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Abstract
Objective. Perinatal asphyxia poses a significant risk to neonatal health, necessitating accurate fetal
heart rate monitoring for effective detection and management. The current gold standard,
cardiotocography, has inherent limitations, highlighting the need for alternative approaches. The
emerging technology of non-invasive fetal electrocardiography shows promise as a new sensing
technology for fetal cardiac activity, offering potential advancements in the detection and
management of perinatal asphyxia. Although algorithms for fetal QRS detection have been
developed in the past, only a few of them demonstrate accurate performance in the presence of
noise and artifacts. Approach. In this work, we propose Power-MF, a new algorithm for fetal QRS
detection combining power spectral density and matched filter techniques. We benchmark
Power-MF against three open-source algorithms on two recently published datasets (Abdominal
and Direct Fetal ECG Database: ADFECG, subsets B1 Pregnancy and B2 Labour; Non-invasive
Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research: NInFEA).Main
results. Our results show that Power-MF outperforms state-of-the-art algorithms on ADFECG (B1
Pregnancy: 99.5%± 0.5% F1-score, B2 Labour: 98.0%± 3.0% F1-score) and on NInFEA in three
of six electrode configurations by being more robust against noise. Significance. Through this work,
we contribute to improving the accuracy and reliability of fetal cardiac monitoring, an essential
step toward early detection of perinatal asphyxia with the long-term goal of reducing costs and
making prenatal care more accessible.

1. Introduction

Perinatal asphyxia, characterized by insufficient oxygen supply to the fetus, is a critical issue that can result in
severe neurologic and developmental impairments (Wang et al 2021). Immediate identification and
intervention are crucial for mitigating the adverse effects of perinatal asphyxia. The current standard method
for assessing fetal well-being during labour is cardiotocography (CTG), which measures fetal heart rate
and uterine contractions (Chen et al 2011). Diagnosis of perinatal asphyxia is guided by the FIGO
guidelines (Ayres-de Campos et al 2015). However, concerns have been raised regarding the accuracy of CTG
due to subjective interpretation and potential errors, leading to false positives and false negatives (Ojala et al
2006, Benton et al 2020). Moreover, their bulky design requires stationary operation and demands expert
knowledge for transducer placement. These limitations necessitate the exploration of novel technologies
that can provide more precise and reliable information regarding fetal well-being. Non-invasive fetal
electrocardiography (NI-fECG) is a promising sensing technology for fetal heart monitoring that is being
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Figure 1. Graphical abstract of this paper, showing the benchmark process of Power-MF against state-of-the-art fetal QRS
detection algorithms. Further, the background, research goal, methods, and key findings are described.

developed to refine the determination of perinatal asphyxia (Oudijk et al 2004, Jezewski et al 2017). It records
fetal cardiac activity unobtrusively and non-invasively via electrodes from the maternal abdomen. Different
electrode positions allow the signal to be acquired at different angles, which are displayed as channels. There
is a huge amount of possible electrode configurations, yet standardized positioning remains undefined.
Minimizing the number of electrodes offers increased comfort for the pregnant woman. Compared to CTG,
NI-fECG offers high levels of fetal heart rate accuracy, which is less influenced by fetal movements and more
accurate for women with high BMI (Sänger et al 2012, Hayes-Gill et al 2020, Liu et al 2023). NI-fECG
provides an unobtrusive solution for long-term fetal monitoring as a self-applied wearable device, addressing
the challenges of limited access and time-consuming prenatal care.

Although NI-fECG technology is gaining acceptance, and its potential beyond fetal heart rate monitoring
is being explored (Jaeger et al 2022), its implementation in clinical practice is still limited (Wakefield et al
2022). The proof of reliable heart rate extraction under real conditions is yet to be established, and there is
currently no definition of normative values (Smith et al 2018). Signal processing challenges arise due to
increased noise levels in wearable NI-fECG and the low signal-to-noise ratio resulting from the mixed signal
containing fetal and maternal ECG, uterine muscle signals, and other confounders, making fECG extraction
challenging. Existing algorithms for fetal QRS detection are available. However, previous comparisons of
those algorithms lacked standardization (Hasan et al 2009, Clifford et al 2014, Andreotti et al 2016, Li et al
2017, Kahankova et al 2020, Vaidya and Chaitra 2020). Additionally, there is a need for an algorithm that
exhibits stable and reliable performance in the presence of noisy recordings.

In this paper, we introduce Power-MF, a new fetal QRS detection algorithm designed to be robust against
noise. Power-MF is based on a combination of power spectral density (PSD) and matched filter techniques.
Further, we objectively benchmark Power-MF against the state-of-the-art for fetal QRS detection on the two
most recently published Non-invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology
Research (NInFEA) (Sulas et al 2021) and Abdominal and Direct Fetal ECG Database (ADFECG) (Matonia
et al 2020) datasets. For benchmarking, we selected three relevant open-source algorithms. We analyze the
algorithms’ performances concerning electrode configurations suitable for wearable NI-fECG devices.

A graphical abstract of this paper is shown in figure 1.

2. State-of-the-art algorithms

We conducted literature research in central databases to identify the currently most relevant fetal QRS
detection algorithms. We also took algorithms published with open-source datasets and algorithms
mentioned in review papers into account. From the collection of algorithms, we decided to focus on three
algorithms by Behar et al (2014), Varanini et al (2014), and Sulas et al (2021). These algorithms were
published after 2013, and their source code is publicly available. Further, they have been evaluated on a
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Table 1. Self-stated performance of state-of-the-art fetal QRS detection algorithms. The algorithms are outlined along with their
respective publications and the acronyms we defined for this work. The performance metrics include Se, PPV, and F1-score.
Descendants are reported as stated in the corresponding publication.

