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Reconciling privacy and accuracy in AI for 
medical imaging

Alexander Ziller    1  , Tamara T. Mueller    1, Simon Stieger    1,2, 
Leonhard F. Feiner1,3, Johannes Brandt1, Rickmer Braren    1,3,4,  
Daniel Rueckert1,5 & Georgios Kaissis    1,2,3,5

Artificial intelligence (AI) models are vulnerable to information leakage of 
their training data, which can be highly sensitive, for example, in medical 
imaging. Privacy-enhancing technologies, such as differential privacy 
(DP), aim to circumvent these susceptibilities. DP is the strongest possible 
protection for training models while bounding the risks of inferring the 
inclusion of training samples or reconstructing the original data. DP 
achieves this by setting a quantifiable privacy budget. Although a lower 
budget decreases the risk of information leakage, it typically also reduces 
the performance of such models. This imposes a trade-off between robust 
performance and stringent privacy. Additionally, the interpretation of a 
privacy budget remains abstract and challenging to contextualize. Here 
we contrast the performance of artificial intelligence models at various 
privacy budgets against both theoretical risk bounds and empirical success 
of reconstruction attacks. We show that using very large privacy budgets 
can render reconstruction attacks impossible, while drops in performance 
are negligible. We thus conclude that not using DP at all is negligent when 
applying artificial intelligence models to sensitive data. We deem our results 
to lay a foundation for further debates on striking a balance between privacy 
risks and model performance.

The rapid rise of artificial intelligence (AI) applications in medicine 
promises to transform healthcare, offering improvements ranging 
from specific applications, such as more precise pathology detection 
or outcome prediction, to the promise of general medical AI1–5. How-
ever, recent results highlight a substantial vulnerability: AI models may 
disclose details of their training data. This can happen either inadvert-
ently or be forced through attacks by malicious third parties, also called 
adversaries. Among the most critical attacks are data reconstruction 
attacks, where the adversary attempts to extract training data from the 
model or its gradients6–17. Such attacks harbour distinct risks. On one 
hand, a successful data reconstruction attack severely undermines the 
trust of patients whose data are exposed. This not only jeopardises the 

relationship between medical practitioners and patients, but probably 
also diminishes the willingness of patients to make their health data for 
the training of AI models or for other research purposes available. This 
is problematic since the success of AI models in medicine is depend-
ent on the availability of large and diverse real-world patient datasets. 
On the other hand, a successful attack can also constitute a breach of 
patient data privacy regulations.

While privacy laws vary globally, the protection of health data 
is generally considered of high importance. For example, the Euro-
pean Union’s General Data Protection Regulation declares the protec-
tion of personal data as a fundamental right. Notably, some of these 
laws deem the removal of personal identifiers (for example, name or 
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These assumptions, also called a threat model, include an adversary 
who is able to deeply manipulate and interfere with the dataset, the 
training process, model architecture and (hyper-)parameters, and has 
access to all parameters of the DP algorithm (mechanism). Moreover, 
the canonical DP adversary is not assumed to execute a data reconstruc-
tion attack but a much simpler type of attack, namely a membership 
inference attack, which attempts to determine whether a specific 
individual’s data (which is available to the adversary) was included in 
the training dataset or not. Since there are only two possible outcomes 
of such an attack (member/non-member), membership inference must 
only reveal a single bit of information compared with a data reconstruc-
tion attack, which must successfully reveal a much larger record (for 
example, an image). Although worst-case assumptions are prudent for 
the theoretical modelling of adversaries, the DP threat model is unlikely 
to ever be encountered in practice. Moreover, the aforementioned 
membership inference attack in which the adversary has access to a 
target record and tries to determine whether it was used for training a 
specific model is arguably of very low practical relevance. Instead, data 
reconstruction attacks are probably perceived as a substantially more 
relevant privacy threat by patients. Moreover, realistic adversaries in 
the medical setting (where data is strongly guarded) can probably be 
assumed to not have access to the training data (as they would have 
little incentive to attack a model otherwise).

In this Article, we investigate whether the aforementioned typical 
DP threat model might be too pessimistic for practical use cases and 
thus impose unnecessary privacy/performance trade-offs. To investi-
gate this hypothesis, we study the privacy/performance characteristics 
of AI models trained on large-scale medical imaging datasets under 
more realistic threat models that still allow for strong privacy protec-
tion but represent a ‘step down’ from the worst-case assumptions of DP. 
Our main finding is that, even in complex medical imaging tasks, it is 
possible to train AI models with excellent diagnostic performance while 
still defending against data reconstruction attacks and thus a likely 
patient re-identification. We achieve this by training models under 
privacy budgets that would be considered too large to offer any pro-
tection against the threats considered under the worst-case DP threat 
model. This supports a recommendation for training AI models with 
DP protection by default. Therefore, although more restrictive privacy 
budgets than the ones used in our study remain relevant for use cases in 
which protection against membership inference is explicitly required, 
there exists an additional option: when high model performance is 
required but cannot be achieved without relinquishing membership 
inference protection, our findings offer a compromise whereby an 
important and relevant class of attacks can be defended against while 
fulfilling the requirement for high diagnostic accuracy.

