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A B S T R A C T

Background: The independent and interrelated long-term effects of the exposome such as air pollution, greenness, and ambient temperature on lung function are not
well understood, yet relevant in the light of climate change.
Methods: Pre-bronchodilation FEV1 from five mature birth cohorts (N = 4724) and three adult cohorts (N = 6052) from five European countries were used to assess
cross-sectional associations with air pollution, greenness, and ambient temperature, assigned to their residential address. All two-way interactions and square terms
were a priori included in building the final elastic net regression model. Elastic net regression results were put into the context of different environmental scenarios
such as improvement of air quality, improvement of greenness, climate change, or their combinations.
Results: Elastic net regression of FEV1 z-scores identified non-zero coefficients for many interaction terms, indicating the importance of joint effects of exposure to air
pollution, greenness, and temperature. The non-zero coefficients were bigger and more stable in adults than in children. Upon exploring lung function benefits for
different environmental scenarios, an improvement of FEV1 was expected in the scenario of improving air quality or greenness. In contrast, negative changes in FEV1
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z-scores were expected in the scenario of climate change, characterized by daily temperature increase in summer and decrease in winter. The beneficial FEV1 effects
of improving air pollution or greenness were attenuated in the presence of climate change.
Conclusion: Complex exposome profiles of long-term exposure to air pollution, greenness, and temperature showed associations with FEV1 in European adults, and to
less extent in children and adolescents. Climate change seems to have a negative impact on lung function and modifies the association of air pollution and greenspace
with lung function.

1. Introduction

Low lung function contributes to disease burden and to diminished
quality of life. The Global Burden of Disease 2019 reported chronic
obstructive pulmonary disease (COPD), an important outcome of low
attained and/or accelerated decline in lung function, as the 6th largest
leading cause of disability-adjusted life years (DALYs)(Vos, 2020).
Impaired lung function is also considered an independent predictor of
other chronic non-communicable diseases and mortality (Cheng, 2021;
Higbee et al., 2021).

Lung function progresses through distinct trajectories over the life-
course (Agusti and Faner, 2019; Melén, 2024). Low attainment of lung
function, and in particular of forced expiratory volume in 1 s (FEV1), in
early life and accelerated FEV1 decline in later life is important in the
development of COPD (Lange, 2015; Marott et al., 2020). Low FEV1 in
adult life is a marker of premature death from all causes (Young et al.,
2007; Agustí et al., 2017), and can be measured with less measurement
error compared to other spirometry parameters in large-scale epidemi-
ology studies.

Ambient air pollution is the best studied environmental risk factor
for lung function. Higher long-term exposure to NO2 (nitrogen dioxide)
and PM10 (particulate matter with aerodynamic diameter equal to or less
than 10 µm) has been associated with lower lung function in European
adults (Adam, 2015). Decreases in PM10 concentrations were found to
attenuate lung function decline in Swiss adults (Downs, 2007). Higher
levels of NO2, NOx, PM2.5 (particulate matter with aerodynamic diam-
eter equal to or less than 2.5 µm), and PM2.5 absorbance were associated
with lower lung function in European children (Gehring, 2013). In a
recent study of Swedish children and young adults, decreases in PM2.5
and NOx concentrations were associated with higher rates of lung
function growth (Yu, 2023). Long-term exposure to ozone has been
consistently associated with lung function in children but less consistent
in adults (Holm and Balmes, 2022).

Green space has been receiving increasing attention for respiratory
health effects, but with inconsistent findings (Johannessen et al., 2023;
Markevych, 2023; Fuertes, 2020). While acute effects of temperature on
respiratory outcomes, in particular exacerbations of respiratory symp-
toms and mortality, are relatively well understood (Lepeule, 2018;
Scheerens, 2022; Evoy, 2022), chronic effects of ambient temperature
have been scarcely studied (Miao, 2022). Considering the rising trend in
weather extremes in the recent years – Europe witnessed the hottest
summer in 2022 (Copernicus Climate Change Service., 2022) and May
2024 marked as the warmest May ever globally (Copernicus Climate
Change Service. May, 2024) – and the trend foreseen to continue in the
coming years, there is an urgent need to fill the knowledge gap with
regard to chronic effects of extreme temperature on respiratory health.

Given that one is never exposed to a single environmental factor but
to a mixture thereof and that exposure to one factor may modify the
effect of other exposures, the research focus is shifting towards the
“exposome”, a concept that encompasses the totality of exposures
throughout the life-course (Wild, 2005). This is the focus in the
“EXposome Powered tools for healthy living in urbAN SEttings
(EXPANSE)”, a large European project aimed to investigate exposome
effects on cardio-metabolic and pulmonary diseases (Vlaanderen, 2021),
in the context of which this study was conducted.