Publication
Algorithm
acronym

Evaluation
dataset Se in % PPV in %

F1-score
in %

Varanini et al (2014) Varanini CinC2013 99.1 98.9 98.9a

Behar et al (2014) Behar CinC2013 95.9 96.0 96.0
Sulas et al (2021) Sulas NInFEA 97 81 88a

a Retrospective calculation.

complete public dataset with the most commonly used metrics Sensitivity (Se), positive predictive value
(PPV), and F1-score, and achieved good results. Table 1 shows the selected algorithms, including their
self-stated accuracy and the respective evaluation datasets. In the following, the algorithms are described in
detail.

2.1. Sulas (2021)
The algorithm by Sulas et al (2021) (Sulas) has a self-reported Se of 97% and PPV of 81% and was evaluated
on the NInFEA dataset (Sulas et al 2021). The first step of Sulas consists of a preprocessing step using a
bandpass filter between 0.05 Hz and 250 Hz to suppress low and high-frequency components. Then, the
maternal QRS complexes are detected from the thoracic reference channels, and the maternal ECG is
suppressed using a deflation algorithm based on periodic component analysis (πCA). The deflation
algorithm comprises a decomposition step followed by wavelet denoising and reconstruction of the signal to
remove the maternal component (Sameni and Clifford 2010).

To enhance the fetal signal, an independent component analysis (ICA) step is performed on the residual
signals by means of the joint approximate diagonalization of eigenmatrices (JADE) algorithm based on the
work of Cardoso and Souloumiac (1993). A channel selection based on a matched filter is performed to find
the channel that contains the strongest fetal signal after ICA. A generic template of a fetal QRS complex is
used for this purpose. To find the fetal QRS complexes, peak detection is performed on the matched filter
output of each channel. The RR intervals of each channel are computed, and the channel with the slightest
standard deviation of RR intervals is selected.

In order to correct the detected fetal QRS, another πCA step is performed with the temporary fetal QRS
as an input. A new template is created based on their positions by averaging multiple fetal QRS. Using the
new template, a matched filter is applied. The peak detection results applied to the output signal indicate the
final fetal QRS.

2.2. Behar (2014)
The algorithm by Behar et al (2014) (Behar) was published during the Physionet / Computing in Cardiology
Challenge 2013 (CinC2013) (Goldberger et al 2000). According to the self-reported performance it achieved
a Se of 95.9%, PPV of 96.0%, and an F1-score of 96.0% on CinC2013. In this approach, template subtraction
(TS) and ICA are performed in various sequences (TS, TS-ICA, ICA, ICA-TS), and from those, the channel
with the smoothest heart rate variability is selected.

First, a notch filter followed by a Butterworth low-pass is applied to remove powerline interference and
high-frequency components above 200 Hz. Furthermore, baseline wanders below 3 Hz are canceled using a
Butterworth high-pass filter.

On each preprocessed channel, maternal QRS detection is performed with a QRS detector similar to Pan
and Tompkins (1985) with a refractory period of 250 ms. Further, a channel selection approach is applied to
select the channel with the most plausible maternal QRS sequence as a reference.

Maternal ECG suppression is applied in four different ways, and the best fetal QRS sequence out of all
four approaches is selected. The first approach, referred to as ‘TS’, consists of a simple TS, where several
maternal R-peaks are averaged with a fixed window width around the maternal R-peak. In the second
approach, ‘TS-ICA’, an ICA step, is applied after TS, using the JADE algorithm based on the work of Cardoso
and Souloumiac (1993). In the third approach, ‘ICA’, only an ICA step is performed. In the fourth approach,
‘ICA-TS’, ICA is followed by a TS. On the residuals of all four methods, peak detection is performed using a
QRS detector with an adjusted refractory period of 150 ms to account for the higher fetal heart rate. Out of
all fetal QRS sequences, the best one is selected using a beat comparison measure. The final step consists of a
smoothing process to remove extra detected fetal QRS and insert missed fetal QRS based on physiologically
reasonable heart rates.
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2.3. Varanini (2014)
The algorithm by Varanini et al (2014) (Varanini) has a high self-reported Se of 99.1% and PPV of 98.9% on
the CinC2013 dataset, resulting in an F1-score of 98.9%. The algorithm uses ICA and singular value
decomposition (SVD) for detecting and suppressing maternal ECG. Another ICA step is performed on the
residual signal to enhance the fECG.

First, the signals are preprocessed to remove impulsive artifacts using a median filter. In the second step,
baseline wandering is removed with a low pass Butterworth filter in forward and backward directions to
achieve a zero-phase shift in the baseline estimate. The difference between the baseline and original signals is
then used as the detrended signal. Finally, the power line interference is removed using notch filters.

After preprocessing, a FastICA algorithm according to Hyvarinen (1999) with deflationary
orthogonalization and the hyperbolic cosine as contrast function is performed to separate the maternal ECG
from the signal. Then, the channel with the best maternal ECG signal is selected, and the maternal QRS are
detected using an adaptive threshold on the absolute derivative of the selected maternal channel.

To suppress the maternal ECG, the maternal R-peaks are approximated by an SVD-based method. A
template of the maternal ECG is created by weighting the maternal R-peaks with a trapezoidal window and
decomposing it with SVD. Afterward, the maternal beats are reconstructed using eigenvectors corresponding
to the three largest eigenvalues, which are subtracted from the signal. Maternal ECG cancellation is
performed on all channels.

