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Abstract— Optical coherence tomography angiography
(OCTA) is a non-invasive imaging modality that can acquire
high-resolution volumes of the retinal vasculature and aid
the diagnosis of ocular, neurological and cardiac diseases.
Segmenting the visible blood vessels is a common first step
when extracting quantitative biomarkers from these images.
Classical segmentation algorithms based on thresholding
are strongly affected by image artifacts and limited signal-
to-noise ratio. The use of modern, deep learning-based
segmentation methods has been inhibited by a lack of large
datasets with detailed annotations of the blood vessels.
To address this issue, recent work has employed trans-
fer learning, where a segmentation network is trained on
synthetic OCTA images and is then applied to real data. How-
ever, the previously proposed simulations fail to faithfully
model the retinal vasculature and do not provide effective
domain adaptation. Because of this, current methods are
unable to fully segment the retinal vasculature, in partic-
ular the smallest capillaries. In this work, we present a
lightweight simulation of the retinal vascular network based
on space colonization for faster and more realistic OCTA
synthesis. We then introduce three contrast adaptation
pipelines to decrease the domain gap between real and arti-
ficial images. We demonstrate the superior segmentation
performance of our approach in extensive quantitative and
qualitative experiments on three public datasets that com-
pare our method to traditional computer vision algorithms
and supervised training using human annotations. Finally,
we make our entire pipeline publicly available, including
the source code, pretrained models, and a large dataset of
synthetic OCTA images.

Index Terms— Blood vessels, deep learning, image seg-
mentation, OCTA, transfer learning.

I. INTRODUCTION

OPTICAL coherence tomography angiography (OCTA)
is a non-invasive imaging modality that can acquire

high-resolution volumes of the retinal vasculature. The tech-
nology can aid the diagnosis of ocular, neurological, and
cardiac diseases [1], [2], [3]. Recent work has investigated
the feasibility of automated disease classification and grading
based on OCTA images in an end-to-end approach using
convolutional neural networks (CNN) [4]. However, these
systems only offer limited explainability and might be subject
to unknown training biases. For this reason, others first extract
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a vessel segmentation map and then compute disease-relevant
biomarkers, such as vessel density, radius, or tortuosity.

Currently, most vessel segmentation methods for OCTA
images are based on thresholding algorithms. The most reliable
choices are found to be adaptive thresholding, Frangi filters
with binarization, Gabor filters with binarization, and opti-
mally oriented flux [5]. However, all methods require manual
tuning and suffer from poor robustness towards the diverse
set of image artifacts in real OCTA data. Furthermore, small
vessels such as the capillaries from the deep vascular complex
(DVC) are hard to detect using thresholding but crucial for
early disease detection [6].

Several machine learning based vessel segmentation solu-
tions for OCTA images have been proposed in the past.
Pissas et al. train a U-Net on 50 8×8 mm2 manually annotated
OCTA images that iteratively refines the segmentation map [7].
Mou et al. propose a generalized segmentation model using
spatial and channel attention for curvilinear structures [8].
They demonstrate their performance on corneal confocal
microscopy images, color fundus images and an in-house data
collection of 30 retinal OCTA scans of the superficial vascular
complex (SVC) that were manually annotated by an expert.
However, overall, the adoption of machine learning-based
vessel segmentation algorithms is hindered by a lack of
sufficient training labels. Manual annotation is not only time-
consuming, but also difficult due to complex vessel branching,
low resolution, and low-contrast areas. Under great effort,
a limited number of OCTA datasets with vessel annotations
have been published [5], [9], [10]. However, they mostly do
not contain labels for smaller vessels and sometimes exhibit
labeling inconsistencies.

In settings without a sufficient amount of labeled training
data, transfer learning can be used. Thereby, a network is
trained in a related data domain, in which a large amount
of annotations is available, before being applied to the target
domain. Costa et al. propose generating synthetic training
samples that can be used to train a network for fundus
vessel segmentation [11]. An autoencoder network generates
vessel graphs following the data distribution of an annotated
set of images. In a second step, a generative adversarial
network (GAN) transforms the vessel graphs into realistic
looking fundus images. The authors are able to generate fairly
realistic data pairs, but breaks in generated vessels and limited
realism of the images inhibit the downstream segmentation
performance on real data. Menti et al. use an active shape
model approach to generate retinal vessel structures within
a distribution observed from annotated fundus images [12].
To simulate the look of real fundus images, the authors
employ handcrafted filters to augment the synthetic vessel
maps. Fu et al. propose to train a U-Net for image denoising
on paired fundus images and apply it on OCTA en-face
images for vessel enhancement [13]. Their transfer learning
method surpasses the segmentation performance of supervised
methods on a small evaluation dataset. Several works have
explored the generation of realistic medical images based on
sketch maps, which are simplified binary drawings of scenes
or objects [14], [15], [16], [17]. For instance, Zhang et al.
use Sobel edge filters to automatically extract sketches from
fundus images and train a GAN to recreate the images [17].

A second GAN learns to generate new synthetic sketches.
These synthetic sketch-image pairs are then used to pretrain
a vessel detection network. Although the sketch maps do not
correspond to the true vessel segmentations, the pretraining
boosts the performance on a small evaluation dataset. All the
mentioned works either still require at least a small set of
labeled data or only segment vessels to a limited level of detail.
Furthermore, none of the methods have been tested on a larger
set of OCTA images.

