left ven-
tricular dysfunction,'® and therefore, both are expected to
be correlated during the time CK-MB peaks.'%%

Coronary Artery Disease-Associated Genetic
Risk Variants Show Disease- and Condition-
Dependent Effects on Plasma Proteins of
Known Drug Targets

Beyond infarct size, genetic variation contributes to a

patients’ molecular response. Recognizing this is crucial
when assessing a patient's disease course and defining
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Figure 5. Differentially expressed proteins post-ST-segment-elevated myocardial infarction (STEMI).

Top 3 up- and downregulated proteins at t24h (n=38) and t8w (n=37) post-STEMI vs t0 (n=38). *Significant Bonferroni-adjusted P<0.05.
AZU1 indicates azurocidin1; CHI3L1, chitinase-3-like protein 1; IGFBP1, insulin-like growth factor-binding protein 1; IL1RL1, interleukin-1
receptor ligand 1; MMP2, matrix metallopeptidase 2; MPO, myeloperoxidase; NT-proBMP, N-terminal pro-B-type natriuretic peptide; PCSK9,

proprotein convertase subtilisin/kexin type 9; and SPON1, spondin 1.

patient-tailored treatment. As plasma proteins provide
a pool of potential therapeutic targets, we assessed
the effect of genetic variation on these (pQTL [protein
quantitative trait locus]). To provide a direct clinical link,
we focused on coronary artery disease—associated vari-
ants.? For 3 of 92 proteins, we detected a pQTL in at
least 1 time point post-STEMI (Table S10). For these
3, we assessed their disease-specificity by comparing
pQTL effect sizes with a control cohort of 1142 indi-
viduals from the general population. One pQTL was

Circ Genom Precis Med. 2024;17:e004374. DOI: 10.1161/CIRCGEN.123.004374

significant in all conditions and showed similar effect
size in patients and controls: single-nucleotide polymor-
phism (SNP) rs6686750 affecting IL6R (patients with
STEMI: genotype =0.42, FDR-corrected P=1.6x1075;
Figure 6A). The 2 other pQTLs were disease- or even
condition-specific: SNP rs8124182 affecting MMP9
was found specifically in patients with STEMI (genotype
p=—0.68, P=0.016; Figure 6B) and SNP rs10422256
affecting LDLR was found only in patients at t24h
(genotype*t24h interaction p=—0.29, FDR-corrected
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Figure 6. Plasma expression/protein quantitative trait loci (pQTLs) in patients with ST-segment-elevated myocardial infarction
(STEMI) vs controls show both condition-dependent and condition-independent changes.

Plasma pQTLs in 38 patients with STEMI and 1142 general population controls.” In A, a pQTL is highlighted that is universal (i.e. found in
both STEMI patients and the general population), whereas in B a pQTL is highlighted that is disease-specific (i.e. only in STEMI patients) or in
C disease and condition-specific (i.e. only in STEMI patients 24h after hospital admission). The number of samples for each genotype group:
Table S11. *FDR-corrected significant P values; r, Spearman correlation. IL indicates interleukin; LDLR, low-density lipoprotein receptor; and
MMP9, matrix metalloproteinase 9.

P=0.022; Figure 6C). These results indicate the impor- classical monocytes, CDAT cells, and NKdim cells post-
tance of considering genetics when studying the rela- ~ STEMI, both in terms of cell type compositional and gene
tionship between STEMI and molecular phenotype. expression changes. In circulation, we observed increases
in the monocyte and decreases in the NK fraction that
peak or dip, respectively, at 24 hours post-STEMI. These

DISCUSSION changes agree with previous studies in STEM[3%3! and
Here, we provided an unbiased, longitudinal overview of angina pectoris.®*2 Furthermore, previous studies revealed
the single-cell immune response in patients with STEMI biphasic changes in monocyte composition post-STEMI®;

versus controls. We observed an important role for the in the early ischemic phase (3 days post-STEMI), classical
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monocytes peaked, whereas later (5 days post-STEMI),
the nonclassical fraction peaked. These changes in circu-
lation co-occur with specific changes in the heart, sug-
gesting an initial recruitment of classical monocytes to
facilitate dead cardiac tissue removal, followed by nonclas-
sical monocytes concluding the inflammatory response
and promoting tissue repair®® Altogether, the observed
changes are not solely the consequence of the STEMI
but may also contribute to it. Therefore, studying circulat-
ing immune cell and blood protein level changes during a
STEMI may provide leads for novel therapies.