As stated above, DP allows for a quantifiable reduction in the 
risk of privacy attacks associated with the training of AI models. In 
this work, we differentiate between three threat models, which we 
term worst case, relaxed, and realistic. DP, reconstruction risks and all 
threat models are described in detail in Supplementary Material A. An 
overview can be found in Table 1.

date of birth)—de-identification—sufficient protection. However, it 
has been demonstrated on several occasions that commonly used 
de-identification techniques such as anonymization, pseudonymization 
or k-anonymity are vulnerable to re-identification attacks18–20. This also 
holds true in the case of medical imaging data. For example, the facial 
contours of a patient can be obtained from a reconstructed magnetic 
resonance imaging scan even if their name has been removed from the 
record, thus enabling their re-identification from publicly available 
photographs21. Figuratively, this is analogous to considering passport 
photos without additional information not as personal data. Arguably, 
this highlights the tension between what is considered ‘private’ in a legal 
sense and what individuals consider acceptable in terms of informational 
self-determination. We thus contend that AI systems that process sensi-
tive data should not only rely on de-identification techniques but also 
implement privacy-enhancing technologies (PETs), that is, technologies 
that furnish an objective or formal guarantee of privacy protection.

DP as the optimal privacy preservation
Among PETs, differential privacy (DP)22 is considered the optimal pro-
tection for training AI models while moderating the privacy risk faced 
by participating patients due to its appealing properties: it provides 
a formal upper bound on the success of reconstructing data23,24 and 
satisfies requirements imposed by regulations such as the General Data 
Protection Regulation concerning re-identification19,25. Moreover, the 
privacy guarantees of DP cannot be degraded through the use of side 
information or through post-processing (two notable vulnerabilities of 
traditional de-identification schemes). Last but not least, DP satisfies 
composability, that is, its guarantee degrades predictably when multiple 
DP algorithms are executed on the same dataset. This enables the con-
cept of a ‘privacy budget’, which makes the cumulative re-identification 
risk quantifiable and can be set depending on policy or preference. We 
note that this ability to moderate risks stemming from AI applications 
is particularly beneficial, as it is also mandated by recent legal frame-
works such as the European AI act26. These properties are leading to 
DP’s increasing adoption in industry and government applications27,28.

We remark that for a holistic workflow, additional PETs are advis-
able. Cryptographic techniques such as homomorphic encryption 
or secure multi-party computation can allow performing computa-
tions on data while ascertaining that only authorized instances can 
read the private information. However, these techniques are ‘binary’, 
that is, information is perfectly private (encrypted) or non-private 
(decrypted). In particular, at the latest at inference time, the informa-
tion must be decrypted to be useful. In contrast, DP limits the prob-
ability that the output (gradient) can be correctly assigned to the input 
(data), which allows useful outputs at a guaranteed (but not perfect) 
level of privacy. Arguably, the most famous PET is federated learn-
ing, which provides a means to preserve data governance. However, 
without further protective measures, in particular DP, data can be 
reconstructed, and thus data governance is again not maintained. An 
overview can be found in ref. 29.

Despite these benefits, the effective and efficient implementation 
of DP in large-scale AI systems also presents a series of challenges. 
DP has been criticized for the fact that the choice of an appropriate 
privacy budget is delicate. Higher budgets correspond to less privacy 
protection and thus an increased risk of successful attacks, while lower 
budgets limit the information available for training. This introduces 
new challenges, namely a trade-off between privacy and model perfor-
mance, that is diagnostic accuracy for a given use case. Furthermore, 
this trade-off also depends on the specific input data and learning 
task, which can vary drastically between scenarios. Arguably, con-
cerns about reduced model performance are a probable reason why, 
despite its benefits, DP is not yet widely implemented in medical AI. 
After all, finding a trade-off between diagnostic accuracy and privacy 
represents a complex technical and ethical dilemma. This dilemma is 
best understood as DP is underlain by a worst-case set of assumptions.  

Table 1 | Overview of the capabilities of an adversary in the 
threat models analysed in this study

Worst case Relaxed Realistic

Model architecture and 
weight

Yes Yes Yes

Hyper-parameter Yes Yes Yes

Dataset access Yes Partially No

Perfect reconstruction 
algorithm

Not applicable Yes No

Risk analysis Theoretical Theoretical Empirical
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The key contribution of our work is to investigate the realistic 
risks posed by a type of adversary who is still very powerful but can be 
reasonably assumed to exist in real-world medical AI model training 
use cases. An overview is displayed in Fig. 1. In the next section, we will 
show that perfectly defending against such adversaries is possible while 
maintaining a diagnostic model performance competitive with that of 
a model trained without any privacy protection.