Another ICA step is performed to further enhance and separate the weak fetal signal after maternal ECG
suppression. For fetal QRS detection, the signal is filtered with a derivative filter consisting of a comb filter
followed by a moving average. After filtering, the QRS detector is applied, similar to the maternal QRS
detector but with an adapted RR-interval size. From the detected fetal QRS, the RR intervals are calculated,
and a segment is identified in which a good SNR is assumed. This segment is characterized by constant RR
intervals. From the beginning/end of this segment, a second QRS detector is initiated in the forward/
backward direction. This detector searches for maximum points in the weighted derivative signal. The
weights depend on the predicted RR intervals, i.e. the weight is higher in the area where the next QRS is
expected. The lengths of the predicted RR intervals are initialized from the values in the start segment and
adjusted from beat to beat using a least mean square algorithm. The best RR sequence is selected from each
channel based on a-priori knowledge of typical fetal RR values to obtain plausible R-peaks.

3. Methods

3.1. Power-MF fetal QRS detection
In this section, we present Power-MF, a fetal QRS detection algorithm that utilizes PSD and matched filter
techniques. The main goal of Power-MF is to improve robustness against noisy signal segments, a common
issue in fetal QRS detection. The algorithm continues the work presented by Varanini et al (2014).

Previous state-of-the-art algorithms, such as Varanini, have shown good performance in clean signal
segments, see table 1. However, their performance degrades when dealing with noisy segments. By inspecting
the false detections of Varanini, we observed inaccuracies in noisy segments where fetal peaks are not clearly
visible, see figure 2. Power-MF addresses this issue by incorporating a fetal QRS detection method based on a
matched filter. The use of matched filters has been previously shown to be robust to noise in adult QRS
detection, and we hypothesize that it will also provide good performance in the presence of noise in
fECG signals (Eskofier et al 2008, Smigiel and Marciniak 2017, Jamshidian-Tehrani and Sameni 2018).
Additionally, Power-MF focuses on identifying the channel with the strongest fECG component for QRS
detection. We use the PSD of the fECG to distinguish it from the maternal ECG and other background noise.
By focusing on the channel with the strongest fECG component, Power-MF aims to improve the SNR and
increase the accuracy of QRS detection. Power-MF employs Varanini’s steps for preprocessing and maternal
ECG cancellation, see section 2.3. Figure 3 shows the algorithms steps of Power-MF and Varanini.

3.1.1. Channel selection based on PSD
We assume that in the channel containing the fECG, the fetal QRS complexes occur at a specific frequency
corresponding to the fetal heart rate. Therefore, the channel with the highest PSD in the range of the
expected fetal heart rate is selected.

First, the signal is preprocessed to highlight the fetal peaks. Therefore, the filtered absolute derivative of
the signal is calculated for each channel. A comb filter with 8 ms delay is used as the derivative filter, followed
by a moving average with a 5 ms window length. The absolute values of the derivative are calculated
and filtered with a Butterworth bandpass between 0.7 Hz and 8.0 Hz. The derivative highlights the
high-frequency components caused by the high slopes of the QRS. The bandpass is then used to smooth the
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Figure 2. Processing steps of the fetal QRS detection algorithm by Varanini et al (2014). Varanini et al (2014) falsely detects the
fetal peaks in the noisy parts of the signal (127.0–129.5 s). The dashed vertical lines indicate the ground truth fetal peak
annotations. The circles in the bottom plot indicate the fetal peaks detected by Varanini et al (2014). The grey areas mark the
acceptance interval of 50 ms. The signal is the fourth channel of recording 6 from the dataset ADFECG B2 Labour. The electrode
signal is displayed in arbitrary units.

Figure 3. Overview of the algorithm steps of Power-MF and Varanini et al (2014). Power-MF and Varanini et al (2014) share the
preprocessing and maternal ECG cancellation. Their fetal QRS detection methodology differs in channel selection and fetal QRS
detection. The labels (a)–(i) correspond to different time points during the algorithm. Graphical visualizations of (a)–(i) based on
an example signal are included in the supplementary material.

signal. The filter parameters were determined through practical observation and experience exclusively with
the CinC2013 dataset.

The PSD was obtained by calculating Welch’s PSD estimate (Welch 1967) with a Gaussian window and a
50% overlap. The window size ws was set to ws= 15 · 60 s

110bpm · fs, with sampling frequency fs, to capture at
least 15 cardiac cycles, assuming a lower fetal heart rate boundary of 110 bpm. The PSD of the channel with
the clearest fetal signal is assumed to contain a peak at a specific frequency corresponding to the fetal heart
rate. The channel with the most prominent peak between 1.8 Hz and 3.0 Hz in the PSD is selected,
corresponding to a fetal heart rate between 108 bpm and 180 bpm. The healthy fetal heart rate is between
110 bpm and 160 bpm. The upper limit was chosen slightly higher to include boundary cases. The lower limit
was shifted only slightly to avoid reaching the range of the maternal heart rate in case the maternal ECG was
not completely suppressed.
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Figure 4. Channel selection of Power-MF based on PSD. PSD was estimated using Welch’s method. A distinct peak occurs for
Channel 1 at about 2.1 Hz. The graphs of the other three channels do not show a clear peak. The highlighted dashed area between
1.8 Hz and 3.0 Hz corresponds to a fetal heart rate between 108 bpm and 180 bpm and indicates the range in which the fetal peak
is expected. This is exemplarily shown for a signal with four channels.

Figure 4 shows the PSD for all channels of a signal. In the highlighted dashed area between 1.8 Hz and
3.0 Hz only one channel has a clear peak at 2.1 Hz, corresponding to the channel with the best fECG
representation.

3.1.2. Fetal QRS detection based on a matched filter
A matched filter maximizes the detection of a target signal by correlating the input signal with a known
reference waveform called a template. In the first step, a fetal QRS template is generated. The template is
generated for each processed signal separately and uses only the selected channel. For this purpose, all local
maxima in the absolute derivative of the signal are determined, which have a certain minimum peak distance
to their neighbor peak. Around each detected maximum, the signal is cropped to the size of the median RR
interval in the recording, resulting in an array of waveforms centered around preliminary QRS peaks. The
template is then calculated as the median of these waveforms. Then, the fetal ECG-enhanced signal of the
selected channel is filtered with the time-reversed template. The resulting signal has peaks at locations where
there is a high correlation between the signal and the template, i.e. where a fetal QRS waveform is expected.