The exposome score approach relies on supervised modeling tech-
niques to develop a prediction model for a specific health outcome. This
approach allows comparing exposures in terms of their contributions to

prediction, in the context of other exposures.
This study a priori focused on three domains of exposures – air

pollution, greenness, and temperature. These three domains are
considered more proximal cause of impaired lung function among the
external exposome for which the EXPANSE project made available pan-
European models (Fig. 1). There is an urgent need for better under-
standing their direct or joint effects on respiratory health in the context
of climate change.

In this cross-sectional analysis of a multi-cohort study, we applied
the exposome score approach to understand how long-term exposure to
air pollution, greenness, and temperature, as well as their interactions,
are associated with pre-bronchodilation FEV1. We studied five mature
birth cohorts (MBC) and three adult cohorts (AC) separately, to explore
if the external exposome effects differ between the phase of lung func-
tion growth and the phase of lung function decline.

2. Methods

2.1. Study population

We analyzed a combined data set of population-based cohorts (5
MBC and 3 AC) from 5 European countries. The 5 MBCs include GINI-
plus/LISA North and South (Germany), PIAMA (Netherlands), Krakow
Birth Cohort (Poland), and BAMSE (Sweden). The 3 AC include KORA
(Germany), SALIA (Germany), and SAPALDIA (Switzerland). More
detailed descriptions of these cohorts are provided in the Supplement.
We included a total of 10 336 participants with non-missing information
on spirometry measured around the year 2010, geocoded residential
addresses, estimated exposure at the residential address, and informa-
tion on sex, age, height, and smoking at the time of spirometry.

2.2. Pre-bronchodilation FEV1 z-scores

Pre-bronchodilation spirometry respecting guidelines of the Amer-
ican Thoracic Society (Miller, 2005) was conducted around the year
2010. Z-scores were derived by applying the Global Lung Function
Initiative equations (Quanjer, 2012). We analyzed z-scores of forced
expiratory volume in 1 s (FEV1) as the dependent variables. Given that
FEV1 is more widely used in previous studies than other spirometry
parameters, we prioritized FEV1 as the outcome.

2.3. External exposome

We analyzed external exposome features in the domains of air
pollution, greenness, and temperature. All exposome features were
harmonized across Europe and specifically obtained or derived for the
EXPANSE project.

2.3.1. Annual mean exposure to NO2, PM2.5, and PM10
Annual mean concentrations of NO2 (“no2”), PM2.5 (“pm25”), and

PM10 (“pm10”) were estimated across Europe by geographically and
temporally weighted regression. The model development and validation
is described previously (Shen, 2022). Each individual is assigned a 365-
day average exposure using the individual annual mean exposures for
the year of spirometry and the previous year proportional before the
date of spirometry as follows:

xi = (ny0 ,ixy0 ,i+(365 − ny0 ,i)xy0 − 1,i)/365
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where y0 is the year of spirometry; ny0 ,i is the number of days passed
before the spirometry in the year y0; xy0 ,i is the annual mean exposure of
the year of spirometry at the home address of the individual i; xy1 ,i is the
annual mean exposure of the previous year of spirometry at the home
address of the individual i.

2.3.2. Warm season mean exposure to ozone
Monthly mean concentrations of ozone were estimated from

geographically weighted regression across Europe (Shen, 2024). We
used the monthly mean concentrations from April to September (183
days) to define warm season ozone (“o3w”). Each individual is assigned
a 183-day average exposure before the date of spirometry as follows:

xi = (ny0 ,ixy0 ,i +
(
183 − ny0 ,i

)
xy0 − 1,i)/183

where y0 is the year of spirometry; ny0 ,i is the number of warm season
days passed before the spirometry in the year y0; xy0 ,i is the warm season
mean exposure of the year of spirometry at the home address of the
individual i; xy1 ,i is the warm season mean exposure of the previous year
of spirometry at the home address of the individual i.

2.3.3. Greenness
Mean Normalized Difference Vegetation Index (NDVI) within 300 m

buffer (“ndvi3”) was derived across Europe using the Vegetation Indices
(MOD13Q1) product of the Terra Moderate Resolution Imaging Spec-
troradiometer (MODIS) with 250 m x 250 m resolution for the years
2005, 2010, and 2015. Each individual was assigned to the nearest year,
with years preceding spirometry being preferred if the date of spirom-
etry is in the middle of one of these intervals.

2.3.4. Distance to the nearest green space
Euclidean distance to the nearest green space (“gsc”) was calculated

across Europe using Corine Land Cover database for the years 2006 and
2012. Each individual was assigned to the nearest year, while the past
year was preferred in case the date of spirometry is in the middle of the
interval.