Results
Set-up
Our evaluation focuses on how various privacy risks on multiple 
real-world characteristic datasets (compare Table 2) correlate with 
the algorithm’s performance. We provide details on the datasets and 
our rationale for choosing these in Supplementary Material B1 and 
on the evaluation metrics in B2. First, we show the correlation of the 
AI performance on our datasets with privacy budgets. Second, we 
illustrate the implications of a certain privacy budget in a risk profile, 
summarizing the reconstruction risk under different threat models. 
We recall that a threat model corresponds to the set of assumptions 
over the attacker, where we give the theoretical bounds for a worst-case 

and a slightly relaxed adversary. Both are more pessimistic than any 
real-world scenario. Thus, we add a third threat model representing 
the worst ‘realistic’ case.

In Table 3, we list the best possible AI model performance and cor-
responding reconstruction risk for all datasets and privacy budgets. 
The risk is three-tiered: (1) The upper bound of a worst-case adversary. 
This is the maximum risk under this setting and cannot be increased 
by post-processing or side information. (2) The upper bound of a mini-
mally relaxed adversary as introduced in ref. 24. (3) The reconstruction 
success of the real-world adversary. We argue that—for practical use 
cases—protection against such a real-world attacker suffices. By listing 
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Fig. 1 | Comparison of a worst-case and a realistic threat model. a, Adversaries 
can have various capabilities depending on the setting. b, The combination of the 
adversary’s capabilities defines the threat model. In a worst-case analysis, they 
have all capabilities. However, access to the database is a pessimistic, practically 
irrelevant scenario. c, The necessary privacy protection depends on the threat 
model. In a worst-case threat model, the adversary only needs to match the 

model and gradient to an image in the database. In a practically more relevant 
scenario, the image must be reconstructed from the model and gradient. Here, 
much less privacy protection is necessary. d, The more stringent the privacy 
protection is chosen, the higher the impacts on the model performance are. 
Thus, if a realistic threat model is considered appropriate, models can perform 
better.

Table 2 | Overview of characteristics of our datasets

Dataset Task Small Imbalanced Multi-modal

RadImageNet Classification ✓ ✓

HAM10000 Classification ✓ ✓

MSD Liver Segmentation ✓ ✓
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all three, we provide an overview of how the risk varies by changing 
assumptions about the adversary.

Performance trade-offs under varying privacy levels
Impacts on performance is substantial for small datasets. At first, 
we analyse the impact of a very restrictive (small) privacy budget 
of ε = 1 on the predictive AI performance on our datasets (Table 3). 
Across the board, we see that at these budgets, the impacts on the 
model performance are strong. Concretely, we find that on RadIma-
geNet, a standard non-private AI model reaches 71.83% on average, 
while trained at such restrictive privacy guarantee we find an average 
Matthews’ correlation coefficient (MCC) of 64.95%, which is still 90% 
of the non-private MCC score. The gap becomes much larger on the 
HAM10000 dataset, where the model performance, when trained with 
a very low privacy budget of ε = 1 is closely above the chance level at 
an MCC of 15.60%. Similarly, on the Medical Segmentation Decathlon 
(MSD) Liver dataset at restrictive privacy budgets, the average Dice 
score for the liver drops to 42.84% (non-private: 91.58%) and com-
pletely fails for the tumour with a Dice of 0.96%. This exemplifies the 
challenges of furnishing strong privacy protection when training AI 
models on small or difficult datasets.

Prediction quality under medium budgets depends on dataset. 
Next, we consider medium privacy budgets ranging from ε = 8 to ε = 32, 
which are typical choices in literature30,31. As ε is an exponential param-
eter (eε), larger values correspond to exponentially decreased privacy 
guarantees. For this reason, some argue that the guarantees provided 
by such medium budgets are meaningless22,32.

At these privacy budgets, although the performance substantially 
increases compared with the extremely restrictive privacy budget, 

the private AI models never exactly match the non-private perfor-
mance. On RadImageNet, the achieved result closely approaches 
the non-private baseline: at a privacy budget of ε = 32, the MCC is 
69.99% versus 71.83% in the non-private case. Also, for HAM10000, 
performance is strongly improved at 42.83% MCC, yet still decreased 
by 9% compared with the non-private result. Lastly, in MSD Liver, the 
liver as a larger organ can now be learned up to a reasonable Dice 
score of 79.06% at ε = 20. However, it remains far from the non-private 
performance. The prediction quality of the tumour, which is a much 
smaller and more complex structure, is especially concerning. This 
leads to a poor segmentation quality and only achieves an average 
Dice score of 5.55%, which is unsuitable for real-world applications. 
Again, we note that performance trade-offs especially impact smaller 
and imbalanced datasets.

