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Artificial intelligence (Al) models are vulnerable to information leakage of
their training data, which can be highly sensitive, for example, in medical
imaging. Privacy-enhancing technologies, such as differential privacy

(DP), aim to circumvent these susceptibilities. DP is the strongest possible
protection for training models while bounding the risks of inferring the
inclusion of training samples or reconstructing the original data. DP
achieves this by setting a quantifiable privacy budget. Although alower
budget decreases the risk of information leakage, it typically also reduces
the performance of such models. Thisimposes a trade-off between robust
performance and stringent privacy. Additionally, the interpretation of a
privacy budget remains abstract and challenging to contextualize. Here

we contrast the performance of artificial intelligence models at various
privacy budgets against both theoretical risk bounds and empirical success
ofreconstruction attacks. We show that using very large privacy budgets
canrender reconstruction attacks impossible, while drops in performance
are negligible. We thus conclude that not using DP at all is negligent when
applying artificial intelligence models to sensitive data. We deem our results

to lay afoundation for further debates on striking a balance between privacy
risks and model performance.

The rapid rise of artificial intelligence (Al) applications in medicine
promises to transform healthcare, offering improvements ranging
from specific applications, such as more precise pathology detection
or outcome prediction, to the promise of general medical AI'°. How-
ever, recent results highlight a substantial vulnerability: Almodels may
disclose details of their training data. This can happen either inadvert-
ently or be forced through attacks by malicious third parties, also called
adversaries. Among the most critical attacks are data reconstruction
attacks, where the adversary attempts to extract training datafrom the
model orits gradients® . Such attacks harbour distinct risks. On one
hand, asuccessful datareconstruction attack severely undermines the
trust of patients whose data are exposed. This not only jeopardises the

relationship between medical practitioners and patients, but probably
alsodiminishes the willingness of patients to make their health data for
thetraining of Almodels or for other research purposes available. This
is problematic since the success of Almodels in medicine is depend-
entontheavailability of large and diverse real-world patient datasets.
On the other hand, a successful attack can also constitute a breach of
patient data privacy regulations.

While privacy laws vary globally, the protection of health data
is generally considered of high importance. For example, the Euro-
pean Union’s General Data Protection Regulation declares the protec-
tion of personal data as a fundamental right. Notably, some of these
laws deem the removal of personal identifiers (for example, name or
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date of birth)—de-identification—sufficient protection. However, it
has been demonstrated on several occasions that commonly used
de-identificationtechniques such as anonymization, pseudonymization
or k-anonymity are vulnerable to re-identification attacks'®*°. This also
holds true in the case of medical imaging data. For example, the facial
contours of a patient can be obtained from a reconstructed magnetic
resonance imaging scan even if their name has been removed from the
record, thus enabling their re-identification from publicly available
photographs?. Figuratively, this is analogous to considering passport
photos without additional information not as personal data. Arguably,
this highlights the tension between whatis considered ‘private’inalegal
sense and whatindividuals consider acceptable interms of informational
self-determination. We thus contend that Al systems that process sensi-
tive data should not only rely on de-identification techniques but also
implement privacy-enhancing technologies (PETs), thatis, technologies
that furnish an objective or formal guarantee of privacy protection.

DP as the optimal privacy preservation

Among PETs, differential privacy (DP)? is considered the optimal pro-
tection for training Almodels while moderating the privacy risk faced
by participating patients due to its appealing properties: it provides
aformal upper bound on the success of reconstructing data*** and
satisfies requirementsimposed by regulations such asthe General Data
Protection Regulation concerning re-identification'®”. Moreover, the
privacy guarantees of DP cannot be degraded through the use of side
information or through post-processing (two notable vulnerabilities of
traditional de-identification schemes). Last but not least, DP satisfies
composability, that s, its guarantee degrades predictably when multiple
DPalgorithms are executed on the same dataset. This enables the con-
ceptofa‘privacy budget’, which makes the cumulative re-identification
risk quantifiable and canbe set depending on policy or preference. We
note that this ability to moderate risks stemming from Al applications
is particularly beneficial, as it is also mandated by recent legal frame-
works such as the European Al act®. These properties are leading to
DP’sincreasingadoptioninindustry and governmentapplications”?.

Weremark that for a holistic workflow, additional PETs are advis-
able. Cryptographic techniques such as homomorphic encryption
or secure multi-party computation can allow performing computa-
tions on data while ascertaining that only authorized instances can
read the private information. However, these techniques are ‘binary’,
that is, information is perfectly private (encrypted) or non-private
(decrypted). Inparticular, at the latest at inference time, the informa-
tion must be decrypted to be useful. In contrast, DP limits the prob-
ability that the output (gradient) can be correctly assigned to the input
(data), which allows useful outputs at a guaranteed (but not perfect)
level of privacy. Arguably, the most famous PET is federated learn-
ing, which provides a means to preserve data governance. However,
without further protective measures, in particular DP, data can be
reconstructed, and thus data governance is again not maintained. An
overview can be found in ref. 29.

Despite these benefits, the effective and efficientimplementation
of DP in large-scale Al systems also presents a series of challenges.
DP has been criticized for the fact that the choice of an appropriate
privacy budgetis delicate. Higher budgets correspond toless privacy
protectionand thus anincreased risk of successful attacks, while lower
budgets limit the information available for training. This introduces
new challenges, namely atrade-offbetween privacy and model perfor-
mance, thatis diagnostic accuracy for a given use case. Furthermore,
this trade-off also depends on the specific input data and learning
task, which can vary drastically between scenarios. Arguably, con-
cerns about reduced model performance are a probable reason why,
despite its benefits, DP is not yet widely implemented in medical Al.
Afterall, finding a trade-off between diagnostic accuracy and privacy
represents acomplex technical and ethical dilemma. This dilemma s
bestunderstood as DPisunderlain by a worst-case set of assumptions.

Table 1] Overview of the capabilities of an adversary in the
threat models analysed in this study

Worst case Relaxed Realistic
Model architectureand  Yes Yes Yes
weight
Hyper-parameter Yes Yes Yes
Dataset access Yes Partially No
Perfect reconstruction Not applicable Yes No
algorithm
Risk analysis Theoretical Theoretical Empirical

These assumptions, also called a threat model, include an adversary
who is able to deeply manipulate and interfere with the dataset, the
training process, model architecture and (hyper-)parameters, and has
accesstoall parameters of the DP algorithm (mechanism). Moreover,
the canonical DP adversary is not assumed to execute adatareconstruc-
tion attack but a much simpler type of attack, namely a membership
inference attack, which attempts to determine whether a specific
individual’s data (which is available to the adversary) was included in
the training dataset or not. Since there are only two possible outcomes
of suchanattack (member/non-member), membership inference must
onlyreveal asingle bit ofinformation compared with a datareconstruc-
tion attack, which must successfully reveal a much larger record (for
example, animage). Although worst-case assumptions are prudent for
thetheoretical modelling of adversaries, the DP threat modelis unlikely
to ever be encountered in practice. Moreover, the aforementioned
membership inference attack in which the adversary has access to a
targetrecord and tries to determine whether it was used for training a
specificmodelis arguably of very low practical relevance. Instead, data
reconstruction attacks are probably perceived as a substantially more
relevant privacy threat by patients. Moreover, realistic adversaries in
the medical setting (where data is strongly guarded) can probably be
assumed to not have access to the training data (as they would have
little incentive to attack amodel otherwise).