3.1.3. Parameter optimization of Power-MF
The creation of a fetal QRS template involves the optimization of the minimum peak distance in Power-MF.
The minimum peak distance is treated as a hyperparameter and is optimized in a training step on an
independent dataset, adjusting the minimum peak distance to achieve the highest F1-score. Specific
physiologically meaningful values are systematically tested, and the chosen value is set for further procedure.

3.1.3.1. Data
For parameter optimization of Power-MF, we used the CinC2013 dataset. It contains signals with a length of
one minute and comprises four channels. They were collected with different devices, resolutions, and
configurations. All recordings have a sampling frequency of 1000 Hz. The dataset contains three subsets, but
only subset A is publicly available and contains reference R-peak annotations. In this work subset A was used
to optimize the parameters of Power-MF. Due to inaccurate reference annotations, recordings a33, a38, a52,
a54, and a71 were excluded, as suggested in previous publications (Behar et al 2014, Varanini et al 2014).

3.1.3.2. Evaluation and Results
For the minimum peak distance optimization, physiologically meaningful values from 290 ms to 360 ms in
10 ms steps were set. For each value, the local maxima were computed on all recordings of CinC2013 and
compared with the ground truth fetal R-peak annotations. The minimum peak distance is set to the value
leading to the highest F1-score.

The algorithm achieved the highest mean F1-score of 94.25% with a minimum peak distance of 340 ms
on the training dataset (CinC2013). Consequently, this value was set for further procedure. Table 2 shows all
results of the parameter optimization.
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Table 2. Results of the parameter optimization of Power-MF on the CinC2013 dataset. The optimal minimum distance between two
peaks was determined for the peak detection of the fetal QRS detection step. Mean F1-scores (Min, Max) in %. The highest mean
F1-score was achieved at 340 ms (highlighted in bold).

Minimum peak distance Mean F1-score in % Min/max F1-score in %

290 ms 93.63 28.98/100.0
300 ms 93.89 29.39/100.0
310 ms 94.04 28.78/100.0
320 ms 94.09 28.46/100.0
330 ms 94.24 27.38/100.0
340 ms 94.25 29.01/100.0
350 ms 93.88 25.00/100.0
360 ms 92.76 27.34/100.0

Table 3. Characteristics of the datasets Non-invasive Multimodal Foetal ECG-Doppler Dataset for Antenatal Cardiology Research
(NInFEA) and Abdominal and Direct Fetal ECG Database (ADFECG), that are used in this study.

Year
Number
of signals Number of channels Pregnancy week Signal length

Sampling
frequency

NInFEA
(Sulas et al 2021)

2021 60 27 channels (22
abdominal, 3
thoracic, 2 back)

21st–27th varies between 7.5 s
and 2min

2048 Hz

ADFECG B1 Pregnancy
(Matonia et al 2020)

2020 10 4 abdominal
channels

32nd–42nd 20min 500 Hz

ADFECG B2 Labour
(Matonia et al 2020)

2020 12 4 abdominal
channels

32nd–42nd
during labour

5min 500 Hz

3.2. Benchmarking Power-MF against the state-of-the-art
3.2.1. Data
The most recently published open-source datasets NInFEA (Sulas et al 2021) and the ADFECG (Matonia
et al 2020), consisting of the two subsets B1 Pregnancy and B2 Labour, were selected as test data for the
algorithm benchmarking. An overview of the datasets is given in table 3. All datasets contain ground truth
annotations. To the best of our knowledge, further publicly available datasets do not have reference
annotations or are simulated data (Moor et al 1997, Andreotti et al 2016, Behar et al 2019).

For ADFECG the labels were acquired through automated fetal QRS detection and were subsequently
verified by clinical experts (Matonia et al 2020). We used all leads as they were published.

For NInFEA, a synchronized pulse-wave Doppler sonography (PWD) of the fetal heart was acquired
simultaneously and clinically annotated for heartbeat references. The PWD signal annotations are V-peaks,
characteristic points representing the blood flow through the aortic valve. From the physiological
perspective, blood flow through the aorta is immediately preceded by the depolarization and contraction of
the ventricles. It can, therefore, be assumed that a V-wave directly follows an R-peak in the PWD signal. The
V-peaks in the PWD signal have been annotated by expert clinicians during signal acquisition. We use all 22
abdominal channels of the NInFEA dataset for our study. Additionally, we included five electrode
configurations based on market-available wearable devices, as proposed by Sulas et al (2021) proposed, see
figure 5. We excluded the 9th channel of recording 34 in NInFEA due to corrupted signal values.

3.2.2. Algorithm preparation
The proposed algorithm Power-MF covers all steps of the fetal QRS detection pipeline. Its preprocessing and
maternal ECG suppression overlap with Varanini, as these have shown to be robust. Power-MF differs from
Varanini in the channel selection and fetal QRS detection steps. A complete overview of the algorithm steps
of Power-MF and Varanini is given in figure 3.