Performance trade-offs vanish under large privacy budgets. For 
very large privacy budgets, we observe that the gap between private 
and non-private performance disappears. We recall that HAM10000 
and MSD Liver as small datasets are extremely challenging under 
restrictive DP conditions. When increasing the privacy budget to ε = 109, 
no statistically significant difference to the non-private model can be 
detected (P values: HAM10000: 0.36; and MSD Liver dataset liver: 0.10 
and tumour: 0.29, Student’s t-test). Only on RadImageNet, although the 
non-private model is still statistically significantly superior (P value: 
0.001), the private model at an ε = 1012 achieves 99% of the non-private 
baseline performance.

It is unsurprising that increasing the privacy budget mitigates the 
negative implications on the model performance. Hence, the ques-
tion that must be asked is what level of privacy is necessary for a spe-
cific setting. This cannot be answered generally and must be carefully 

Table 3 | Comparison of performance to privacy risk over multiple datasets and privacy budgets

Privacy budget Noise Test MCC Reconstruction risk

ε at δ = 8.0 × 10−7 σ Mean ± s.d. Worst case Relaxed Realistic

RadImageNet

1 0.67 64.95 ± 0.13% 0.00% 0.00% 0%

8 0.34 68.75 ± 0.13% 0.04% 0.01% 0%

32 0.267 69.99 ± 0.25% 13.18% 3.96% 0%

1012 0.054 70.83 ± 0.19% 100% 100% 0%

Non-private 0 71.83 ± 1.86% 100% 100% 100%

HAM10000

1 0.92 15.60 ± 4.13% 0.03% 0.01% 0%

8 0.47 37.48 ± 3.45% 1.22% 0.04% 0%

20 0.40 42.83 ± 2.37% 22.30% 0.78% 0%

109 0.02 51.98 ± 2.52% 100% 100% 0%

Non-private 0 51.66 ± 1.38% 100% 100% 100%

MSD Liver

Dice score liver Dice score tumour Reconstruction risk

Mean ± s.d. Mean ± s.d. Worst case Relaxed Realistic

1 9.97 42.84 ± 1.83% 0.96 ± 0.37% 1.66% 0.97% 0%

8 1.66 74.71 ± 3.14% 3.01 ± 0.96% 17.96% 3.68% 0%

20 0.96 79.06 ± 2.17% 5.55 ± 0.72% 74.24% 27.37% 0%

109 0.0054 91.20 ± 0.23% 29.73 ± 2.89% 100% 100% 0%

Non-private 0 91.58 ± 0.41% 28.38 ± 2.29% 100% 100% 100%

Test MCC denotes Matthew’s correlation coefficient on the test dataset. For all performance metrics, we give the mean ± s.d. over five runs with different random seeds. Reconstruction risk 
denotes the upper bounds for the risk of a successful reconstruction attack of a worst-case and minimally relaxed adversary, as well as the empirical success of one of the strongest ‘realistic’ 
attacks. An image is considered successfully reconstructed if the SSIM to any reconstruction is higher than 80%. Note that the noise multiplier σ is given for the empirical attack scenario where 
an adversary manipulated hyper-parameters in their favour. Noise multipliers for performance analysis are generally higher.
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considered for each use case. Important for these considerations is 
which risks are associated with a certain privacy budget, which we 
analyse next.

Worst-case bounds require small privacy budgets
Although too pessimistic for most use cases, worst-case analyses have 
the advantage of a formal guarantee, that is, an absolute upper bound 
on the risk in this scenario. When analysing the theoretical worst-case 
(highest) success of reconstruction attackers, we find that for the large 
RadImageNet dataset for budgets ε ≤ 8, the risk is <0.05%. However, 
already at ε = 32, the theoretical probability of the original data being 
reconstructed is 15%. Here, the smaller datasets are again at higher 
risk. While at ε = 1 the risk remains low, it strongly increases at ε = 8 for 
HAM10000 (0.03% to 1.22%) and MSD Liver (1.66% to 17.96%). At ε = 20 
theoretically, up to 74.24% of all data samples of the MSD Liver dataset 
can be reconstructed.

However, even minimally relaxing the threat model assumptions 
decreases the risk associated with these privacy budgets drastically. We 
recall that under this relaxed threat model, the only change compared 
with the worst case is that the attacker does not know the sample that 
is reconstructed beforehand. Yet, for theoretical analysis, there is still 
the assumption that the reconstruction algorithm is either perfect or 
fails and the risk which is then calculated is the maximum rate where 
the attacker correctly decides if the reconstruction they obtained was 
indeed the dataset sample in question. This threat model is still too 
pessimistic for any real-world use case and the analysis is mostly for 
theoretical purposes. Still, such a minimal relaxation already gives 
a much more favourable risk profile, especially for medium privacy 
budgets. Exemplarily, the risk associated with ε = 20 diminishes from 
over 20% to less than 1% for the HAM10000 dataset. Similarly, the risk 
for the MSD dataset at ε = 8 decreases from 18% to 4%. A visualization 
of the risk difference in worst-case and relaxed threat models can be 
found in Fig. 2.