Inthis Article, we investigate whether the aforementioned typical
DP threat model might be too pessimistic for practical use cases and
thusimpose unnecessary privacy/performance trade-offs. To investi-
gate thishypothesis, we study the privacy/performance characteristics
of Al models trained on large-scale medical imaging datasets under
more realistic threat models that still allow for strong privacy protec-
tionbutrepresenta ‘step down’ from the worst-case assumptions of DP.
Our main finding is that, even in complex medical imaging tasks, it is
possibletotrain Almodels with excellent diagnostic performance while
still defending against data reconstruction attacks and thus a likely
patient re-identification. We achieve this by training models under
privacy budgets that would be considered too large to offer any pro-
tection against the threats considered under the worst-case DP threat
model. This supports a recommendation for training Al models with
DP protection by default. Therefore, although more restrictive privacy
budgetsthanthe onesusedin our study remain relevant for use casesin
which protection against membership inference is explicitly required,
there exists an additional option: when high model performance is
required but cannot be achieved without relinquishing membership
inference protection, our findings offer a compromise whereby an
important and relevant class of attacks can be defended against while
fulfilling the requirement for high diagnostic accuracy.

As stated above, DP allows for a quantifiable reduction in the
risk of privacy attacks associated with the training of Al models. In
this work, we differentiate between three threat models, which we
termworst case, relaxed, and realistic. DP, reconstruction risks and all
threat modelsare described indetail in Supplementary Material A. An
overview canbe foundin Table 1.
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Fig.1| Comparison of a worst-case and arealistic threat model. a, Adversaries
can have various capabilities depending on the setting. b, The combination of the
adversary’s capabilities defines the threat model. In a worst-case analysis, they
have all capabilities. However, access to the database is a pessimistic, practically
irrelevant scenario. ¢, The necessary privacy protection depends on the threat
model. Inaworst-case threat model, the adversary only needs to match the

Privacy budget €

model and gradient to animage in the database. In a practically more relevant
scenario, theimage must be reconstructed from the model and gradient. Here,
much less privacy protectionis necessary. d, The more stringent the privacy
protectionis chosen, the higher the impacts on the model performance are.
Thus, if arealistic threat model is considered appropriate, models can perform
better.

The key contribution of our work is to investigate the realistic
risks posed by atype of adversary who s still very powerful but can be
reasonably assumed to exist in real-world medical Al model training
use cases. Anoverview is displayed in Fig. 1. In the next section, we will
show that perfectly defending against such adversariesis possible while
maintaining a diagnostic model performance competitive with that of
amodeltrained without any privacy protection.

Results

Set-up

Our evaluation focuses on how various privacy risks on multiple
real-world characteristic datasets (compare Table 2) correlate with
the algorithm’s performance. We provide details on the datasets and
our rationale for choosing these in Supplementary Material Bl and
on the evaluation metrics in B2. First, we show the correlation of the
Al performance on our datasets with privacy budgets. Second, we
illustrate the implications of a certain privacy budget in arisk profile,
summarizing the reconstruction risk under different threat models.
We recall that a threat model corresponds to the set of assumptions
over the attacker, where we give the theoretical bounds for aworst-case

and a slightly relaxed adversary. Both are more pessimistic than any
real-world scenario. Thus, we add a third threat model representing
the worst ‘realistic’ case.

Table 2 | Overview of characteristics of our datasets

Dataset Task Small Imbalanced Multi-modal
RadlmageNet Classification 4 v
HAM10000 Classification v v

MSD Liver Segmentation v v

InTable 3, welist the best possible Almodel performance and cor-
responding reconstruction risk for all datasets and privacy budgets.
Theriskisthree-tiered: (1) The upper bound of aworst-case adversary.
This is the maximum risk under this setting and cannot be increased
by post-processing or side information. (2) The upper bound of amini-
mally relaxed adversary asintroduced inref. 24. (3) The reconstruction
success of the real-world adversary. We argue that—for practical use
cases—protectionagainst such areal-world attacker suffices. By listing
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Table 3 | Comparison of performance to privacy risk over multiple datasets and privacy budgets

Privacy budget Noise TestMCC Reconstruction risk
cat5=8.0x10" [ Meanzs.d. Worst case Relaxed Realistic
RadlmageNet
1 0.67 64.95+0.13% 0.00% 0.00% 0%
8 0.34 68.75+0.13% 0.04% 0.01% 0%
32 0.267 69.99+0.25% 13.18% 3.96% 0%
107 0.054 70.83+0.19% 100% 100% 0%
Non-private 0 71.83+1.86% 100% 100% 100%
HAM10000
1 0.92 15.60+4.13% 0.03% 0.01% 0%
8 0.47 37.48+3.45% 1.22% 0.04% 0%
20 0.40 42.83+2.37% 22.30% 0.78% 0%
10° 0.02 51.98+2.52% 100% 100% 0%
Non-private 0 51.66+1.38% 100% 100% 100%
MSD Liver

Dice score liver Dice score tumour Reconstruction risk

Meanzs.d. Meanis.d. Worst case Relaxed Realistic
1 9.97 42.84+1.83% 0.96+0.37% 1.66% 0.97% 0%
8 1.66 74.71+£314% 3.01x0.96% 17.96% 3.68% 0%
20 0.96 79.06+217% 5.55+0.72% 74.24% 27.37% 0%
10° 0.0054 91.20+0.23% 29.73+2.89% 100% 100% 0%
Non-private 0] 91.58+0.41% 28.38+2.29% 100% 100% 100%

Test MCC denotes Matthew’s correlation coefficient on the test dataset. For all performance metrics, we give the meants.d. over five runs with different random seeds. Reconstruction risk
denotes the upper bounds for the risk of a successful reconstruction attack of a worst-case and minimally relaxed adversary, as well as the empirical success of one of the strongest ‘realistic’
attacks. An image is considered successfully reconstructed if the SSIM to any reconstruction is higher than 80%. Note that the noise multiplier o is given for the empirical attack scenario where
an adversary manipulated hyper-parameters in their favour. Noise multipliers for performance analysis are generally higher.

all three, we provide an overview of how the risk varies by changing
assumptions about the adversary.