Recently, Menten et al. presented a novel approach for
OCTA data that does not require any labeled data [18]. They
leverage a physiology-based simulation model to generate
artificial vessel maps of the retinal vasculature with inherently
matching labels. A CNN is then trained on these synthetic
OCTA images in a supervised fashion (see figure 1). Sev-
eral image augmentations simulate OCTA artifacts and make
the network more robust against the domain shift when the
pre-trained network is applied to real data. However, their
work has several limitations: First, the rigid nature of the
simulation model together with image synthesis taking up to
eight hours per sample prevents the simulation of smaller
capillaries in the retinal vasculature. It further complicates
hyperparameter tuning to increase the image realism. Second,
the manually tuned image augmentations are not able to fully
bridge the domain gap between synthetic and real images.
Because of this, the method proposed by Menten et al. is not
able to fully segment real OCTA images, partially ignoring the
smallest capillaries. Third, Menten et al. only compare their
method to a single dataset and do not explore the clinically
important task of segmenting vessels beyond the level of detail
of existing annotations.

In this work, we introduce a pipeline to train a CNN for ves-
sel segmentation of 2D macular OCTA images using synthetic
OCTA images that overcomes the aforementioned disadvan-
tages. To this end, we make the following key contributions:

1) We replace the computationally costly physiology-based
simulation with a statistical angiogenesis model based
on space colonization from Rauch and Harders [19] (see
figure 2). The new algorithm substantially speeds up the
image generation and enables us to quickly test new
configurations. With our method, we can control the look
and dynamics of the vessel growth, leading to a more
complex and realistic vasculature of the retina.

2) We employ and compare several advanced contrast adap-
tation strategies to bridge the domain gap between real
and synthetic images. We show that this step is crucial
for the segmentation robustness on real data.

3) We perform extensive quantitative and qualitative bench-
marking on three public datasets. We compare our
methods with traditional computer vision algorithms and
models trained directly on the dataset labels.

4) We published our entire pipeline as an open source tool,
including a synthetic dataset and pretrained models at
https://github.com/aiforvision/OCTA-autosegmentation.

II. METHODS

A. Statistical Simulation of the Retinal Vasculature
A central component of our pipeline is the realistic sim-

ulation of retinal vasculature. Originating from the optical
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Fig. 1. Our proposed pipeline generates realistic synthetic OCTA images and uses them to train a U-Net for blood vessel segmentation. When
applied to real data, the trained network is able to produce highly detailed segmentation maps.

Fig. 2. Comparison of Menten et al.’s image synthesis and ours. Synthetic images are generated by 1) growing a vascular network via an
angiogenesis driven simulation model, and 2) enhancing vessel map realism with data augmentations. Our new simulation model enables faster
synthesis of complex vessel structures, and our data driven contrast adaption strategies model artifacts more realistically. Figures of the method by
Menten et al. are taken from [18].

nerve, blood vessels traverse the entire retina as two vascular
complexes. The superficial vascular complex (SVC) mostly
contains larger vessels, while the deep vascular complex
(DVC) consists primarily of capillaries with a radius as small
as 2.5 µm [20]. The retina also contains a circular shaped
avascular zone around the fovea (FAZ) of about 0.35 mm in
diameter. Similar to other works, we simulate vessel devel-
opment using a forest of 3D rooted binary trees [19], [21],
[22], [23]. Growth of these graphs is governed by a set of
predefined rules. Each tree is initialized by a root node with a
single child node. An edge encodes the length and radius of
a vessel segment. There are three types of nodes:

• Leaf-node: The node does not have any children and is
only connected to its parent.

• Inter-node: The node has exactly one child.
• Bounded node: The node has reached its maximum of

two children and is not considered for proliferation.
In clinical practice, OCTA images are mostly viewed as 2D en-
face projection representation instead of the full 3D volume.
We therefore relax the realism in depth, as we are only
interested in the resulting 2D maximum intensity projection
(MIP) along the z-axis. To simulate the geometrical shape of
a 3 × 3 mm2 central crop of the retina, we define a simulation
space with dimensions of 3 × 3×

1
76 mm3. The dimensions of

the simulation space can also be scaled to support different
fields of view (FOVs). Since the optical nerve is located
outside the FOV for macular images, we randomly place
16 root stumps at the lateral faces of the simulation space
cuboid. We note that it is also possible to define a circular
zone inside the simulation space to replicate the optical nerve
for ultra-wide field OCTA images.

Menten et al. base their growth model on an angiogenesis
simulation by Schneider et al. [21], which has been frequently
used to create synthetic blood vessels [24], [25]. Inspired
by angiogenesis in biological organisms, they model the
diffusion of oxygen (O2) and the related vascular endothelial
growth factor concentration iteratively for the entire volume
to control the sprouting of new vessels from leaf- or inter-
nodes. The repeated calculation of the oxygenation for each
vessel sprout is computationally very expensive and leads
to an excessive synthesis duration of about eight hours per
image for Menten et al. This prevents the generation of more
complex vessel graphs and complicates further development of
the algorithm. Additionally, the complexity of the simulation
leads to a reduced configurability and inhibits the generation
of vessel trees with specific growth pattern. Rauch and Harders
present a simplified angiogenesis model that completely avoids
the explicit calculation of the oxygen concentration by using
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TABLE I
THE PARAMETERS USED BY OUR ANGIOGENESIS MODEL. THE

GROWTH PROCESS OF THE OCTA VOLUME IS DIVIDED INTO A PHASE

TO SIMULATE THE SVC, AND THE SECOND PHASE TO GENERATE THE

SMALLER AND MORE DENSE VESSELS OF THE DVC

a statistical approach based on space colonization [19]. In this
work, we adapt this approach and will discuss the algorithm
in the following. A list of all mentioned variables is provided
in table I.