The algorithms we employed for benchmarking required some adjustments to function properly on the
datasets we selected. The source codes of Behar and Varanini are publicly available on the CinC2013 website4.
For Sulas, we used the authors’ publicly available repository on Github5, which depends on the OSET
toolbox6. The test datasets have sampling frequencies of 2048 Hz (NInFEA) and 500 Hz (ADFECG dataset).
Since both algorithms, Behar and Varanini, were developed for CinC2013, they were published with a

4 https://archive.physionet.org/challenge/2013/sources/.
5 https://github.com/rsameni/NInFEADataset.
6 https://sameni.org/OSET/.
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Figure 5. Electrode configurations of the NInFEA dataset. This overview shows the electrode configurations of the NInFEA
dataset, as proposed by Sulas et al (2021). Configurations (a)–(e) model market-available wearable NI-fECG devices.

sampling frequency set to 1000 Hz. Sulas, on the other hand, was published with a sampling frequency set to
2048 Hz. All algorithms take the sampling frequency of the signals as an input parameter. Depending on the
dataset we evaluated the algorithms on, this input parameter was set to the respective sampling frequency of
the dataset. This step was necessary to ensure conformity between datasets and algorithms. Although we did
not modify the core methodology behind the algorithm or the data directly, we cannot rule out the
possibility that the algorithms behave differently, as they may depend on the sampling frequency. It was out
of the scope of this work to test if additional modifications of this algorithm could improve the performance
of the unseen dataset.

In the algorithm Behar, the authors defined specific parameters to improve their performance on the
CinC2013 dataset. More precisely, the identified time series are flagged as implausible if less than 85 fetal
QRS or more than 200 fetal QRS in the 60 s long recordings are detected or if the standard deviation of the
detected RR intervals is above 17 ms. For our study, these parameters were removed, ensuring no signals
longer than 60 s are rejected.

Sulas was adapted to detect maternal QRS from abdominal channels, as not all datasets contain thoracic
reference channels. All algorithms were implemented in Matlab.

3.2.3. Performance metrics
For performance evaluation, we computed Se, PPV, and F1-score as follows:

Se=
TP

TP+ FN
(1)

PPV=
TP

TP+ FN
(2)

F1= 2 · PPV · Se
PPV+ Se

=
2 ·TP

2 ·TP+ FP+ FN
. (3)

The available reference fetal heartbeat annotations serve as ground truth. True positives (TP) are the number
of correctly detected QRS, false positives (FP) are the number of wrongly detected QRS, and false negatives
(FN) are the number of missed QRS.

For adults, a detected QRS is considered to be a true positive if it is within 150 ms of the reference
annotation (Di Marco and Chiari 2011, Heryan et al 2021). For ADFECG, we used an interval of 50 ms due
to the higher fetal heart rate, as suggested by Behar et al (2016). For the evaluation of the NInFEA dataset,
though, a different evaluation method was chosen: In the original publication by Sulas et al (2021), a true
positive is defined as a detected QRS that has a distance less than 200 ms to the annotation. As described
before, from a physiological perspective, the QRS is expected to occur shortly before the V-peak. Therefore,
we consider a QRS to be a true positive if it is within 200 ms before the annotation.
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Se (1) can be interpreted as the percentage of correctly detected true fetal QRS out of the total number of
true fetal QRS, i.e. it indicates how successful an algorithm is at finding the true fetal QRS. PPV (2) is the
percentage of correctly detected true fetal QRS out of all detected fetal QRS. This value indicates how well the
algorithm can detect true fetal QRS out of all detections. F1-score (3) is the harmonic mean of Se and PPV
and is used to summarize the overall performance of a detector.

4. Results

4.1. Performance on NInFEA dataset
Table 4 shows detailed results for the five wearable electrode configurations and for all 22 abdominal
electrodes, as introduced in figure 5. Our proposed algorithm Power-MF outperforms state-of-the-art
algorithms on three of six electrode configurations (see figure 5) of the NInFEA dataset. Power-MF achieves
an F1-score of 84.5%± 17.7%, 89.3%± 14.8%, and 90.5%± 13.4% for the electrode configurations (b), (d)
and (e). For electrode configurations (a) and (c), Varanini achieves the highest F1-score with 85.8%± 21.0%
and 89.5%± 18.4%, respectively. On all abdominal electrodes, the algorithm Sulas performed best with a
mean F1-score of 93.0%± 12.4%.

Figure 6 presents boxplots of the F1-scores over the individual recordings to illustrate the distribution of
scores for each algorithm. It shows that Power-MF and Varanini have a similar performance. Sulas performs
best when all abdominal electrodes are considered. However, for configurations (a)–(e), the results are
relatively low and spread over a wide range. Behar has a consistently mean score around 50% on all
configurations.

Most algorithms achieve the best performance when all abdominal electrodes are included. The scores
among the wearable electrode configurations are similar.

4.2. Performance on ADFECG dataset
Power-MF achieves the best performance on both subsets of the ADFECG dataset with a mean F1-score of
99.5%± 0.5% on subset B1 Pregnancy and 98.0%± 3.0% on subset B2 Labour. In table 5, detailed results of
all state-of-the-art algorithms on the two subsets of the ADFECG dataset are shown. Figure 7 shows the
distribution of F1-scores of the individual recordings. It is noticeable that the results among individual
recordings are widely spread for Behar and Sulas, while Power-MF achieves the lowest standard deviation
across all algorithms.

Power-MF, Varanini and Behar had the best performance in the ADFECG dataset with higher F1-scores
and a smaller range of values. The number TP and FP for all algorithms are shown in tables 6 and 7. The
supplementary material includes the performances on individual recordings, including F1, Se, PPV, TP, FP,
and FN values.

4.3. Fetal heart rate analysis
A residual plot in figure 8 shows the relationship between the extracted heart rate of the algorithms
Power-MF and Varanini and the ground truth heart rate for each recording of all datasets. For Power-MF the
bias is 0.13 bpm and the limits of agreement (LoA) (±1.96 SD) are 6.83 bpm and−6.60 bpm. For Varanini
the bias is 0.83 bpm and the LoA are 10.64 bpm and−9.00 bpm. Based on the analysis, there is a consistent
performance of both algorithms across the entire range of heart rantes. It appears that Power-MF algorithm
underestimated some individual recordings at higher heart rates. However, the overall limit of agreements
across all heart rates is substantially lower than for Varanini.