Performance trade-offs under varying privacy levels

Impacts on performance is substantial for small datasets. At first,
we analyse the impact of a very restrictive (small) privacy budget
of e=1onthe predictive Al performance on our datasets (Table 3).
Across the board, we see that at these budgets, the impacts on the
model performance are strong. Concretely, we find that on Radlma-
geNet, a standard non-private Al model reaches 71.83% on average,
while trained at suchrestrictive privacy guarantee we find an average
Matthews’ correlation coefficient (MCC) of 64.95%, which is still 90%
of the non-private MCC score. The gap becomes much larger on the
HAM10000 dataset, where the model performance, when trained with
avery low privacy budget of € = 1is closely above the chance level at
an MCC of15.60%. Similarly, on the Medical Segmentation Decathlon
(MSD) Liver dataset at restrictive privacy budgets, the average Dice
score for the liver drops to 42.84% (non-private: 91.58%) and com-
pletely fails for the tumour with a Dice of 0.96%. This exemplifies the
challenges of furnishing strong privacy protection when training Al
models on small or difficult datasets.

Prediction quality under medium budgets depends on dataset.
Next, we consider medium privacy budgets ranging frome=8toe =32,
whicharetypical choices in literature®*'. As g is an exponential param-
eter (e°), larger values correspond to exponentially decreased privacy
guarantees. For this reason, some argue that the guarantees provided
by such medium budgets are meaningless**.

Atthese privacy budgets, although the performance substantially
increases compared with the extremely restrictive privacy budget,

the private Al models never exactly match the non-private perfor-
mance. On RadlmageNet, the achieved result closely approaches
the non-private baseline: at a privacy budget of £ =32, the MCC is
69.99% versus 71.83% in the non-private case. Also, for HAM10000,
performanceisstrongly improved at 42.83% MCC, yet still decreased
by 9% compared with the non-private result. Lastly, in MSD Liver, the
liver as a larger organ can now be learned up to a reasonable Dice
score of 79.06% at ¢ = 20. However, it remains far from the non-private
performance. The prediction quality of the tumour, which is amuch
smaller and more complex structure, is especially concerning. This
leads to a poor segmentation quality and only achieves an average
Dice score of 5.55%, which is unsuitable for real-world applications.
Again, we note that performance trade-offs especially impact smaller
and imbalanced datasets.

Performance trade-offs vanish under large privacy budgets. For
very large privacy budgets, we observe that the gap between private
and non-private performance disappears. We recall that HAM10000
and MSD Liver as small datasets are extremely challenging under
restrictive DP conditions. Whenincreasing the privacy budget to =10°,
no statistically significant difference to the non-private model can be
detected (Pvalues:HAM10000: 0.36;and MSD Liver dataset liver: 0.10
and tumour: 0.29, Student’s t-test). Only on RadlmageNet, although the
non-private model is still statistically significantly superior (P value:
0.001), the private model atan £ =10 achieves 99% of the non-private
baseline performance.

Itisunsurprising thatincreasing the privacy budget mitigates the
negative implications on the model performance. Hence, the ques-
tion that must be asked is what level of privacy is necessary for a spe-
cific setting. This cannot be answered generally and must be carefully
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Fig.2| Theoretical reconstruction bounds for a worst-case and slightly relaxed adversary. From left to right: RadimageNet, HAM10000 and MSD Liver. We see
that the mathematical upper bound for areconstruction risk of a minimally relaxed threat model (orange) is already substantially lower compared with a worst-case

setting (purple).

considered for each use case. Important for these considerations is
which risks are associated with a certain privacy budget, which we
analyse next.

Worst-case bounds require small privacy budgets

Althoughtoo pessimistic for most use cases, worst-case analyses have
the advantage of aformal guarantee, thatis, an absolute upper bound
ontheriskin thisscenario. When analysing the theoretical worst-case
(highest) success of reconstruction attackers, we find that for the large
RadImageNet dataset for budgets € < 8, the risk is <0.05%. However,
already at e =32, the theoretical probability of the original data being
reconstructed is 15%. Here, the smaller datasets are again at higher
risk. While at ¢ =1therisk remains low, it strongly increases at € = 8 for
HAM10000 (0.03%t01.22%) and MSD Liver (1.66%t017.96%). At € =20
theoretically, up to 74.24% of all data samples of the MSD Liver dataset
canbereconstructed.

However, even minimally relaxing the threat model assumptions
decreasesthe risk associated with these privacy budgets drastically. We
recallthatunder this relaxed threat model, the only change compared
with the worst case is that the attacker does not know the sample that
isreconstructed beforehand. Yet, for theoretical analysis, there is still
the assumption that the reconstruction algorithm s either perfect or
fails and the risk which is then calculated is the maximum rate where
the attacker correctly decidesif the reconstruction they obtained was
indeed the dataset sample in question. This threat model is still too
pessimistic for any real-world use case and the analysis is mostly for
theoretical purposes. Still, such a minimal relaxation already gives
amuch more favourable risk profile, especially for medium privacy
budgets. Exemplarily, the risk associated with € =20 diminishes from
over20%toless than 1% for the HAM1000O dataset. Similarly, the risk
for the MSD dataset at ¢ = 8 decreases from 18% to 4%. A visualization
of the risk difference in worst-case and relaxed threat models can be
foundinFig. 2.

Empirical protection even at large privacy budgets

The previously discussed theoretical analyses show rapidly growing
risks associated with small and medium privacy budgets. However, as
discussed before, we argue that these analyses are too strict for any
‘realistic’ use case. Hence, we ask what the worst case of any practical
scenario is and determine it to be a federated learning set-up, where
acentral server coordinates the learning on the data of distributed
clients, which follow each training command sent by the server. This
implies that the server can freely choose any network architecture
and hyper-parameters. Note that any client who performs a simple
check would notice such a malicious server. For such cases, attacks
havebeenshowninliterature, which analytically can recover the model
input perfectly®’. Moreover, it has been shown that these attacks can be
transferred to corrupted pre-trained models”. We employ these attacks

asempirical risk assessments. To measure the reconstruction success,
we use the structural similarity (SSIM) score, whichis astandard metric
forimage similarity™.

In contrast to the aforementioned theoretical risk bounds, we find
that, for practical attacks, even privacy budgets considered meaning-
less (¢ >10°) can provide effective protection against reconstruction.
InFig. 3, left, we plot how many dataset images are below anincreasing
SSIM error per privacy budget. It can be thought of as the cumulative
distribution function of reconstruction errors. We observe that, for
all datasets without the addition of DP constraints, nearly all images
can bereconstructed perfectly. As soon as some privacy guarantee is
introduced, even very generous budgets at an £ = 10° provide empirical
protection against the reconstruction of data samples. Furthermore,
confirming previous works®**, our threat model s still extremely pow-
erful. A server without the control of hyper-parameters but still over
the model architecture already imposes a substantially lower recon-
structionrisk. If the server does not set the batch size to one but is set
totherealtrainingbatchssize, for example, on the Radimagenet dataset
even in the non-private case we could only reconstruct less than 5%
of all images at a batch size of 3,328. We note that such large privacy
budgets, which are near-universally shunned as being meaningless,
still offer empirical protection. Inother words, evena‘pinch of privacy’
hasdrasticeffectsin practical scenarios. Complemented by the finding
that performance trade-offs nearly disappear in these settings, this
signifies a potential compromise between protection and usability.