1) Oxygen Sink Placement: Rauch and Harders model the
circulatory system with oxygen-providing arterial trees and
CO2-removing venous trees [19]. Instead of explicitly comput-
ing the oxygen distribution, the authors propose to randomly
place N oxygen sinks (OSs) in the simulation space every
iteration. Each OS acts as an attraction point for its closest
arterial node within range δ. Each OS must have a minimal
distance ϵs to existing OSs and a minimal distance ϵn to nearby
arterial nodes. In reality, smaller vessels supply more oxygen
to surrounding tissue than larger ones. We model this by
allowing new OSs to be placed closer to arterial nodes as the
vessels’ diameter increase. We use the oxygen concentration
heuristic defined by Schneider et al. [21], and set ϵn relative
to a vessel’s radius:

ϵn = 0.02 · 203.9
µl
ml

·
rnode

3.5 µm
exp

(
1 −

rnode

3.5 µm

)
. (1)

Once a new vessel node is placed within range ϵk of an
attraction point, the attraction point is considered saturated
and is turned into a CO2 source. These CO2 emitters now act
as attraction points for venous trees, whose growth process
follows analogue to arterial trees. Once CO2 sources are
satisfied, they are removed.

2) Leaf-Node Proliferation: Every leaf node has a perception
cone with angle γ and distance δ (see figure 3). A given
attraction point at position p⃗att is considered by the node for
proliferation if:

∥ p⃗node − p⃗att∥2 ≤ δ and ̸ p⃗parent p⃗node p⃗att ≤
γ

2
. (2)

Let Satt be the set of considered attraction points and
v⃗opt the optimal branching unit vector. For leaf-nodes, v⃗opt
denotes the vector of the parent to the current node. A new
child node is placed in the direction of the elongation

Fig. 3. Perception volumes for inter-node sprouting (left) and elongation
(right) in 2D. The growth direction for the new node is given by a
combination of the mean attraction vector and the optimal branching
vector.

vector g⃗ at position p⃗new:

g⃗ = norm

ωv⃗opt + (1 − ω)
∑

p⃗att∈Satt

norm( p⃗att − p⃗node)


p⃗new = p⃗node + dg⃗ (3)

norm(·) normalizes the vector by its L2 norm and ω is a
weighting factor to control the allowed deviation of the average
attraction vector a⃗ to the hypothetical optimal branching vector
v⃗opt. d is the fixed length of the segment (see section II-A.4).
The radius of the new segment is set to the fixed terminal
vessel radius r . This process is called elongation. If the
angle of all attraction vectors is larger than a threshold φ,
a bifurcation is initiated instead and two child nodes are
added. We set the radii rc1 and rc2 of the two child nodes
to the terminal vessel radius r . The angles α and β from a⃗ to
the child segments are calculated following Murray’s law of
minimum work [26].

α = cos−1

(
r4

node

2r2
noder2

)
= −β. (4)

The parent vessel segment radius rnode is updated to satisfy

rκ
node = rκ

c1 + rκ
c2, (5)

where κ denotes the bifurcation exponent. This radius adjust-
ment is recursively repeated up to the root node. The child
nodes are placed in the plane spanned by the leaf node and
the line that cuts through the mean of all attraction points
while minimizing the orthogonal distance to them.

3) Inter-Node Sprouting: Attraction points are considered by
an inter-node if they lay within the frustum of a sphere with
radius δ,

φ1 + φ2 −
γ

2
≤ ̸ p⃗node p⃗child p⃗att ≤ φ1 + φ2 +

γ

2
,

and ̸ p⃗parent p⃗node p⃗att ≤
γ

2
+ φ2. (6)

Here we extend Rauch and Harders’ definition of the percep-
tion volume to prevent unrealistic branching angles. To find
the optimal growth direction, we look at the set Sv⃗opt of
hypothetical optimal branching vectors towards the existing
child segment following Murray’s law. The vectors can be
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thought of as freely rotating around the child segment at an
angle φ2. The closest optimal branching vector v⃗opt ∈ Sv⃗opt to
the average attraction vector a⃗ is used for proliferation. The
new child node’s position is computed following equation 3.

4) Simulation Space Expansion: To ensure that the vascula-
ture network grows homogeneously in the entire simulation
space while not being limited by its size, we expand the
simulation space as the networks grows. For this, all distance
related parameters are linearly reduced every iteration. Specif-
ically, a parameter p(t) at time step t is given by dividing the
initial value p(0) with the scaling factor σ (t)

= 1 + t × 1σ .
We keep the terminal vessel radius r fixed to the minimal
vessel size, and only increase a vessel’s diameter following
Murray’s law. This prevents the placement of abnormally large
vessel stumps. Additionally, we shrink the segment length
parameter d only to a minimal value of 0.04 mm. As listed in
table I, the SVC and the DVC are grown using two different
sets of parameters. Due to this parameter adjustment, the ves-
sel trees of the DVC exhibit the formation of smaller and more
dense branches. Given that the ultimate image is generated
through the MIP along the depth dimension, we allow both
complexes to develop in the same volume. Optionally, it is
also possible to grow the vessel graphs separately to simulate
each complex in isolation.