5. Discussion

In this work, we propose Power-MF, an algorithm for robust fetal QRS detection from noisy NI-fECG
recordings. Benchmarking against three relevant open-source state-of-the-art fetal QRS detection
algorithms (Behar et al 2014, Varanini et al 2014, Sulas et al 2021) followed a standardized protocol using
ADFECG (Matonia et al 2020) and NInFEA Sulas et al (2021) datasets. We chose ADFECG and NInFEA as
test datasets since they are relatively new and, hence, few publications have been published using these
datasets compared to the CinC2013 dataset.

In our benchmark, we identified Power-MF as the best-performing algorithm, as it achieves the highest
F1 score and the least standard deviation on both subsets of the ADFECG datasets (table 5). Further, it
outperforms the other algorithms on three electrode configurations of NInFEA (table 4). Varanini also
performs convincingly on individual electrode configurations of NInFEA and achieves comparable results to
Power-MF on the ADFECG dataset. However, manual spot checks revealed that Power-MF is more robust for
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Table 4.Mean F1-scores± standard deviation (min, max) in % for Power-MF and state-of-the-art fetal QRS detection algorithms on
the NInFEA dataset for five different electrode configurations (see figure 5) and all abdominal electrodes, as proposed by (Sulas et al
2021). The results are averaged over all recordings. Minimum and maximum F1-scores are given in brackets. The best result for each
configuration is highlighted in bold.

NInFEA electrode configuration

(a) (b) (c) (d) (e)
All abdominal
electrodes

Power-MF
85.3± 18.1 84.5± 17.7 86.6± 18.4 89.3± 14.8 90.5± 13.4 91.7± 14.5
(45.7, 100.0) (40.4, 100.0) (35.2, 100.0) (45.1, 100.0) (50.5, 100.0) 44.9, 100.0)

Varanini et al (2014)
85.5± 21.0 84.4± 21.4 88.9± 18.4 88.8± 16.9 88.4± 17.9 92.3± 13.8
(0.0, 100.0) (0.0, 100.0) (16.4, 100.0) (48.0, 100.0) (33.7, 100.0) (46.9, 100.0)

Behar et al (2014)
50.8± 11.3 50.8± 9.2 52.4± 8.3 49.7± 15.2 52.2± 13.0 52.9± 13.1
(0.0, 79.6) (0.0, 70.0) (32.0, 74.8) (0.0, 76.9) (0.0, 79.8) (0.0, 88.9)

Sulas et al (2021)
73.3± 20.5 69.3± 21.1 69.5± 19.9 73.5± 19.9 73.4± 20.2 93.0± 12.4
(30.9, 100.0) (40.0, 100.0) (38.5, 100.0) (45.3, 100.0) (44.5, 100.0) (54.0, 100.0)

Figure 6. Boxplots of the F1-scores in % of the individual recordings of the NInFEA dataset for each electrode configuration. The
horizontal bars represent the median F1-score, plus signs (+) indicate outliers. The boxes represent the interquartile range, and
the vertical lines extend to the furthest observation that is not considered an outlier, i.e. that is at most 1.5 times the interquartile
range from the top or bottom of the box. Diamonds (⋄) indicate the mean F1-score over all recordings.

Table 5.Mean F1-scores± standard deviation (min, max) in % for state-of-the-art fetal QRS detection algorithms on both subsets of
the ADFECG dataset. The results are averaged over all recordings. Minimum and maximum F1-scores are given in brackets. The best
result for each subset is highlighted in bold.

B1 Pregnancy B2 Labour

Power-MF
99.5± 0.5 98.0± 3.0
(98.4, 99.9) (89.1, 100.0)

Varanini et al (2014)
99.4± 0.7 97.9± 3.8
(98.1, 100.0) (86.3, 100.0)

Behar et al (2014)
90.4± 5.5 87.7± 9.4
(83.2, 98.7) (64.9, 96.9)

Sulas et al (2021)
63.0± 22.0 65.4± 27.9
(31.0, 99.5) (27.6, 99.7)

noisy data, see figure 9. We further showed that Power-MF can reliably extract fetal heart rate across all tested
fetal heart rate ranges and achieves a lower bias across all datasets compared to Varanini (see figure 8).

We introduce Power-MF, a new algorithm for fetal QRS detection that builds on the Varanini algorithm
and incorporates its effectiveness in preprocessing and maternal ECG cancellation. A major difference from
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Figure 7. Boxplots of the F1-scores in % of the individual recordings of subsets B1 Pregnancy and B2 Labour of the ADFECG
dataset. The horizontal bars represent the median F1-score, plus signs (+) indicate outliers. The boxes represent the interquartile
range, and the vertical lines extend to the furthest observation that is not considered an outlier, i.e. that is at most 1.5 times the
interquartile range from the top or bottom of the box. Diamonds (⋄) indicate the mean F1-score over all recordings.

Table 6. Number of correctly detected fetal QRS peaks (true positives) for Power-MF and state-of-the-art QRS detection algorithms on
the datasets ADFECG B1 Pregnancy and B2 Labour and NINFEA with electrode configurations (a)–(e) and all abdominal electrodes.
The number of ground truth fetal QRS peaks is in bold.

ADFECG NInFEA

B1 Pregnancy B2 Labour (a) (b) (c) (d) (e) All

Power-MF 28 189 7762 3677 3613 3703 3866 3939 3977
Varanini et al (2014) 28 264 7759 3738 3683 3868 3902 3803 4004
Behar et al (2014) 26 912 7507 2053 1983 2049 2020 2075 2078
Sulas et al (2021) 17 931 5197 3056 2783 2854 3057 3034 4067

Ground truth 28 405 7903 4220

Table 7. Number of wrongly detected fetal QRS peaks (false positives) for Power-MF and state-of-the-art QRS detection algorithms on
the datasets ADFECG B1 Pregnancy and B2 Labour and NINFEA with electrode configurations (a)–(e) and all abdominal electrodes.