Discussion

In this study, we explore the relationship between privacy risks and
Al performance in sensitive applications such as medical imaging.
Currently, practitioners are confronted with trade-offs between Al
performance, privacy protection and computational efficiency, where
nosolution hasso far been able to accomplish all of these goals. Previ-
ous work showed that DP training profits much more than standard
Al training from a higher number of training steps’°. By increasing
privacy budgets, practitioners canreach similar trade-offs with fewer
training steps, which further allows a broader use for practitioners
without substantial compute resources. Moreover, prior work also
showed that pre-training on a 4 billion image dataset allows models
to transfer to private datasets®. However, in practice this is typically
infeasible due to limited access to such large datasets or the com-
putational resources to train such amodel. Furthermore, such data
scales only exist for natural two-dimensional images but not yet for
three-dimensionalimages, which are typicalin medicalimaging. There-
fore, oftenthe choice remains for practitionersto prioritise privacy and
sacrifice performance or to put sensitive data at risk of being leaked.
Currently, there is no clear method to balance these two objectives,
leaving practitioners without guidance. To make informed decisions
on these trade-offs, broad discourse involving ethicists, lawmakers
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Fig.3|Reconstruction threat analysis for three datasets. Each row shows one
dataset. From top to bottom: RadimageNet, HAM10000 and MSD Liver. Left:
the cumulative number of images that have, in an empirical reconstruction,
aSSIM difference lower than the value on the x axis. Note that it is the SSIM
reconstruction error and thus perfect at 0 and worst at 1. Exemplarily, we see
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that on the MSD dataset at a reconstruction error of 10% all non-private (green)
images, 39% at £ =10" (pink) and none at more restrictive privacy guarantees can
bereconstructed Right: the top five images with the best reconstruction score
and their corresponding best reconstruction at various privacy budgets.

and the general population is crucial. A prerequisite of this dialogue
is understanding the risks associated with specific privacy budgets
and the potential trade-offs in Al performance. Our study across three
representative medical imaging datasets lays the foundation for this
conversation. We find that real-world data reconstructionrisks can be
averted without performance trade-offs. In fact, privacy-performance
trade-offs have so far always been based on worst-case assumptions,
which do not overlap with realistic training settings. We postulate
that it is more critical to prevent data reconstruction in real-world
settings, and show that for workflow de-risking, large privacy budgets

suffice. Even more, we find that the trade-off between privacy risks and
model performance vanishes when using such large but protective
privacy budgets.

Itis known from previous works**¢~*® that PETs formally protect
Al'models in sensitive contexts from reconstruction attacks. While
we note that our results are empirical, it is apparent that DP train-
ing with minimal guarantees still provides better protection than
non-private training. Considering this finding, it seems negligent to
train Al models without any form of formal privacy guarantee. We
note that the threat model we consider is probably still stronger than
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attackers encountered in practical attack scenarios. In aslightly differ-
entthreat model, where an adversary only has black-box access to the
final trained weights of amodel but has animage prior containing the
true target point, ref. 23 found that large privacy budgets in the order
of the dimensionality of the data suffice to prevent reconstruction
attacks. Similarly, ref. 32 found that against reconstruction attacks,
noise multipliers which otherwise would be seen as vacuous, suffice.
Furthermore, ref. 39 studied the reconstruction of discrete data and
foundthat privacy budgets can be muchlarger than previously thought
to effectively defend against reconstruction attacks. However, for
our threat model, we find even much larger privacy budgets than the
aforementioned to suffice and, without a theoretical lower bound,
the possibility exists that future attacks could achieve success closer
to the upper bound. Owing to this, we explicitly warn readers to take
our results as a carte blanche to use arbitrarily high privacy budgets.
The truthlies in the middle: if the alternative is to not use any privacy
atall, rather use DP with a very high budget.

We remark that the effectiveness of the DP protection against
attacks atafixed clipping norm, batchsize, training duration and train-
ing setsize depends only on the noise multiplier. Thisis a consequence
of how DP budgets are accounted. For example, in the Rényi-DP (RDP)
220¢

o2
atevalues of the parameters a the order of the Rényi divergence, g, the
subsampling rate (thatis, batch size divided by training set size), C, the
clipgradient normand o, the noise multiplier. However, our empirical
results suggest that for all other factors being constant, even small
noise multipliers, whichimply very large privacy budgets, are sufficient
toprotectagainstreconstructionattacks andfacilitate high-performing
Almodels. We also observed that the Al performance loss introduced
by DP tends to be smaller on larger datasets due to less injected noise
per sample and more information to achieve a certain privacy budget
at consistent hyper-parameters. Yet, many medical datasets areinher-
ently small. This can have negative consequences for the applicability
of such networks in clinical practice. For models to be effectively
trained onsuch challenging datasets, when pre-training is not possible
for reasons of data availability or computational resources, our tech-
niquesreachalimitindicatinga potential need to eitheracceptelevated
privacy risks or obtain access to more data. The solution to both prob-
lems might go hand in hand with more robust mathematical guarantees
safeguarding data privacy. In such a scenario, we anticipate that
patients may be more inclined to share their data, thereby allowing
large-scale medical Al training. Insuch a scenario, the privacy-perfor-
mance trade-offs presented might even be more favourable than our
findings indicate. This would be complemented by a workflow where
multiple PETs are employed to enable various aspects to privacy. For
example, asystem using federated learning to assert the data govern-
ance remains at the original hospital, secure aggregation to conceal
contributions from different sites and DP to limit the private informa-
tion of single patients demonstrated in previous works** would provide
aholistic workflow.

We note that our choice of datasets and architectures is motivated
by medicalimaging settings. Inthose settings, typically computational
resources are limited and data are scarce. In fact, we are convinced
that the widespread use of such methods will only ensue once they
can be used by the majority of practitioners who typically lack access
tolarge computing clusters. Hence, we carefully designed our study to
cover typical and representative medical problems to provide a holis-
tic analysis with trade-offs in computational resources. Under these
considerations, we limited ourselves to afew model architectures that
areknown to be trained efficiently (ResNet, DenseNet and U-Net) and
datasets that represent abroad range of typical problems.

An additional technical limitation stems from the fact that the
authors of the Radlmagenet dataset* mention that some patients
contributed multiple images. However, we have no information about

accountant*’used in our work, onestepis (a, ¢ )-RDP for appropri-

image-to-patient correspondence. As we calculate the privacy guarantees
over the dataset per image, the per-patient privacy guarantee depends
onthe number ofimages one patient contributed and might be lower.