5) Simulation of the Foveal Avascular Zone: To recreate the
shape of the FAZ, we extend the algorithm with several
rules. To prevent vessel growth inside the FAZ, we avoid the
placement of OSs within a central circular region with radius
rfaz. As the retinal vasculature features fewer bifurcations
close to the FAZ, we decrease the chance of bifurcations
and inter-node sprouting in regions closer to the center of
the FAZ, and instead perform a simple elongation for leaf
nodes. To achieve a more circular look of the FAZ, we add
a rotation term to the elongation vector g⃗. We calculate the
orthogonal rotation vector v⃗rot by a 90◦ rotation of c⃗ =

p⃗center − p⃗node towards the direction of the average attraction
vector a⃗. To prevent a degenerate fully circular growth pattern,
we also add a weighted term v⃗out to the elongation vector that
gradually motivates growth away from the center. The vector
is given by the negative center vector c⃗. Let w =

√
rrot − ∥c⃗∥2

be the distance-dependent weighting factor. The position for
a new node after elongation is given by

p⃗new = p⃗node + d · norm
(

(1 − w)g⃗ +
2w

3
v⃗rot +

w

3
v⃗out

)
.

(7)

In reality, we observe varying FAZ shapes and radii. We there-
fore randomly choose rfaz from a normal distribution. The
effects of these additions can be seen in figure 4.

B. Image and Label Generation From Vascular Graphs

After generating the vessel graphs, we voxelize the simula-
tion space and take the maximum intensity projection along the
z-dimension to compute the anti-aliased grayscale images. The
synthetic vessel annotations bin(X̃) are given by binarizing
the images. We note that segmentation maps necessitate a
specific resolution in order to accurately distinguish individual

Fig. 4. Adding a rotation vector v⃗rot and an out vector v⃗out to the
elongation vector leads to a more realistic growth pattern around the
FAZ.

small blood vessels. We therefore upsample all OCTA images
via bilinear interpolation bilin(·) to a pixel size equal to the
minimal vessel radius of approximately 2.5 µm. For instance,
3 × 3 mm2 images with a dimension of 304 × 304 pixels are
upsampled to 1216 × 1216 pixels. The synthetic segmentation
labels are directly generated in the upsampled simulation
space to ensure correct vessel diameter representation. Table II
provides an overview over naming conventions we use to
distinguish the images.

C. Domain Adaptation of Synthetic Images
Using the synthetic vessel maps X directly to train a

segmentation network results in poor performance on real data.
Although we realistically simulate the vessel geometry, the
contrast and SNR of the images are different. In practice,
OCTA images exhibit artifacts such as noise, low-contrast
regions, and blurry edges. Menten et al. apply shearing,
stretching, and binomial noise artifacts on their training cor-
pus. However, they find that these augmentations do not
substantially boost their segmentation performance. In the
following, we introduce three advanced strategies to adapt the
contrast of training images with the ultimate goal of improving
the segmentation performance on real images.

1) Handcrafted Noise Model: Our first approach is a hand-
crafted multistep noise model designed to recreate the artifacts
observed in real data (see figure 5). First, we model the
structured background noise that is caused by sub-resolution
capillaries in the image. We use our vascular simulation to
generate a dense background noise image ID ∈ [0, 1]

H×W

of capillaries. We multiply this layer with an additional Beta
distribution noise layer 1 to locally modulate the SNR.
Depending on the parameters of the Beta distribution, the noise
can exhibit properties of a uniform, normal, or even binary
distribution. Instead of a single noise distribution for the entire
image, we use a sparse grid of control points that govern the
noise in the area surrounding them [27]. Let A1 ∈ R9×9

+ and
B1 ∈ R9×9

+ be the control points for the parameters α and β of
the beta distribution. We use bicubic interpolation to compute
the pixelwise parameters Ã1 and B̃1. We then sample the
modulation factor for each pixel as 1(i)

∼ Beta( Ã(i)
1 , B̃(i)

1 ).
Second, we use the same procedure to generate a Beta

noise matrix N from a set of control points to model speckle
noise and local brightness adjustments. Third, we generate a
field for locally varying contrast. Let 0 ∈ [−1, 1]

9×9 denote
the contrast control points and 0̃ = Bicubic(0) the resulting
matrix after interpolation.
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TABLE II
NAMING CONVENTIONS FOR INPUTS, INTERMEDIATES, AND OUTPUTS OF OUR FRAMEWORK. LR STANDS FOR LOW RESOLUTION

(1 pixel ≈̂ 10 × 10µm2 ), AND HR FOR HIGH RESOLUTION (1 pixel ≈̂ 2.5 × 2.5µm2 )

Fig. 5. Structure of our proposed handcrafted noise model to simulate artifacts and contrast variations of real OCTA images. Given a synthetic
vessel map X and a background vessel map ID, the module successively performs 1) background noise addition, 2) brightness augmentation, and
3) contrast adaptation. In each block, we use a sparse control point matrix to generate a field for locally varying contrast.

Each transformation step is parameterized by a weighting
factor λ. The final output NM(X) of the noise model is given
by:

I1 = MAX[X, ID · λ11]

IN = (1 − λN )I1 + λN N I1

N M(X) = (IN )(λ0 0̃+1). (8)

To simulate blurry edges and lower quality images, we apply
random down-sampling by a factor s ∼ U (0.25, 1) and a
successive up-sampling to the original size.