Empirical protection even at large privacy budgets
The previously discussed theoretical analyses show rapidly growing 
risks associated with small and medium privacy budgets. However, as 
discussed before, we argue that these analyses are too strict for any 
‘realistic’ use case. Hence, we ask what the worst case of any practical 
scenario is and determine it to be a federated learning set-up, where 
a central server coordinates the learning on the data of distributed 
clients, which follow each training command sent by the server. This 
implies that the server can freely choose any network architecture 
and hyper-parameters. Note that any client who performs a simple 
check would notice such a malicious server. For such cases, attacks 
have been shown in literature, which analytically can recover the model 
input perfectly8,9. Moreover, it has been shown that these attacks can be 
transferred to corrupted pre-trained models17. We employ these attacks 

as empirical risk assessments. To measure the reconstruction success, 
we use the structural similarity (SSIM) score, which is a standard metric 
for image similarity33.

In contrast to the aforementioned theoretical risk bounds, we find 
that, for practical attacks, even privacy budgets considered meaning-
less (ε > 109) can provide effective protection against reconstruction. 
In Fig. 3, left, we plot how many dataset images are below an increasing 
SSIM error per privacy budget. It can be thought of as the cumulative 
distribution function of reconstruction errors. We observe that, for 
all datasets without the addition of DP constraints, nearly all images 
can be reconstructed perfectly. As soon as some privacy guarantee is 
introduced, even very generous budgets at an ε ≈ 109 provide empirical 
protection against the reconstruction of data samples. Furthermore, 
confirming previous works8,34, our threat model is still extremely pow-
erful. A server without the control of hyper-parameters but still over 
the model architecture already imposes a substantially lower recon-
struction risk. If the server does not set the batch size to one but is set 
to the real training batch size, for example, on the RadImagenet dataset 
even in the non-private case we could only reconstruct less than 5% 
of all images at a batch size of 3,328. We note that such large privacy 
budgets, which are near-universally shunned as being meaningless, 
still offer empirical protection. In other words, even a ‘pinch of privacy’ 
has drastic effects in practical scenarios. Complemented by the finding 
that performance trade-offs nearly disappear in these settings, this 
signifies a potential compromise between protection and usability.

Discussion
In this study, we explore the relationship between privacy risks and 
AI performance in sensitive applications such as medical imaging. 
Currently, practitioners are confronted with trade-offs between AI 
performance, privacy protection and computational efficiency, where 
no solution has so far been able to accomplish all of these goals. Previ-
ous work showed that DP training profits much more than standard 
AI training from a higher number of training steps30. By increasing 
privacy budgets, practitioners can reach similar trade-offs with fewer 
training steps, which further allows a broader use for practitioners 
without substantial compute resources. Moreover, prior work also 
showed that pre-training on a 4 billion image dataset allows models 
to transfer to private datasets35. However, in practice this is typically 
infeasible due to limited access to such large datasets or the com-
putational resources to train such a model. Furthermore, such data 
scales only exist for natural two-dimensional images but not yet for 
three-dimensional images, which are typical in medical imaging. There-
fore, often the choice remains for practitioners to prioritise privacy and 
sacrifice performance or to put sensitive data at risk of being leaked. 
Currently, there is no clear method to balance these two objectives, 
leaving practitioners without guidance. To make informed decisions 
on these trade-offs, broad discourse involving ethicists, lawmakers 
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and the general population is crucial. A prerequisite of this dialogue 
is understanding the risks associated with specific privacy budgets 
and the potential trade-offs in AI performance. Our study across three 
representative medical imaging datasets lays the foundation for this 
conversation. We find that real-world data reconstruction risks can be 
averted without performance trade-offs. In fact, privacy–performance 
trade-offs have so far always been based on worst-case assumptions, 
which do not overlap with realistic training settings. We postulate 
that it is more critical to prevent data reconstruction in real-world 
settings, and show that for workflow de-risking, large privacy budgets 

suffice. Even more, we find that the trade-off between privacy risks and 
model performance vanishes when using such large but protective  
privacy budgets.