In conclusion, we show that even the use of nominally loose pri-
vacy guarantees still provides substantially better protection than
standard Al training, while achieving comparable performance. This
can facilitate a compromise between provable risk management and
performance trade-offs, which previously prevented the breakthrough
of DP. Further research should be directed towards analysing various
threat models beyond the worst case. Only by illuminating the risks of
multiple scenarios, the basis for a broad discussion among ethicists,
policymakers, patients and other stakeholders is provided regarding
how to trade-off privacy and performance as fundamental goals of Al
insensitive applications.

Methods

Inthis section, we reportall the details necessary for our experiments
ontrainingmodelsinadifferentially private way on our datasets as well
as the procedures to analyse risk profiles. Furthermore, we describe
the rationale for several choices in our study design and describe
hyper-parameters necessary for reproducibility.

Data

In Supplementary Material A, we describe characteristics of typical
medical datasets. We note, that these characteristics partially amplify
the negative performance impact by the constraints introduced by DP.
Broadly speaking, at a constant clipping norm the amount of intro-
duced noise during the DP process determines the negativeimpact on
the Al performance. At any privacy budget, the injected noise increases
if more training steps are performed or if a higher sampling rate, that
is, the ratio between batch size and dataset size, is used. However, the
batch size is typically irrespective of the dataset size, which implies
that smaller datasets typically have higher sampling rates. Further-
more, they often require more training epochs, that is, the amount of
times the entire dataset was (on average) presented to the network.
As a consequence, the amount of noise that is injected when training
on small datasets compared with larger ones is increased and higher
performance penalties are expected. Furthermore, DP bounds the
magnitude any single sample on the training. This is important for
training with imbalanced datasets with underrepresented classes,
which often suffer an additional performance loss*.

For detailed descriptions of the datasets we refer to the original
publications****, In the following, we describe modifications we
performed and the effects on the data distribution.

For the HAM10000 dataset*’, we merged classes into whether
thereisindication forimmediate treatment, which is still a medically
important distinction. By this we convert the multi-class classification
problem into a highly imbalanced binary classification problem. We
categorized them here as follows:

Treatment indication

Immediate Notimmediate

Actinic keratoses and intra-epithelial Melanocytic nevi

carcinomas

Basal cell carcinomas Benign keratinocytic lesions

Melanomas Dermatofibromas

Vascular lesions

Intotal, this dataset has 10,015 images, of which 1,954 are labelled
forimmediate treatment and 8,061 are not.

Model training
All of our experiments were performed using an NAdam optimizer,
whichisextremely robust to learning rate changes allowing usto keep
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a consistent learning rate of 2e”%. Input data were always normalized
with the mean and standard deviation of all images in the training
set. For each dataset, we perform a hyper-parameter search, where
we evaluate for one privacy level (¢ = 8) and the non-private training
the optimal setting for architecture, batch size, loss weighting and
augmentation. In the non-private case, we perform an early stopping
strategy to determine the number of epochs. Inthe private case, thisis
not possible as the number of epochs directly influences the amount
of added noise. However, previous works showed that longer training
almostalways yields better results®. Yet, to limit training time, we also
search for the point of saturation. Also for reasons of computational
complexity, we assume that the optimal settings for these parameters
transfer to all other privacy regimes. Furthermore, we limit the choice
ofarchitecturesto aResNet-9 with ScaleNorm and a WideResNet40-4,
which have in previous literature been proven to be especially suited
for differentially private training®®*¢. In the segmentation case, we limit
ourselves to a standard U-Net**$, where we optimize the number of
channelsonthebottleneck. We then evaluate for each privacy setting
separately the optimal clipping norm. Again for reasons of compu-
tational complexity, we evaluate this after one epoch and assume
it transfers to longer trainings. Finally, we train for each setting five
models with different random seeds and report the mean and standard
deviation of the respective performance metric.

All our models are trained from ‘scratch’, that is, we have not
pre-trained on any other dataset. This is because there is no ‘good
choice’ of a dataset for pre-training. ImageNet, which for most com-
puter vision tasks is the standard, is not very effective for medical
imaging tasks*. Large public databases for pre-training are scarce and
only available for a few tasks. Furthermore, pre-training on non-public
medical databases is unacceptable, asit risks leaking the information
from the pre-training data, which could be just as private*>*°.

We used the Opacus® library for accounting the privacy loss. In
particular, we used an RDP accountant, as it provides numerically the
most stableimplementation. We used an extension of the objax library™
asimplementation for the DP-Stochastic Gradient Descent algorithm.

We open source the program code used for this paper at https://
github.com/a1302z/RePrAAIMI.

Radlmagenet. As described in the 'Model training' section, we analysed
the architecture, number of epochs, batch size, loss and multiplicity
forthe non-private and one private setting (¢ = 8). For the non-private
case, we found a WideResNet40-4 using an unweighted loss function,
a batch size of 16 and random vertical (probability of augmentation
(P,ug) = 0.2) and horizontal flips (P,,, = 0.1) as augmentation to yield
the bestresults. To determine the number of epochs, we used an early
stopping strategy with a patience of five epochs and 0.1% improvement
threshold. Forthe private case, aResNet-9 trained for 50 epochs, using
an unweighted loss function, using an augmentation multiplicity of
four again with random vertical (P, = 0.2) and horizontal (P,,, = 0.2)
flips with abatch size of 3,328 yielded best results. The clipping norm
was tuned for each budget separately and was set as follows:

€ 1 8 32 1e?

Clip norm 6.46 5.66 5 3.75

HAM10000. For the modified HAM1000O0 dataset, we found the
ResNet-9 to perform best in private and non-private settings. In the
non-private case, we trained with a weighted loss function at a batch
size of 32 using random vertical flips (P,,, = 0.5) as augmentation. We
trained using an early stopping strategy using a patience of 50 epochs
at aminimal improvement threshold of 0.1%. For the private case, we
used an unweighted loss function at a batch size of 2,048 and trained
for100 epochs. We used the same augmentations asin the non-private
case foraprivacy level of £ =10° for all others, we did not use augmenta-
tions. Clipping norms are as follows:

€ 1 8 20 1e°

Clip norm 18 8.5 9.5 9

MSD Liver. For the MSD Liver dataset, we found for both private and
non-private cases a U-Net with 16 channels and no augmentations to
performbest. Inthe non-private case we used aweighted loss function
(background: 0.1; liver: 0.4; tumour: 0.5) and trained at abatch size of
two. Again, we employed an early stopping strategy with a patience of
50 epochs and a minimal improvement threshold of 0.1%. In the pri-
vate case, we trained at abatch size of one for 500 epochs. For privacy
budgets £ <20 we used an unweighted loss function, for higher privacy
budgets we used the same weighting as in the non-private case.

€ 1 8 20 1e°

Clip norm 0.0004 0.046 0.0015 0.33

Reconstruction risk analysis

In our empirical reconstruction attacks, thereisno clear way to evalu-
ate whether aspecific sample was reconstructed. For each input batch
consisting of N samples, we receive M reconstructions. We evaluate
this by calculating the pairwise distance between all data samples and
reconstructions and assigning eachinput the reconstruction with the
lowest distance. However, this approach loses meaning in the case of
images, which have no structure but are entirely dark. This is the case
for the Radlmagenet dataset, where we put a constraint that only data
samples are considered that contain more than10% non-zero pixels.