2) Noise Modeling via Adversarial Training: The contrast
adaptation of synthetic training images aims to ultimately
improve the performance of the segmentation network. The
random selection of control point values in the previously
described approach does not prioritize difficult augmentations
and is inefficient. To this end, we explore an adversarial
training (AT) approach, where an intensity transformation is
computed for each image that maximizes the segmentation loss
given the training label. To prevent pixelwise attacks that could
alter the alignment of images and labels, we adopt a strategy
proposed by Chen et al. [27]. In order to segment MR images
in a scarce data environment, their work focuses on augment-
ing training samples by applying adversarially tuned magnetic
resonance bias fields. They propose to only tune a small set
of control points via AT that are then used to compute the
transform. Integrating this into our noise model, we turn the
control point values of each layer into tunable parameters and
optimize them via iterative projected gradient ascent (PGA)
(see figure 6). Since sampling from a Beta noise distribution
is not differentiable, we use Pytorch’s implementation of

pathwise derivatives to stochastically obtain the gradients for
the α and β parameters of the Beta distributions [28]. Let
5[ϵ1,ϵ2] denote the projection of a parameter to its allowed
interval, then each parameter η of NM is updated by:

ηt+1
PGA = 5[ϵ1,ϵ2](η

t
PGA + lr · ∇ηLseg(S; N M(X); X̃)) (9)

3) Generative Adversarial Training: Our third strategy for
overcoming the domain gap is to replace the heuristically
designed noise model with a learned transformation by a
neural network. We formulate this task as an image-to-
image style translation problem, where a generator network
transforms a synthetic image from our simulation model to
match the distribution and style of real images. An adversarial
discriminator network judges the realism of the produced
translation.

Since the generator is unconstrained in how much it trans-
forms the image, there is no guarantee that the original
image-to-label alignment is preserved. To this end, Zhu et al.
propose the CycleGAN framework to enable unpaired image-
to-image translation [29]. A second pair of generator and
discriminator is used to transform the generated image back
to source domain. A cycle-consistency loss term computes
the difference between the input and the recovered image,
encouraging the preservation of image content. CycleGAN has
shown remarkable results in domain adaptation and has been
used widely in medical settings [30], [31], [32].

In our approach, we replace the reverse generator with a
segmentation network. The cycle consistency loss is directly
computed using the segmentation maps that are obtained from
the vascular graphs (see figure 7). We find that this loss
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Fig. 6. Our adversarial training approach automatically selects the optimal parameters of our handcrafted model in order to maximize the
segmentation loss. After three projected gradient ascent optimization steps (argmaxH), the weights of the segmentation network are updated
via stochastic gradient descent (argminΘ) to minimize the loss given the adversarial sample.

Fig. 7. Our proposed framework uses a generator network to transform synthetic vessel maps into realistic OCTA images. An adversarial discriminator
network is trained to differentiate real images from generated ones. A segmentation network is trained to predict the vessel segmentation from the
generated image.

function is a strong regularizer for the generator and that we
do not require a second discriminator. As commonly used
in image-to-image translation, we use a ResNet generator
with 9 residual blocks and a 70 × 70 PatchGAN discrimi-
nator [29], [33]. To further constrain the generator network,
and to enable the segmentation network to handle real data,
an identity loss term is added. To this end, the segmentation
network predicts the vessel map of real images after being
processed by the generator. We compare this output with
the predicted segmentation of the original real image and
penalize differences. Note that our approach does not require
any ground truth vessel annotations of real images. To save
computation time, we perform the style transfer step of the
generator on the original image size and only upsample the
images before segmentation. Furthermore, non-healthy sam-
ples in real data sometimes exhibit low- or non-perfusion
areas. To model these, we randomly remove edges and all
their descendants with probability U (0, 0.02) from the source-
label pair. In future work, the basic GAN architecture could
be further refined by more elaborate approaches to optimize
the performance for clinical use.

III. EXPERIMENTS

The ultimate aim of our work is to generate synthetic OCTA
training images that can be used to train neural networks for
segmentation of blood vessels in real OCTA images without

human annotations. We now describe the evaluation procedure
to compare the segmentation performance of our method with
state-of-the-art baseline methods on multiple OCTA datasets.

A. OCTA Datasets
We use three public datasets containing OCTA images and

matching blood vessel annotations (see table III). For all
datasets, we only consider the en-face projections of macular
OCTA images. We exclusively work with images of 3 ×

3 mm2 and 304 × 304 pixels, as they cover a sufficiently large
area for analysis while maintaining a high image resolution.

B. Alignment of Synthetic and Provided Vessel Labels
The level of detail in the segmentation labels varies across

the available datasets, which presents a challenge. This is
because any segmentation predictions that surpass the level
of detail provided in the human annotations would be penal-
ized during quantitative evaluation. To correctly evaluate the
performance of a model on each dataset, we need to condition
the model to produce a prediction matching the required level
of detail. We observe that the datasets’ segmentation labels
roughly correlate with the vessel diameter. We therefore filter
our synthetic segmentation labels by vessel radius to match
the individual dataset labels. For instance, for the OCTA-
500 dataset, we only include vessels with r > 10 µm in the
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TABLE III
SUMMARY OF ALL THREE EVALUATION DATASETS: OCTA-500

FOCUSES ON MAJOR BLOOD VESSELS, WHILE ROSE-1 PROVIDES

MORE DETAILED ANNOTATIONS. ROSE-1, HOWEVER, INCLUDES

SMALL AND FAINT VESSELS INCONSISTENTLY AND MAY IGNORE

LARGER ONES. IN SOME LOW-CONTRAST REGIONS, NO VESSELS

ARE SEGMENTED AT ALL. GIARRATANO ET AL.’S DATASET OFFERS

THE MOST DETAILED ANNOTATIONS

segmentation map. We estimate the thresholds by manually
analyzing a few samples from each set.

We note that in most use cases, we would likely aim for
maximum level of detail and do not require the filtering step.
However, by evaluating our generated segmentation maps with
those annotated by human experts, we provide comparability
to existing methods and a quantitative lower bound quality
assurance of our method on multiple levels of coarseness.