Our study indicated the importance of considering
both genetic variation and disease phase when assess-
ing the molecular consequences of a STEMI, as several
of the plasma proteins were affected by a combination
of these parameters. For all identified pQTLs, the A allele
is the coronary artery disease—associated risk allele.?®
Indicating that lower plasma protein levels of IL-6R
(Figure 6A), and higher levels of MMP9 (Figure 6B)
and LDLR (Figure 6C) increase coronary artery disease
risk. This agrees with previous phenome-wide associa-
tion studies showing that the risk allele of these pQTL
is associated with lower IL6 and IL6R plasma levels and
higher LDL cholesterol levels.3*

We observed a disease-specific pQTL of rs8124182
on MMP9 (Figure 6B), aligning with a previously described
whole blood MMP9 eQTL.2® We hypothesize this disease-
specificity is due to this SNP's direct effect on phospho-
lipid transfer protein (PLTP) gene expression,® regulating
MMP9 levels. Evidence from Pltp/ApoE double knock-out
mice supports this, showing reduced MMP9 protein lev-
els could be reversed by Plip overexpression.®* Notably,
this PLTP effect on MMP9 protein levels was observed
solely in atherosclerotic conditions induced by ApoE
knock out, explaining why the MMP9 pQTL was evident
only in patients with STEMI, not in controls (Figure 6B).

We observed a disease-state- and disease-stage-
specific (t24h) pQTL for LDLR. Normally, membrane-
bound LDLR is mostly present in the liver, enabling LDL
uptake from circulation. When ADAM17 sheds LDLR
from the membrane into circulation, reduced availabil-
ity of membrane-bound LDLR is expected, leading to
decreased LDL uptake. ADAM17’s activity is stimulated
by inflammation,®” which may explain why this pQTL on
soluble LDLR manifests only during the acute inflamma-
tory stage post-STEMI (Figure 6C).

Finally, our analyses shed new light on the IL-6 signal-
ing pathway, which is currently being targeted by various
drugs in clinical trials.®39 |L-6 signaling can be activated
through 3 signaling modes, each having its own conse-
quences: classical signaling (anti-inflammatory), trans-
signaling  (proinflammatory), and trans-presentation
(Th17-cell promoting).® Through cell-cell communi-
cation analyses, we found differential activation of the
classical and trans-presentation pathways post-STEMI.
While our pQTL analysis indicated that trans-signaling
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was affected by SNP rs6689206 regulating soluble
IL6R levels both in patients with STEMI and controls
(Figure B6A). Together, this indicates that classical and
trans-presentation signaling may be suitable targets (eg,
anti-IL-6%%° or anti-IL-6R) post-STEMI, while patients
with the GG genotype at SNP rs6689206 may benefit
from treatments targeting specifically the trans-signaling
pathway (eg, soluble gp130).

Unfortunately, when focusing on how each of the
molecular layers could be contributing to or being the con-
sequence of biochemically measured infarct size, no such
relationship was found except for plasma NT-proBNP
levels (Table S9)—a known marker for heart failure.'® This
lack of association might have resulted from assessing
each molecular parameter separately or not considering
all potentially relevant clinical and donor variables in the
model.*° Such a model that considers all these param-
eters requires a larger sample size. We foresee future
feasibility through meta-analyses across uniformly pro-
cessed (disease) population-based single-cell data sets
in efforts such as the single-cell eQTLGen consortium.*!

In conclusion, this study highlights the importance of
studying STEMI at a cell type—specific resolution while tak-
ing genetic variation, disease status, and disease phase into
consideration. We expect that such an integrative approach
will help to better grasp the molecular processes under-
lying STEMI and will be essential for the development of
effective future therapies with reduced side effects.
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