We evaluate the practical reconstruction success by using a prin-
ciple demonstrated in previous literature®’ adapted to our use case.
The network architectureis slightly modified by prepending two linear
layers in front of the actual network architecture. The first takes all
inputimage pixels as input and projects them to an intermediate rep-
resentation of Nbins. In our experiments, we set N=10. This intermedi-
ate representation is afterwards projected again to the number of all
pixels and re-sized to the originalimage shape. To each of the outputs,
the mean of the intermediate representationsis added. Afterwards, it
can be processed as usual by the remaining neural network. As our
adversary is assumed to have control over all hyper-parameters, they
canset thebatchsize tooneand by that enforce that noreconstruction
oftwoimages overlap.If nowagradientis calculated over the network,
whichisnon-zero for the weights W;and biases b of the first linear layer,
the input x can be analytically recovered by x =V, £ @ ‘;—2, where @ is
the element-wise division. We note that, for this attack, itisirrelevant
what network architecture comes after this imprint block. We used
implementations provided by ref. 53.

Thereconstruction error, which we use as basis for the risk analysis
inthis paper, is the minimum reconstruction error between adatasam-
pletoanyreconstruction that was derived froma gradient containing
the datasample.

Choice of privacy budgets

For our experiments on the utility trade-off, we chose several privacy
budgets. We note that this choice was arbitrary. For all experiments,
weusedad=8x107". Forallsettings, we evaluated e =1and £ = 8, which
are standard values in the literature®>*"*¢, Furthermore, we calculate
the theoretical reconstruction bound of the worst case and relaxed
threat models. As the already included privacy budgetsate =1ande=8
already showcase very low reconstruction bounds, we add one more
privacy level for all datasets, where alarge amount of samples is already
atrisk of being reconstructed. Inaddition, wereport a privacy budget
€ =10°", N e N, where the characteristic reconstruction robustness
curveis still similar to random noise.

Environmental impact
Lastly, we would like to give a rough estimate of the climate impact of
this study. We assume the average German power mix that as of 2021
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according to the German Federal Environment Agency corresponds
to 475 g CO,e kWh (ref. 54) Only the final Radlmagenet trainings (no
hyper-parameter optimization) ran on eight NVIDIA A40s, where we
assume a power consumption of 250 W on average, each for almost
4 days, five privacy levels and five repetitions. Hence, this amounts
to around 960 kWh and thus more than 450 kg of CO,e. This almost
equalsareturn flight from Munich to London. Hence, we tried to limit
our hyper-parameter searches to the necessary. In total, we assume
that this study produced at least 2 tons of CO,e.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All datasets used in this study are published and publicly avail-
able. Access to RadlmageNet* must be requested at https:/www.
radimagenet.com/. The HAM10000 dataset* is available at https://
doi.org/10.7910/DVN/DBWS86T. The MSD Liver dataset*** is avail-
able at http://medicaldecathlon.com/ and https://doi.org/10.1038/
s41467-022-30695-9.

Code availability

Our program code is available at https://github.com/al1302z/
RePrAAIMIand permanently archived under https://doi.org/10.5281/
zenodo.11184978 ref. 55. Furthermore, we created a modified version
of*, which is available at https://github.com/a1302z/objaxbreaching
and https://doi.org/10.5281/zenodo.11184998 ref. 56.

References

1. Lang, K. et al. Artificial intelligence-supported screen reading
versus standard double reading in the mammography screening
with artificial intelligence trial (MASAI): a clinical safety analysis
of arandomised, controlled, non-inferiority, single-blinded,
screening accuracy study. Lancet Oncol. 24, 936-944
(2023).

2. Wang, G. et al. Deep-learning-enabled protein-protein interaction
analysis for prediction of SARS-CoV-2 infectivity and variant
evolution. Nat. Med. 29, 2007-2018 (2023).

3. Al-Zaiti, S. S. et al. Machine learning for ECG diagnosis and risk
stratification of occlusion myocardial infarction. Nat. Med. 29,
1804-1813 (2023).

4. Singhal, K. et al. Large language models encode clinical
knowledge. Nature 620, 172-180 (2023).

5. Yao Jiang, L. et al. Health system-scale language models are
all-purpose prediction engines. Nature 619, 357-362 (2023).

6. Geiping, J., Bauermeister, H., Droge, H. & Moeller, M. Inverting
gradients—how easy is it to break privacy in federated
learning? Adv. Neural Inf. Process. Sys. 33, 16937-16947
(2020).

7. Yin, H. et al. See through gradients: image batch recovery via
gradinversion. In Proc. IEEE/CVF Conference on Computer Vision
and Pattern Recognition 16337-16346 (2021).

8. Fowl, L., Geiping, J., Czaja, W., Goldblum, M. & Goldstein, T.
Robbing the fed: directly obtaining private data in federated
learning with modified models. In Tenth International Conference
on Learning Representations (2022).

9. Boenisch, F. et al. When the curious abandon honesty: federated
learning is not private. In 2023 IEEE 8th European Symposium on
Security and Privacy (EuroS&P) 175-199 (IEEE, 2023).

10. Wang, Kuan-Chieh et al. Variational model inversion attacks.
AdVv. Neural Inf. Process. Syst. 34, 9706-9719 (2021).

1. Haim, N., Vardi, G., Yehudai, G., Shamir, O. & Irani, M.
Reconstructing training data from trained neural networks.

AdVv. Neural Inf. Process. Syst. 35, 22911-22924 (2022).

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Carlini, N. et al. Extracting training data from diffusion models. In
32nd USENIX Security Symposium (USENIX Security 23)
5253-5270 (2023).

Buzaglo, G. et al. Deconstructing data reconstruction: multiclass,
weight decay and general losses. In Thirty-Seventh Conference on
Neural Information Processing Systems (2023).

Hatamizadeh, A. et al. Do gradient inversion attacks make
federated learning unsafe? IEEE Trans. Med. Imaging 42, 2044~
2056 (2023).

Chen, H., Zhu, T., Zhang, T., Zhou, W. & Yu, P. S. Privacy and
fairness in federated learning: on the perspective of tradeoff. ACM
Comput. Surv. 56, 1-37 (2023).

Usynin, D., Rueckert, D. & Kaissis, G. Beyond gradients: exploiting
adversarial priors in model inversion attacks. ACM Trans. Priv.
Secur. 26, 1-30 (2023).

Feng, S.& Trameér, F. Privacy backdoors: stealing data with
corrupted pretrained models. In International Conference on
Machine Learning (ICML) (2024).

Narayanan, A. & Shmatikov, V. Robust de-anonymization of large
sparse datasets. In 2008 IEEE Symposium on Security and Privacy
(sp 2008) 111-125 (IEEE, 2008).