ADFECG NInFEA

B1 Pregnancy B2 Labour (a) (b) (c) (d) (e) All

Power-MF 165 190 573 614 544 408 339 300
Varanini et al (2014) 137 200 586 684 469 430 538 323
Behar et al (2014) 4238 1804 2248 2267 2255 2247 2285 2208
Sulas et al (2021) 10 495 2853 1317 1496 1454 1427 1393 248

Varanini is our introduction of a PSD-based approach for channel selection. While PSD has been used for
noise removal in ECG signals (Biswas et al 2014) or to analyze the frequency spectrum of the fetal heart
rate (Ferrazzi et al 1989), our novelty lies in its application specifically for selecting the channel with the most
prominent fECG signal. To the best of our knowledge, this unique combination has not been explored before.
As a fetal QRS detection approach, we applied a matched filter. Matched filters have been proven robust for
adult QRS detection in various studies (Eskofier et al 2008, Smigiel and Marciniak 2017, Jamshidian-Tehrani
and Sameni 2018). Additionally, (Matonia et al 2020) have shown its effectiveness for fetal QRS detection.
Other works use e.g. derivative-based approaches, adaptive thresholds, or neural-networks for detecting the
fetal QRS peaks in the signal (Varanini et al 2014, Mollakazemi et al 2021, Jebastine 2023).

The strengths of Power-MF lie in its robustness against noise, particularly during labor (see table 5),
ensuring stable performance across a wide spectrum of fetal heart rates. The algorithm’s adaptability to
diverse heart rate ranges, as shown in figure 8, underscores its versatility. However, limitations arise from the
optimization of theminimum peak distance hyperparameter for a specific heart rate range, potentially
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Figure 8. Residual plot for fetal heart rate differences for individual recordings in ADFECG B1 Pregnancy, B2 Labour and NInFEA
datasets. Differences are plotted between Power-MF algorithm and ground truth (left) and between Varanini et al (2014)
algorithm and ground truth (right). The differences are mean fetal heart rate values and each dot represents a single recording.
The solid line represents the mean difference across all recordings, the dashed line represents the limits of agreement (LoA).

Figure 9. Fetal peak detection in a noisy signal segment during labour. This signal exemplifies that in a noisy signal segment
(127.0–129.5 s) Power-MF detects the fetal peaks correctly while the algorithm of (Varanini et al 2014) misses them. In the
less-noisy segment (from 129.5 s), both algorithms detect the fetal peaks correctly. The dashed vertical lines indicate the ground
truth fetal peak annotations. The crosses and circles indicate the fetal peaks detected by Power-MF and Varanini et al (2014),
respectively. The grey areas mark the acceptance interval of 50 ms. The signal is the fourth channel of recording 6 from the dataset
ADFECG B2 Labour. The electrode signal is displayed in arbitrary units.

impacting performance at pathologically low fetal heart rates, as we aimed to avoid maternal heart rate
interference. Another potential limitation of the algorithm lies in the fixed nature of the matched filter
template, determined as the median of temporarily detected fetal QRS. Enhancing adaptability to situations
where the QRS pattern is not stationary, such as during fetal movements, could be considered for future
improvements. In order to integrate our algorithm into a new decision support system, it is necessary to test
it in real-life situations that include pathological heart rate patterns and a wide range of gestational ages. This
will ensure that the algorithm functions reliably for fetal heart rate extraction in routine clinical practice.

We evaluated the algorithms on different electrode configurations to get more generalizable results,
including the potential performance on wearable devices. A connection between configuration and
algorithm performance could not be identified, as the algorithms performed similarly for all five electrode
configurations of NInFEA. It appears that more electrodes lead to better results (Aggarwal and Wei 2021).
For the ADFECG dataset, we investigated only the originally published configuration, which is not
comparable to those of NInFEA due to a different reference electrode location.

The algorithms exhibit lower performance on the NInFEA dataset (table 4, figure 6), possibly due to a
lower data quality from recordings at an early gestational age, resulting in a lower SNR (Kahankova et al
2017). In about half of the NInFEA signals, fetal peaks are not visually identifiable across the 22 abdominal
channels, contrasting with ADFECG, where fetal peaks are constantly visible. Performance varied among
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signals, with deficiencies in signals lacking visible fetal peaks and high performance in those with visible
peaks. This variation of signal quality might explain the high standard deviation in NInFEA results. Further,
NInFEA does not contain reference R-peak annotations. Instead, the V-peaks in the PWD signal were used as
ground truth labels. This required an increase in confidence interval due to the physiological time difference
between R and V-peak, potentially leading to more falsely detected peaks being identified as correct.

Sulas shows low performance, particularly with fewer electrodes on NInFEA, suggesting reduced
effectiveness with fewer channels, possibly due to the πCA method’s dependency on multiple channels.
Overfitting to the dataset due to the high number of channels might be conceivable. Sulas has been published
together with the NInFEA dataset. The algorithm works well on the total dataset but might not generalize
well. Our re-implementation achieves considerably higher performances than stated in the original
publication (tables 1 and 4). As our work is based on the implementation of Sulas, we cannot rule out
contradictions to the description by Sulas et al (2021).

A limitation of this work relates to the literature research. Although new algorithms are constantly being
published, few provide the corresponding source code. These include mainly algorithms published in
CinC2013 and algorithms based on the two toolboxes FECGSYN and OSET. This restriction has limited the
variety of algorithms compared. To allow a comprehensive and representative comparison of state-of-the-art
algorithms, we encourage authors to make their source code publicly available.