C. Tested Segmentation Methods
We first benchmark a neural network trained directly on

the small set of annotated real images and two established
computer vision algorithms for vessel segmentation. We then
compare these baselines with the transfer learning approach
of training a network on synthetic OCTA images using the
synthesis procedure proposed by Menten et al., and training
a network on our images. We evaluate four variants of our
method, to assess the performance gains of using each of our
three proposed contrast adaptation strategies.

1) Supervised Machine Learning Baselines: For all of our
machine learning experiments, we choose a variation of the
widely successful U-Net architecture as our network [34].
We follow the nnU-Net guidelines proposed by Isensee et al.
to select the image preprocessing steps, network architecture,
and network training strategy [35]. The nnU-Net training
strategy has been found to be successful on a variety of
segmentation tasks and is considered the de facto state-of-
the-art for semantic image segmentation [35], [36], [37].

We first train a supervised baseline using the provided
labels for each dataset. We apply a default augmentation in
the form of random rotations by k · 90◦

± 10◦, k ∈ {0, 1, 2, 3}

and random flipping. The network is trained for 60 epochs
with a batch size of 4.

2) Traditional Computer Vision Baselines: Frangi filters are
a commonly used method to enhance the visibility of tubular
structures in images. We follow the recommendations by
Giarratano et al. and select the filter scales σ ∈ [0.5, 1, 1.5, 2],
the Frangi correction constant for plate-like structures α =

1 and for blob-like structures β = 15. The enhanced image is
binarized using thresholding while small objects are removed
from the segmentation map. We adjust the threshold to align
the prediction with the label map of each dataset. We use the
Bayesian Optimization HyperBand (BOHB) search algorithm
with 20 concurrent actors and five iterations to find the optimal
threshold and minimal object size for each training set [38].

We also test a 2D implementation of the optimal oriented
flux (OOF) filter, which seems to be especially well suited for
dense segmentation tasks [39]. We again use BOHB to find
the optimal threshold and minimal object size.

3) Training With Synthetic OCTA Images by Menten et Al.: We
train a neural network on 500 synthetic OCTA images gener-
ated using the method by Menten et al. Their dataset only
offers a single level of detail, which means that the label
maps include all visible vessels from the image. As described
in section III-B, this does not align well with the anno-
tation scheme of the validation datasets. We therefore also
apply the label alignment step via filtering for better vali-
dation performance and to ensure a fair comparison to our
method. Furthermore, we apply random rotation and flipping
as augmentations and train for 30 epochs with batch size
4. To prevent any performance drops on the dataset by
Giarratano et al. caused by differences of image size during
testing, we crop the training samples from the models trained
on synthetic images to the same number of pixels.

4) Training With Our Synthetic OCTA Images: We now
describe the training procedure for our proposed methods.
We first train a baseline model using our synthetic images
without any of the proposed augmentation strategies (S). The
network is trained on 500 synthetic images, and we use the
same training procedure as for training on the images by
Menten et al. In a second setup, we augment the training
samples using our proposed handcrafted noise model with
random control point values within a heuristically chosen
interval (S+RNM, i.e., random noise model). We set λ1 = 1,
λN = 0.7, and λ0 = 0.3. Next, we test our adversarial
training approach to optimize the control points (S+ANM,
i.e., adversarial noise model). We set the adversarial learning
rate to lr = 1e−3 and use three adversarial optimization steps.
Finally, we test our image noise model based on GAN aug-
mentation (S+GAN). We first train the generator network with
complete label maps for 50 epochs and then use the trained
generator to augment synthetic images. While the trained
segmentation network can be used for evaluation directly,
we decide to train a separate nnU-Net on the transformed
images with the exact same setting as in the other experiments
to ensure a fair comparison. We also experience more stable
training of the GAN when including all vessels vs. a filtered
vessel label map (as needed for OCTA-500 and ROSE-1).

D. Evaluation
We perform 5-fold cross-validation for all methods. For

Frangi and OOF, we use the training set of each fold to
find the best threshold and minimal object size. For U-Nets
trained on synthetic data, we train five separate models and
validate them on the test split. The obtained predictions are
quantitatively compared to the provided annotations using
six different metrics. We calculate the mean Dice similarity
coefficient (DSC), centerlineDice (clDice) [40], area under the
receiver operating characteristic curve (AUC), accuracy, recall,
and precision with their respective standard errors. However,
we note that while the quantitative comparison does provide
some insights into a network’s predictions, the results need
to be taken with a grain of salt. The provided annotations are
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Fig. 8. Our OCTA image synthesis pipeline using GAN augmentation is
able to produce highly realistic training samples that closely match the
geometry of the retinal vasculature and contrast of real OCTA images.

often imperfect and therefore do not allow to accurately assess
the quality of more detailed segmentation maps obtained by
the automated methods.

IV. RESULTS

A. Simulation of the Retinal Vasculature
Figure 8 shows a comparison of synthetic images gener-

ated by Menten et al., real images, and our method. The
new framework allows intuitive tuning of parameters and
straightforward formulation of additional constraints to create
more realistic images. GAN augmentation further reduces the
domain gap between synthetic images and the target dataset.
Using a Python implementation with k-d trees for efficient
queries based on coordinates, we are able to generate images
with more than 10,000 nodes in less than a single minute,
compared to the eight hours required by Menten et al.’s
simulation. The reduced runtime also simplifies the testing of
new configurations, as their effects can be explored quickly.
This previously hindered the practical adaptation of the model
by Menten et al. The new python implementation of our
algorithm can more easily be adapted to include additional
constraints for modeling specific disease spectra.