Cohen, A. & Nissim, K. Towards formalizing the GDPR’s notion of
singling out. Proc. Natl Acad. Sci. USA 117, 8344-8352 (2020).
Cohen, A. Attacks on deidentification’s defenses. In 31st USENIX
Security Symposium (USENIX Security 22) 1469-1486, (2022).
Schwarz, C. G. et al. Identification of anonymous mri research
participants with face-recognition software. N. Engl. J. Med. 381,
1684-1686 (2019).

Dwork, C. et al. The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci. 9, 211-407 (2014).

Balle, B., Cherubin, G. & Hayes, J. Reconstructing training data
with informed adversaries. In 2022 IEEE Symposium on Security
and Privacy (SP) 1138-1156 (IEEE, 2022).

Kaissis, G., Hayes, J., Ziller, A. & Rueckert, D. Bounding data
reconstruction attacks with the hypothesis testing interpretation
of differential privacy. CoRR abs/2307.03928 (2023).

Nissim, K. Privacy: from database reconstruction to legal
theorems. In Proc. 40th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems 33-41(2021).

Regulation laying down harmonised rules on artificial intelligence
(artificial intelligence act) and amending certain union legislative
acts, document 52021PC0206 (European Parliament and of the
Council, 2021).

Foote, A. D., Machanavajjhala, A. & McKinney, K. Releasing
earnings distributions using differential privacy: disclosure
avoidance system for post-secondary employment outcomes
(PSEO). J. Priv. Confidential. 9, 2 (2019).

Aktay, A. et al. Google COVID-19 community mobility reports:
anonymization process description (version 1.1). Preprint at
https://arxiv.org/abs/2004.04145 (2020).

Kaissis, G. A., Makowski, M. R., Ruickert, D. & Braren, R. F. Secure,
privacy-preserving and federated machine learning in medical
imaging. Nat. Mach. Intell. 2, 305-311 (2020).

De, S., Berrada, L., Hayes, J., Smith, S. L. & Balle, B. Unlocking
high-accuracy differentially private image classification through
scale. Preprint at https://arxiv.org/abs/2204.13650 (2022).
Sander, T., Stock, P. & Sablayrolles, A. Tan without a burn: scaling
laws of dp-sgd. In International Conference on Machine Learning
29937-29949 (PMLR, 2023).

Stock, P., Shilov, I., Mironov, I. & Sablayrolles, A. Defending
against reconstruction attacks with Rényi differential privacy.
CoRR abs/2202.07623 (2022).

Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image
quality assessment: from error visibility to structural similarity.
IEEE Trans. Image Process. 13, 600-612 (2004).

Nature Machine Intelligence


http://www.nature.com/natmachintell
https://www.radimagenet.com/
https://www.radimagenet.com/
https://doi.org/10.7910/DVN/DBW86T
https://doi.org/10.7910/DVN/DBW86T
http://medicaldecathlon.com/
https://doi.org/10.1038/s41467-022-30695-9
https://doi.org/10.1038/s41467-022-30695-9
https://github.com/a1302z/RePrAAIMI
https://github.com/a1302z/RePrAAIMI
https://doi.org/10.5281/zenodo.11184978
https://doi.org/10.5281/zenodo.11184978
https://github.com/a1302z/objaxbreaching
https://doi.org/10.5281/zenodo.11184998
https://arxiv.org/abs/2004.04145
https://arxiv.org/abs/2204.13650

Article

https://doi.org/10.1038/s42256-024-00858-y

34. Usynin, D., Rueckert, D., Passerat-Palmbach, J. & Kaissis, G.

Zen and the art of model adaptation: low-utility-cost attack
mitigations in collaborative machine learning. Proc. Priv.
Enhancing Technol. 2022, 274-290 (2022).

35. Berrada, L. et al. Unlocking accuracy and fairness in differentially
private image classification. Preprint at https://arxiv.org/abs/
2308.10888 (2023).

36. Kaissis, G. et al. End-to-end privacy preserving deep learning on
multi-institutional medical imaging. Nat. Mach.Intell. 3, 473-484
(2021).

37. Ziegler, J., Pfitzner, B., Schulz, H., Saalbach, A. & Arnrich, B.
Defending against reconstruction attacks through differentially
private federated learning for classification of heterogeneous
chest x-ray data. Sensors 22, 5195 (2022).

38. Hayes, J., Mahlouijifar, S. & Balle, B. Bounding training data
reconstruction in DP-SGD. In Proc. 37th Conference on Neural
Information Processing Systems (OpenReview.net, 2023).

39. Guo, C., Sablayrolles, A. & Sanjabi, M. Analyzing privacy leakage
in machine learning via multiple hypothesis testing: a lesson from
fano. In International Conference on Machine Learning 11998-12011
(PMLR, 2023).

40. Mironov, I., Talwar, K. & Zhang, L. Rényi differential privacy of
the sampled Gaussian mechanism. Preprint at https://arxiv.org/
abs/1908.10530 (2019).

41. Mei, X. et al. Radimagenet: an open radiologic deep learning
research dataset for effective transfer learning. Radiol. Artif. Intell.
4.5,e210315 (2022).

42. Bagdasaryan, E., Poursaeed, O. & Shmatikov, V. Differential
privacy has disparate impact on model accuracy. Adv. Neural Inf.
Process. Syst. 32, (2019).

43. Tschandl, P., Rosendahl, C. & Kittler, H. The ham10000
dataset, a large collection of multi-source dermatoscopic
images of common pigmented skin lesions. Sci. Data 5, 1-9
(2018).

44. Simpson, A. L. et al. A large annotated medical image dataset for
the development and evaluation of segmentation algorithms.
Preprint at https://arxiv.org/abs/1902.09063 (2019).

45. Antonelli, M. et al. The medical segmentation decathlon. Nat.
Commun. 13, 4128 (2022).

46. Klause, H., Ziller, A., Rueckert, D., Hammernik, K. & Kaissis, G.
Differentially private training of residual networks with scale
normalisation. In Theory and Practice of Differential Privacy
Workshop (ICML, 2022).

47. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional
networks for biomedical image segmentation. In Proc. Medical
Image Computing and Computer-Assisted Intervention-MICCAI
2015: 18th International Conference, Munich, Germany, October
5-9, 2015. Part 11118, 234-241 (Springer, 2015).

48. Cicek, Ozgiin, Abdulkadir, A., Lienkamp, S. S., Brox, T.

& Ronneberger, O. 3D u-net: learning dense volumetric
segmentation from sparse annotation. In Proc. Medical Image
Computing and Computer-Assisted Intervention-MICCAI 2016:
19th International Conference, Athens, Greece, October 17-21,
2016. Part 1119, 424-432 (Springer, 2016).

49. Abascal, J., Wu, S., Oprea, A. & Ullman, J. Tmi! finetuned models
spill secrets from pretraining. In The Second Workshop on New
Frontiers in Adversarial Machine Learning (2023).