It is known from previous works23,36–38 that PETs formally protect 
AI models in sensitive contexts from reconstruction attacks. While 
we note that our results are empirical, it is apparent that DP train-
ing with minimal guarantees still provides better protection than 
non-private training. Considering this finding, it seems negligent to 
train AI models without any form of formal privacy guarantee. We 
note that the threat model we consider is probably still stronger than 
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attackers encountered in practical attack scenarios. In a slightly differ-
ent threat model, where an adversary only has black-box access to the 
final trained weights of a model but has an image prior containing the 
true target point, ref. 23 found that large privacy budgets in the order 
of the dimensionality of the data suffice to prevent reconstruction 
attacks. Similarly, ref. 32 found that against reconstruction attacks, 
noise multipliers which otherwise would be seen as vacuous, suffice. 
Furthermore, ref. 39 studied the reconstruction of discrete data and 
found that privacy budgets can be much larger than previously thought 
to effectively defend against reconstruction attacks. However, for 
our threat model, we find even much larger privacy budgets than the 
aforementioned to suffice and, without a theoretical lower bound, 
the possibility exists that future attacks could achieve success closer 
to the upper bound. Owing to this, we explicitly warn readers to take 
our results as a carte blanche to use arbitrarily high privacy budgets. 
The truth lies in the middle: if the alternative is to not use any privacy 
at all, rather use DP with a very high budget.

We remark that the effectiveness of the DP protection against 
attacks at a fixed clipping norm, batch size, training duration and train-
ing set size depends only on the noise multiplier. This is a consequence 
of how DP budgets are accounted. For example, in the Rényi-DP (RDP) 

accountant40 used in our work, one step is (α,q2 2αC2

σ2
) -RDP for appropri-

ate values of the parameters α the order of the Rényi divergence, q, the 
subsampling rate (that is, batch size divided by training set size), C, the 
clip gradient norm and σ, the noise multiplier. However, our empirical 
results suggest that for all other factors being constant, even small 
noise multipliers, which imply very large privacy budgets, are sufficient 
to protect against reconstruction attacks and facilitate high-performing 
AI models. We also observed that the AI performance loss introduced 
by DP tends to be smaller on larger datasets due to less injected noise 
per sample and more information to achieve a certain privacy budget 
at consistent hyper-parameters. Yet, many medical datasets are inher-
ently small. This can have negative consequences for the applicability 
of such networks in clinical practice. For models to be effectively 
trained on such challenging datasets, when pre-training is not possible 
for reasons of data availability or computational resources, our tech-
niques reach a limit indicating a potential need to either accept elevated 
privacy risks or obtain access to more data. The solution to both prob-
lems might go hand in hand with more robust mathematical guarantees 
safeguarding data privacy. In such a scenario, we anticipate that 
patients may be more inclined to share their data, thereby allowing 
large-scale medical AI training. In such a scenario, the privacy–perfor-
mance trade-offs presented might even be more favourable than our 
findings indicate. This would be complemented by a workflow where 
multiple PETs are employed to enable various aspects to privacy. For 
example, a system using federated learning to assert the data govern-
ance remains at the original hospital, secure aggregation to conceal 
contributions from different sites and DP to limit the private informa-
tion of single patients demonstrated in previous works36 would provide 
a holistic workflow.

We note that our choice of datasets and architectures is motivated 
by medical imaging settings. In those settings, typically computational 
resources are limited and data are scarce. In fact, we are convinced 
that the widespread use of such methods will only ensue once they 
can be used by the majority of practitioners who typically lack access 
to large computing clusters. Hence, we carefully designed our study to 
cover typical and representative medical problems to provide a holis-
tic analysis with trade-offs in computational resources. Under these 
considerations, we limited ourselves to a few model architectures that 
are known to be trained efficiently (ResNet, DenseNet and U-Net) and 
datasets that represent a broad range of typical problems.

An additional technical limitation stems from the fact that the 
authors of the RadImagenet dataset41 mention that some patients 
contributed multiple images. However, we have no information about 

image-to-patient correspondence. As we calculate the privacy guarantees 
over the dataset per image, the per-patient privacy guarantee depends 
on the number of images one patient contributed and might be lower.

In conclusion, we show that even the use of nominally loose pri-
vacy guarantees still provides substantially better protection than 
standard AI training, while achieving comparable performance. This 
can facilitate a compromise between provable risk management and 
performance trade-offs, which previously prevented the breakthrough 
of DP. Further research should be directed towards analysing various 
threat models beyond the worst case. Only by illuminating the risks of 
multiple scenarios, the basis for a broad discussion among ethicists, 
policymakers, patients and other stakeholders is provided regarding 
how to trade-off privacy and performance as fundamental goals of AI 
in sensitive applications.

Methods
In this section, we report all the details necessary for our experiments 
on training models in a differentially private way on our datasets as well 
as the procedures to analyse risk profiles. Furthermore, we describe 
the rationale for several choices in our study design and describe 
hyper-parameters necessary for reproducibility.