B. Vessel Segmentation Performance
Table IV lists the segmentation performance of all algo-

rithms on the three OCTA datasets and figure 9 provides a
qualitative comparison for each method. The supervised model
performs best quantitatively on all datasets given the manually
annotated labels. The performance matches the results reported
in previous works, which supports our choice of the nnU-
Net architecture [5], [9], [10]. Notably, the performance on
the ROSE-1 dataset is relatively low for all methods. The
predicted label maps often contain too many or too few
annotations. All models struggle to decide which vessels
need to be segmented and which can be ignored. During
the evaluation of the performance of the supervised method,
it is crucial to distinguish between these quantitative metrics
and the accuracy w.r.t. the true vascular anatomy. A model

Fig. 9. Qualitative comparison of all eight tested segmentation methods
on a representative example from each of the three considered datasets.
Our methods with additional contrast adaptations are reliable in extract-
ing realistic segmentation maps across all datasets.

trained under supervision of human labels tends to mimic
the annotators’ labeling policy, which may not necessarily
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TABLE IV
5-FOLD CROSS-VALIDATION SEGMENTATION PERFORMANCE OF ALL METHODS ON THE THREE EVALUATION DATASETS. THE BEST (UNDERLINE

+ BOLD) AND THE SECOND BEST (BOLD) RESULTS ARE MARKED. OUR METHODS OUTPERFORM TRADITIONAL COMPUTER VISION ALGORITHMS

Fig. 10. By controlling the minimal vessel radius in the synthetic vessel
annotations, the network can be conditioned to create segmentations
with varying levels of detail. This enables benchmarks on datasets with
different label predictions.

represent the correct labeling schema. We elaborate on this
point in section V.

Of the traditional computer vision methods, the Frangi filter
performs best on larger vessel sizes, while OOF works best for

Fig. 11. Performance of our and the supervised method on a DR
patient. Our approach is superior in extracting detailed vessel maps in
low contrast areas, such as around the FAZ.

dense segmentation. The training samples from Menten et al.
only offer limited complexity in the simulated vessel graphs
and inferior contrast adaptation, which prevent a detailed
segmentation on the dataset by Giarratano et al. While the
method does achieve a high recall for large vessels and a
high precision on the dataset by Giarratano et al., it generally
underperforms in all experiments with regard to the Dice score.

Training on our synthetic training samples without con-
trast adaptations performs similar to Frangi and OOF on all
datasets. Figure 10 shows that the pipeline can be adjusted to
align the level of detail with the respective dataset labels.

Adding any of our proposed contrast adaptation strategies
boosts the performance notably and enables the network to
outperform traditional computer vision algorithms. We found
that our noise model with random control points performs
similarly well in terms of the quantitative results when
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Fig. 12. Our method is able to recover vessels in low resolution areas that
would be difficult to annotate manually. The network interprets stronger
motion and shearing artifacts as vessels, since we did not explicitly steel
our network against them.

compared with the adversarial and the GAN-based method
on the considered OCTA datasets. Figure 12 shows that the
trained network is able to identify large and medium-sized
vessels in noisy and low-contrast regions, and smaller vessels
in high-contrast areas. However, it struggles with motion and
shearing artifacts, as commonly encountered in the ROSE-1
dataset.

A qualitative comparison for detailed segmentation in
figure 11 shows that existing methods are not able to
extract realistic label maps. For clinical utility it is especially
important to be able to reliably segment vessels for out of
distribution cases, such as patients with disease. The super-
vised model trained on the dataset by Giarratano et al. does
not recognize vessels with lower visibility around the FAZ.
In contrast, our proposed method is more robust, even for
progressed DR patients.

We hypothesize that this discrepancy between quantitative
and qualitative performance stems from the quality of the
available annotations that are used as ground truth. Any
deviation from the label map is penalized, even if the predicted
segmentation map includes more details.

C. Ablation Studies

We conduct a series of experiments to comprehensively
evaluate the contributions of each building block in our
pipeline. We first investigate the design of our handcrafted
noise model. Table V shows the benefits of adding each of
our chosen transformations to the training images. The results
support our intuition that training benefits from structured
vessel noise, speckle noise, contrast variations, and blurring
caused by downsampling.

Next, we compare our contributions for vessel simu-
lation and data augmentation alongside the method by
Menten et al. [18]. For this, we measure the downstream
segmentation performance of the following configurations:
First, we apply the handcrafted augmentations proposed by

TABLE V
ABLATION STUDY OF THE COMPONENTS IN OUR HANDCRAFTED NOISE

MODEL TESTED ON THE OCTA-500 DATASET. BACKGROUND VESSEL

NOISE ∆, SPECKLE NOISE N, CONTRAST ADAPTATION Γ, AND

DECREASING THE RESOLUTION ↓↑ EACH IMPROVE THE

SEGMENTATION PERFORMANCE

Menten et al. to our synthetic vessel maps. Second, we train
our GAN pipeline using the vessel maps from Menten et al.
The results presented in Table VI demonstrate the enhanced
vessel segmentation performance achieved through the com-
bined effect of both our novel vessel simulation and the
image-to-image augmentation. Notably, the incorporation of
small capillaries yielded the most substantial performance
gains, particularly evident in the dataset by Giarratano et al.
GAN training using the vessel maps by Menten et al. proved to
be less stable, attributed to a lack of realism in the geometrical
structure of their data compared to ours.