50. Tramer, F., Kamath, G. & Carlini, N. Considerations for differentially
private learning with large-scale public pretraining. Preprint at
https://arxiv.org/abs/2212.06470 (2022).

51. Yousefpour, Ashkan, et al. Opacus: user-friendly differential
privacy library in PyTorch. Preprint at https://arxiv.org/
abs/2109.12298 (2021).

52. Objax. Objax Developers https://github.com/google/objax
(2022).

53. Wen, Y., Geiping, J. & Fowl, L. Breaching. GitHub https://github.
com/JonasGeiping/breaching (2023).

54. Icha, P, Lauf, T. & Kuhs, G. Entwicklung der spezifischen
Treibhausgas-Emissionen des deutschen Strommix in
den Jahren 1990-2021. Umweltbundesamt Dessau-RoBlau
(2022).

55. Ziller, A., Kaissis, G. & Stieger, S. a1302z/repraaimi. Zenodo
https://doi.org/10.5281/zenodo.11184978 (2024).

56. Ziller, A. objaxbreaching. Zenodo https://doi.org/10.5281/
zenodo.11184998 (2024).

Acknowledgements

The authors acknowledge the following sources of funding for this
work: A.Z. and G.K. are supported by the German Ministry of Education
and Research (BMBF) under grant number 012Z2316C (PrivateAIM).
TT.M. and D.R. are supported supported by the ERC Grant Deep4MI
(no. 884622). L.F.F. and R.B. are supported by the Federal Ministry

of Education and Research (BMBF), Project ‘'NUM 2.0’ (grant no.
01KX2121). R.B. is funded by the Federal Ministry of Education and
Research (BMBF, grant no. 01Z2Z2315B), Bavarian Cancer Research
Center (BZKF, Lighthouse Al and Bioinformatics), German Cancer
Consortium (DKTK, Joint Imaging Platform). G.K. and D.R. are funded
by the German Federal Ministry of Education and Research and the
Bavarian State Ministry for Science and the Arts through the Munich
Centre for Machine Learning. G.K. is supported by the Bavarian
Collaborative Research Project PRIPREKI of the Free State of Bavaria
Funding Programme ‘Artificial Intelligence-Data Science’ and from the
German Academic Exchange Service (DAAD) under the Kondrad Zuse
School of Excellence for Reliable Al (RelAl). The funders had no role
in study design, data collection and analysis, decision to publish or
preparation of the manuscript.

Furthermore, the authors thank J. Hayes for providing an
implementation of the prior aware attack presented in ref. 38.

Author contributions

A.Z. conceptualized this study, wrote the program code, performed all
experiments and prepared the paper. T.T.M. assisted in the preparation
of the paper. S.S. assisted in the design of the program code. L.F.F.
wrote program code for an efficient reconstruction matching and
segmentation loss. J.B. helped to prepare the HAM10000 dataset

for our purposes. R.B. and D.R. provided oversight. G.K. helped
conceptualize this study and in the preparation of the paper, wrote
code for the theoretical risk bounds and provided oversight. All
authors revised the paper.

Funding

Open access funding provided by Technische Universitat Miinchen.

Competinginterests
The authors declare no competing interest.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42256-024-00858-y.

Correspondence and requests for materials should be addressed to
Alexander Ziller.

Peer review information Nature Machine Intelligence thanks Holger
Roth, Yiyu Shi, Tian Xia and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Machine Intelligence


http://www.nature.com/natmachintell
https://arxiv.org/abs/2308.10888
https://arxiv.org/abs/2308.10888
https://arxiv.org/abs/1908.10530
https://arxiv.org/abs/1908.10530
https://arxiv.org/abs/1902.09063
https://arxiv.org/abs/2212.06470
https://arxiv.org/abs/2109.12298
https://arxiv.org/abs/2109.12298
https://github.com/google/objax
https://github.com/JonasGeiping/breaching
https://github.com/JonasGeiping/breaching
https://doi.org/10.5281/zenodo.11184978
https://doi.org/10.5281/zenodo.11184998
https://doi.org/10.5281/zenodo.11184998
https://doi.org/10.1038/s42256-024-00858-y
http://www.nature.com/reprints

Article

https://doi.org/10.1038/s42256-024-00858-y

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

Nature Machine Intelligence


http://www.nature.com/natmachintell
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Corresponding author(s): A231110141A

nature portfolio

Last updated by author(s): May 14, 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

>
Q
Q
c
@
O
]
=
o
=
—
®
©O
]
=
S
(e}
wv
c
3
3
Q
<

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

/a | Confirmed

>

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] A description of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

XXX [ [0 XX ]I
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis Permanently archived and cited computer code available at https://doi.org/10.5281/zenodo.11184978 and https://doi.org/10.5281/
zen0do.11184998.
Our code was developed in Python V3.10.
We used Objax V1.6.0 for training our Al models.
For accounting the privacy loss we used Opacus V1.4.0.
Other packages that were used in this study are pytorch V2.0 scikit-learn V1.3.0, scikit-image V0.21.0, pandas V2.0.3, OpenCV V4.7.0,
breaching V0.1.2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All datasets used in this study are published and publicly available. Access to RadimageNet [28] must be requested at https://www.radimagenet.com/. The
HAM10000 dataset [29] is available at https://doi.org/10.7910/DVN/DBWS86ET. The MSD Liver dataset [30,31] is available at http://medicaldecathlon.com/ and
https://doi.org/10.1038/s41467-022-30695-9.
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Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were predetermined by the public datasets used in this study. The datasets were chosen in order to represent typical medical Al
workflows, with one multi-modal dataset, one small imbalanced dataset and a segmentation 3D dataset.

Data exclusions  None

Replication Findings are deterministic with given data and seed for pseudo-random number generator.

Randomization  Radimagenet has a predetermined split into train, validation and test set, which ascertains that there is no data leakage with one patient in
multiple cohorts. For HAM10000, we split randomly with a stratification by the class label in order to ensure that train, validation and test set

approximately had the same distribution of classes. This was done using the train_test_split function of scikit-learn. For MSD 10000 we split
randomly on a patient level.

Blinding There are no groups which can be blinded. Therefore blinding is not applicable to this study.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Y2Iopy

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For




Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.

Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.

State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation.

If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Blinding

Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe the data collection procedure, including who recorded the data and how.
Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your studly.

Did the study involve field work? |:| Yes |:| No

Field work, collection and transport

Field conditions

Location

Access & import/export

Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
the date of issue, and any identifying information).
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Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Animals and other organisms
Clinical data

Dual use research of concern
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Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method, if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock
|:| Ecosystems
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|:| Any other significant area
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Experiments of concern
Does the work involve any of these experiments of concern:
Yes
Demonstrate how to render a vaccine ineffective
Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen
Alter the host range of a pathogen
Enable evasion of diagnostic/detection modalities
Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents
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ChlP-seq

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChiIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.




Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.
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Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ]used [ ] Notused

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ ] Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).




Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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