As a performance metric, we reported the F1-score as it describes the harmonic mean between Se and
PPV. However, for other applications, e.g. morphological analysis, other metrics such as true and false
positives might be more appropriate since the focus is more on the individual heartbeats than on the
completeness of the detected heartbeats.

Another limitation concerns the algorithm’s ability to adapt to different sampling frequencies.
Open-source algorithms were typically published with a specific sampling frequency linked to the dataset for
which they were initially developed. However, the datasets used for the algorithm comparison in this work
had deviating sampling frequencies, necessitating adjustments in the source code. Although we did not
modify the algorithm or data directly, we cannot rule out the possibility that the algorithms behave
differently, as they may depend on the sampling frequency. It is important to point out that there might be an
effect of different sampling frequencies on the performance of the algorithms and should, therefore, be
investigated in future studies to evaluate the algorithms under different sampling conditions.

The CinC2013 dataset served as training set and was, therefore, not the primary evaluation dataset in our
study. Comprehensive analysis results for this dataset are available in the supplemental material.
Reproducing exact results from original algorithm publications was challenging, potentially due to differing
experimental setups and software environments. Notably, Behar and Varanini were tailored for the CinC2013
dataset, which may have contributed to their slightly better performance compared to Power-MF on the
CinC2013 dataset. However, Power-MF demonstrates promising generalization capabilities, maintaining a
stable performance across all datasets, including labor conditions, despite comparatively lower performance
on CinC2013.

We performed a parameter optimization of Power-MF on the CinC2013 dataset. Varanini and Behar have
been developed for CinC2013. Sulas has been presented with the NInFEA dataset. We applied state-of-the-art
algorithms as proposed in their original publications without further parameter optimization. A parameter
optimization on CinC2013 might have improved Sulas’ (Sulas et al 2021) performance on the ADFECG
dataset.

Our work addresses methodological limitations, as highlighted by Kahankova et al (2020), ensuring an
objective comparison by excluding incomplete, non-public, or synthetic datasets (Clifford et al 2014,
Andreotti et al 2016, Li et al 2017, Vaidya and Chaitra 2020). Similar to Li et al (2017), we investigated the
performance among different electrode configurations relevant to wearable devices and are using the
maximum available electrodes in the datasets for thorough evaluation. Unlike previous studies employing
algorithms from a single toolbox, we established a standardized evaluation using re-implemented algorithms,
similar to the approach by Clifford et al (2014) in the CinC2013 evaluation. This approach enabled us to
account for variations in data subsets and evaluation metrics, resulting in a more robust evaluation. In order
to gain more detailed insights into the algorithm’s capacity to preserve the morphological structures of the
extracted fECG, a morphological analysis becomes essential. However, such analysis requires the availability
of morphologically annotated or simulated data, as done by Andreotti et al (2016). In this study, we focused
our analysis on real-world data. While we chose not to use simulated data, acknowledging its potential for a
more detailed evaluation under varying noise levels, we plan to explore this in our future research.

We achieved acceptable performance of state-of-the-art algorithms for late pregnancy data. However,
there is room for improvement in extracting data from early pregnancy, which necessitates further research
and evaluation. Our focus centered on evaluating fetal QRS detection using a limited number of channels, as
wearable NI-fECG devices often have a constrained electrode count. Despite Power-MF exhibiting only a
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marginal performance gain compared to Varanini, we are convinced that we are heading in the right
direction. Notably, our algorithm shows promising potential for stable fetal heart rate extraction from
wearable devices, even with sparse channels and noisy recordings in early pregnancy.

Specific fetal heart rate patterns during labour provide insights into the presence of perinatal
asphyxia (Ayres-de Campos et al 2015). Power-MF exhibits consistent performance on labour recordings
(ADFECG B2 Labour: mean F1= 98.0± 3.0) and outperforms state-of-the-art algorithms (see table 5),
making it the most suitable algorithm for additional investigations concerning the early detection of
perinatal asphyxia. Further analyses will determine whether the extraction of these specific fetal heart rate
patterns is feasible using Power-MF.

In our upcoming research, we plan to tackle these issues by collecting a new NI-fECG dataset. This
dataset will serve as a foundation to evaluate Power-MF’s capability to reconstruct specific fetal heart rate
patterns indicative of perinatal asphyxia based on the detected fetal R-peaks. Further, this dataset will be used
to further develop Power-MF with an adaptive template and validate its robustness to extract moving heart
rate patterns and pathologic fetal heart rates.

6. Conclusion

This paper presents Power-MF, a new approach for fetal QRS detection. Our experimental results
demonstrate that Power-MF outperforms three state-of-the-art algorithms on two recently published
NI-fECG datasets. Furthermore, Power-MF is stable for different electrode configurations relevant to
wearable devices and is robust against noisy recordings, especially during labour.

The development of Power-MF contributes to the advancement of fetal QRS detection algorithms. The
stability and reliability of such algorithms play a crucial role in the early detection and diagnosis of birth
complications, e.g. perinatal asphyxia. Our long-term goal of reducing costs and making prenatal care more
accessible underscores the significance of these efforts in enhancing fetal QRS detection algorithms.

Our plans for a newly collected dataset will also help to answer other research questions that could not be
answered with the existing datasets. For instance, morphological analyses of the NI-fECG have the potential
to improve the early detection of perinatal asphyxia (Oudijk et al 2004), as well as cardiac
malfunctions (Velayo et al 2011, Verdurmen et al 2016, Lakhno et al 2017). Additionally, as we are strong
advocates of open and reproducible science, we plan to make our dataset available to the public, thus, also
allowing and encouraging other researchers to develop and evaluate new approaches for fECG extraction to
address the important issue of prenatal complications.
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