Finally, we compare the performance of our proposed GAN
framework with five established image-to-image frameworks:

1) CycleGAN [29]: One of the first methods for effective
unpaired image-to-image translation

2) NICE-GAN [41]: Popular variant of CycleGAN, where
the generator reuses layers of the discriminator

3) CUT [42]: More lightweight framework based on patch-
wise contrastive learning and adversarial learning

4) NEGCUT [43]: Version of CUT that generates
instance-wise hard negatives to optimize contrastive
learning

5) DCLGAN [44]: Framework that combines the architec-
tures of CycleGAN and CUT

Table VII lists the downstream segmentation Dice similarity
coefficient obtained from three different GAN checkpoints.
The table demonstrates the stability of our proposed image-
to-image translation in enhancing the realism of synthetic
vessel maps across all generative frameworks. The optimal
overall result was observed using our method after 50 epochs
of GAN training, validating our design choice. We attribute
this to the effectiveness of the segmentation loss as a cycle
consistency term during training. It should be noted that this
performance comes at the expense of a higher memory foot-
print, since we work on the upscaled segmentation masks. The
CUT framework yielded strong performance using minimal
GPU resources, making it a suitable alternative for budged
applications. The NICE-GAN framework is an exception in the
table, as it performs significantly worse than its counterparts.
Manual inspection of the generated images suggests that the
generator not only altered the style, but also changed the
vessel structure. The resulting misalignment between vessels
and labels then leads to a decrease in performance during
downstream segmentation tasks. A similar effect is noted after
prolonged GAN training in the other frameworks.
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TABLE VI
COMPARISON OF THE VESSEL SIMULATION AND IMAGE TRANSFORMATION STRATEGY BY MENTEN ET AL. AND OURS. OUR VESSEL SIMULATION

ENABLES THE MODELING OF SMALLER CAPILLARIES AND LEADS TO BETTER PERFORMANCE ON DETAILED SEGMENTATION. GAN
AUGMENTATION IS SUPERIOR TO THE HANDCRAFTED APPROACH BY MENTEN ET AL. AND LEADS TO CONSIDERABLE PERFORMANCE GAINS

TABLE VII
COMPARISON OF DIFFERENT GAN FRAMEWORKS FOR UNPAIRED

SYNTHETIC-TO-REALISTIC OCTA IMAGE TRANSLATION. ALL

METHODS WERE TRAINED ON THE OCTA-500 DATASET USING THE

SAME TRAINING SCHEMA WITH THE NETWORK SPECIFIC DEFAULT

HYPERPARAMETERS. THE CHECKPOINTS AFTER EPOCH 25, 50,
AND 100 WERE THEN USED TO TRAIN A NNU-NET FOR VESSEL

SEGMENTATION. WE PERFORMED 5-FOLD CROSS VALIDATION ON

BOTH THE GANS AND THE NNU-NETS

V. DISCUSSION AND CONCLUSION

In this work, we proposed a method to generate highly
realistic synthetic OCTA images to train a CNN for vessel seg-
mentation in real images. We substantially surpass the realism
of the generated vascular networks proposed by Menten et al.
Our new simulation based on space colonization creates more
detailed vascular graphs in less than one minute. We proposed
three contrast adaptation strategies to minimize the domain gap
between synthetic and real images, with the goal of improving
the robustness of the trained network. Using these, we are
able to extract detailed vessel segmentation maps from OCTA
en-face images without any human annotations. In experiments
on three public datasets, we outperform established computer
vision algorithms.

Differences in the degree of detail for provided annotations
in existing validation datasets require aligning the level of
segmentation detail of the training labels with those of the
respective validation dataset. To this end, we proposed to
filter vessels in the label map by diameter. However, the
manual annotations do not always correlate with vessel diam-
eter and inconsistencies in labeling impede the alignment
of synthetic annotations. Poorly visible vessels, even if they
were relatively large in diameter, were often ignored by the
annotators. Therefore, quantitative comparisons with existing
datasets labels do not allow to accurately assess the quality of
detailed segmentation maps. Any deviations from the human
annotations, even if correct, are penalized.

Because of this limited expressiveness, we draw qualitative
comparisons on dense segmentation for unseen data. While the
OOF filter achieves satisfying performance for areas with good
image quality, it struggles to connect vessel segments in low-
contrast regions. The low amount of training data limits the
performance of the supervised model to recognize vessels with

low visibility. This becomes especially pronounced around the
FAZ and in progressed DR patients. In contrast, our approach
is especially well suited to extract realistically detailed seg-
mentations and surpasses every other method on unseen
samples from the OCTA-500 dataset. Supervised methods are
bound by the quality of human annotations, which often under-
or overestimate the vessel diameter in low resolution or low
contrast areas. In contrast, our method automatically learns a
robust representation of how vessels look like and how the
seen footprint relates to the true vessel diameter.

Future work should concentrate on exploring the useful-
ness of extracted biomarkers for downstream tasks. Taking
the example of DR classification, one could compare the
performance between direct classification from the image,
or based on classification using extracted biomarkers. By tak-
ing the extra step of determining biomarkers, we provide
clinicians with more interpretability of the machine learning
pipeline. It is also possible to extend our framework to
3D OCTA volumes by adjusting the simulation model to
realistically recreate the retinal anatomy in 3D. By controlling
the placement of the OSs and vessel growth hyperparameters
in the simulation model, it is possible to simulate differ-
ent vascular layers. This would provide segmentation maps
with additional depth information, enabling more accurate
analysis.

We make our entire pipeline, pretrained models, as well as
a large dataset of synthetic OCTA images publicly available
at https://github.com/TUM-AIMED/OCTA-seg. Our tool
allows the automated extraction of detailed segmentation
maps and enables the computation of quantitative biomarkers.
By this, we hope to make a valuable contribution to the
ophthalmology community and motivate more research in
automated OCTA analysis.
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