Data
In Supplementary Material A, we describe characteristics of typical 
medical datasets. We note, that these characteristics partially amplify 
the negative performance impact by the constraints introduced by DP. 
Broadly speaking, at a constant clipping norm the amount of intro-
duced noise during the DP process determines the negative impact on 
the AI performance. At any privacy budget, the injected noise increases 
if more training steps are performed or if a higher sampling rate, that 
is, the ratio between batch size and dataset size, is used. However, the 
batch size is typically irrespective of the dataset size, which implies 
that smaller datasets typically have higher sampling rates. Further-
more, they often require more training epochs, that is, the amount of 
times the entire dataset was (on average) presented to the network. 
As a consequence, the amount of noise that is injected when training 
on small datasets compared with larger ones is increased and higher 
performance penalties are expected. Furthermore, DP bounds the 
magnitude any single sample on the training. This is important for 
training with imbalanced datasets with underrepresented classes, 
which often suffer an additional performance loss42.

For detailed descriptions of the datasets we refer to the original 
publications41,43–45. In the following, we describe modifications we 
performed and the effects on the data distribution.

For the HAM10000 dataset43, we merged classes into whether 
there is indication for immediate treatment, which is still a medically 
important distinction. By this we convert the multi-class classification 
problem into a highly imbalanced binary classification problem. We 
categorized them here as follows:

In total, this dataset has 10,015 images, of which 1,954 are labelled 
for immediate treatment and 8,061 are not.

Model training
All of our experiments were performed using an NAdam optimizer, 
which is extremely robust to learning rate changes allowing us to keep 

Treatment indication

Immediate Not immediate

Actinic keratoses and intra-epithelial 
carcinomas

Melanocytic nevi

Basal cell carcinomas Benign keratinocytic lesions

Melanomas Dermatofibromas

Vascular lesions
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a consistent learning rate of 2e−3. Input data were always normalized 
with the mean and standard deviation of all images in the training 
set. For each dataset, we perform a hyper-parameter search, where 
we evaluate for one privacy level (ε = 8) and the non-private training 
the optimal setting for architecture, batch size, loss weighting and 
augmentation. In the non-private case, we perform an early stopping 
strategy to determine the number of epochs. In the private case, this is 
not possible as the number of epochs directly influences the amount 
of added noise. However, previous works showed that longer training 
almost always yields better results30. Yet, to limit training time, we also 
search for the point of saturation. Also for reasons of computational 
complexity, we assume that the optimal settings for these parameters 
transfer to all other privacy regimes. Furthermore, we limit the choice 
of architectures to a ResNet-9 with ScaleNorm and a WideResNet40-4, 
which have in previous literature been proven to be especially suited 
for differentially private training30,46. In the segmentation case, we limit 
ourselves to a standard U-Net47,48, where we optimize the number of 
channels on the bottleneck. We then evaluate for each privacy setting 
separately the optimal clipping norm. Again for reasons of compu-
tational complexity, we evaluate this after one epoch and assume 
it transfers to longer trainings. Finally, we train for each setting five 
models with different random seeds and report the mean and standard 
deviation of the respective performance metric.

All our models are trained from ‘scratch’, that is, we have not 
pre-trained on any other dataset. This is because there is no ‘good 
choice’ of a dataset for pre-training. ImageNet, which for most com-
puter vision tasks is the standard, is not very effective for medical 
imaging tasks41. Large public databases for pre-training are scarce and 
only available for a few tasks. Furthermore, pre-training on non-public 
medical databases is unacceptable, as it risks leaking the information 
from the pre-training data, which could be just as private49,50.

We used the Opacus51 library for accounting the privacy loss. In 
particular, we used an RDP accountant, as it provides numerically the 
most stable implementation. We used an extension of the objax library52 
as implementation for the DP-Stochastic Gradient Descent algorithm.

We open source the program code used for this paper at https://
github.com/a1302z/RePrAAIMI.

RadImagenet. As described in the 'Model training' section, we analysed 
the architecture, number of epochs, batch size, loss and multiplicity 
for the non-private and one private setting (ε = 8). For the non-private 
case, we found a WideResNet40-4 using an unweighted loss function, 
a batch size of 16 and random vertical (probability of augmentation 
(Paug) = 0.2) and horizontal flips (Paug = 0.1) as augmentation to yield 
the best results. To determine the number of epochs, we used an early 
stopping strategy with a patience of five epochs and 0.1% improvement 
threshold. For the private case, a ResNet-9 trained for 50 epochs, using 
an unweighted loss function, using an augmentation multiplicity of 
four again with random vertical (Paug = 0.2) and horizontal (Paug = 0.2) 
flips with a batch size of 3,328 yielded best results. The clipping norm 
was tuned for each budget separately and was set as follows:

HAM10000. For the modified HAM10000 dataset, we found the 
ResNet-9 to perform best in private and non-private settings. In the 
non-private case, we trained with a weighted loss function at a batch 
size of 32 using random vertical flips (Paug = 0.5) as augmentation. We 
trained using an early stopping strategy using a patience of 50 epochs 
at a minimal improvement threshold of 0.1%. For the private case, we 
used an unweighted loss function at a batch size of 2,048 and trained 
for 100 epochs. We used the same augmentations as in the non-private 
case for a privacy level of ε = 109, for all others, we did not use augmenta-
tions. Clipping norms are as follows:

MSD Liver. For the MSD Liver dataset, we found for both private and 
non-private cases a U-Net with 16 channels and no augmentations to 
perform best. In the non-private case we used a weighted loss function 
(background: 0.1; liver: 0.4; tumour: 0.5) and trained at a batch size of 
two. Again, we employed an early stopping strategy with a patience of 
50 epochs and a minimal improvement threshold of 0.1%. In the pri-
vate case, we trained at a batch size of one for 500 epochs. For privacy 
budgets ε ≤ 20 we used an unweighted loss function, for higher privacy 
budgets we used the same weighting as in the non-private case.

Reconstruction risk analysis
In our empirical reconstruction attacks, there is no clear way to evalu-
ate whether a specific sample was reconstructed. For each input batch 
consisting of N samples, we receive M reconstructions. We evaluate 
this by calculating the pairwise distance between all data samples and 
reconstructions and assigning each input the reconstruction with the 
lowest distance. However, this approach loses meaning in the case of 
images, which have no structure but are entirely dark. This is the case 
for the RadImagenet dataset, where we put a constraint that only data 
samples are considered that contain more than 10% non-zero pixels.

We evaluate the practical reconstruction success by using a prin-
ciple demonstrated in previous literature8,9 adapted to our use case. 
The network architecture is slightly modified by prepending two linear 
layers in front of the actual network architecture. The first takes all 
input image pixels as input and projects them to an intermediate rep-
resentation of N bins. In our experiments, we set N = 10. This intermedi-
ate representation is afterwards projected again to the number of all 
pixels and re-sized to the original image shape. To each of the outputs, 
the mean of the intermediate representations is added. Afterwards, it 
can be processed as usual by the remaining neural network. As our 
adversary is assumed to have control over all hyper-parameters, they 
can set the batch size to one and by that enforce that no reconstruction 
of two images overlap. If now a gradient is calculated over the network, 
which is non-zero for the weights Wi and biases b of the first linear layer, 
the input x can be analytically recovered by x = ∇Wiℒ⊘ ∂ℒ

∂b , where ⊘ is 
the element-wise division. We note that, for this attack, it is irrelevant 
what network architecture comes after this imprint block. We used 
implementations provided by ref. 53.

The reconstruction error, which we use as basis for the risk analysis 
in this paper, is the minimum reconstruction error between a data sam-
ple to any reconstruction that was derived from a gradient containing 
the data sample.

Choice of privacy budgets
For our experiments on the utility trade-off, we chose several privacy 
budgets. We note that this choice was arbitrary. For all experiments, 
we used a δ = 8 × 10−7. For all settings, we evaluated ε = 1 and ε = 8, which 
are standard values in the literature30,31,46. Furthermore, we calculate 
the theoretical reconstruction bound of the worst case and relaxed 
threat models. As the already included privacy budgets at ε = 1 and ε = 8 
already showcase very low reconstruction bounds, we add one more 
privacy level for all datasets, where a large amount of samples is already 
at risk of being reconstructed. In addition, we report a privacy budget 
ε = 103N,N ∈ ℕ , where the characteristic reconstruction robustness 
curve is still similar to random noise.

Environmental impact
Lastly, we would like to give a rough estimate of the climate impact of 
this study. We assume the average German power mix that as of 2021 

ε 1 8 32 1e12

Clip norm 6.46 5.66 5 3.75

ε 1 8 20 1e9

Clip norm 18 8.5 9.5 9

ε 1 8 20 1e9

Clip norm 0.0004 0.046 0.0015 0.33
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according to the German Federal Environment Agency corresponds 
to 475 g CO2e kWh−1 (ref. 54) Only the final RadImagenet trainings (no 
hyper-parameter optimization) ran on eight NVIDIA A40s, where we 
assume a power consumption of 250 W on average, each for almost 
4 days, five privacy levels and five repetitions. Hence, this amounts 
to around 960 kWh and thus more than 450 kg of CO2e. This almost 
equals a return flight from Munich to London. Hence, we tried to limit 
our hyper-parameter searches to the necessary. In total, we assume 
that this study produced at least 2 tons of CO2e.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are published and publicly avail-
able. Access to RadImageNet41 must be requested at https://www.
radimagenet.com/. The HAM10000 dataset43 is available at https://
doi.org/10.7910/DVN/DBW86T. The MSD Liver dataset44,45 is avail-
able at http://medicaldecathlon.com/ and https://doi.org/10.1038/
s41467-022-30695-9.

Code availability
Our program code is available at https://github.com/a1302z/
RePrAAIMI and permanently archived under https://doi.org/10.5281/
zenodo.11184978 ref. 55. Furthermore, we created a modified version 
of53, which is available at https://github.com/a1302z/objaxbreaching 
and https://doi.org/10.5281/zenodo.11184998 ref. 56.
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