2.3.5. Aggregated temperature variables
Daily mean, maximum, and minimum temperatures were estimated

based on ambient temperature networks, remote sensing, and land use
data (Bussalleu, 2024). Each individual was assigned four aggregated
variables from the daily temperature estimates: (1) 365-day average of
daily mean temperature before spirometry (“tav”); (2) 365-day standard
deviation of daily mean temperature before spirometry (“tsd”); (3)
warm season (April 1st to September 30th) average of daily maximum
temperature up to 365 days before spirometry (“tmxw”); (4) cold season
(January 1st to March 31st and October 1st to December 31st) average
of daily minimum temperature up to 365 days before spirometry

(“tmnc”). We derived these four aggregated variables as an attempt to
capture various aspects of long-term exposure to temperature: tav to
provide the simplest summary of temperature; tsd to capture the degree
of temperature fluctuation; tmxw and tmnc to capture the chronic
exposure to high and low extreme temperature separately.

tavi =
∑

d
tmp avgd,i/365

tsdi =
∑

d

(
tmp avgd,i − tavi

)2
/365

tmxwi =
∑

dw

tmp maxdw ,i/183

tmnci =
∑

dc

tmp mindc ,i/182

where tmp avgd,i, tmp maxd,i, and tmp mind,i are daily mean, maximum,
and minimum temperature for the day d at the home address of indi-
vidual i. d ranges from 1 to 365 days before spirometry. dw and dc range
from 1 to 365 days before spirometry, restricted to warm and cold
season respectively.

Each of the 10 exposure variables was standardized to have 0 mean
and 1 standard deviation.

Table 1 enumerates the abbreviations used throughout this study to
refer to exposome variables.

Fig. 1. Conceptual causal diagram.

Table 1
Abbreviations for exposome variables used in this study.

Abbreviation Description

gsc Euclidean distance to the nearest green space, using Corine Land
Cover database, from the nearest year of spirometry

ndvi3 Mean Normalized Difference Vegetation Index within 300 m buffer,
from the nearest year of spirometry

no2 Nitrogen dioxide, 365-day average before spirometry
o3w Warm season average ozone before spirometry
pm10 Particulate matter with aerodynamic diameter equal to or less than

10 µm, 365-day average before spirometry
pm25 Particulate matter with aerodynamic diameter equal to or less than

2.5 µm, 365-day average before spirometry
tav 365-day average of daily mean temperature before spirometry
tmnc Cold season (January 1st to March 31st and October 1st to December

31st) average of daily minimum temperature up to 365 days before
spirometry

tmxw Warm season (April 1st to September 30th) average of daily
maximum temperature up to 365 days before spirometry

tsd 365-day standard deviation of daily mean temperature before
spirometry
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2.4. Covariates

Age in years was derived from the date of birth and the date of
spirometry. Sex (female vs male) was self-reported. Height in centime-
ters andweight in kilograms weremeasured. Bodymass index (BMI) was
calculated from height and weight. AC models were adjusted for par-
ticipant’s education, while MBC models were adjusted for education
level of the participant as well as of the father and the mother. Self-
reported highest educational level was classified as low (primary
school or less), middle (secondary school or equivalent), or high (uni-
versity degree or higher). Acknowledging that the information on edu-
cation is difficult to harmonize and young participants in the MBC have
not completed education yet, the educational level of the individual in
MBC was constructed as a five-category variable, additionally including
two categories: other (cannot be assigned to a specific school type) and
NA (not available/not completed). Smoking status (current smoker, ex-
smoker, or never smoker) was self-reported. Passive smoking was
defined as a binary variable (yes/no to regular exposure to passive
smoking) using cohort-specific definitions of regular exposure. In MBC
only, maternal and paternal smoking were additionally defined as a
binary passive smoking indicator (yes/no to maternal/paternal smoked
regularly in childhood). Asthma was defined as doctor-diagnosed
asthma self-reported by participants or their parents.

Asthma and smoking were a priori investigated as effect modifiers.
For that purpose, smoking exposure was dichotomized as never-smoker
vs ever-smoker (either current or ex-smoker) in AC, and as the absence
of active and parental smoking vs smoking-exposed (either the indi-
vidual was current or ex-smoker or maternal or paternal smoking was
reported) in MBC.

2.5. Elastic net regression

We applied the exposome score approach to identify external expo-
some features and their interactions that show the strongest adjusted
associations with FEV1 z-score. We decided to use elastic net regression
as it is known to work well with correlated predictor variables. Elastic
net regression tends to shrink the coefficients to be zero, and therefore
performs variable selection, by introducing penalty terms to the stan-
dard least-square objective function (Zou and Hastie, 2005). After
observing potential heterogeneity between AC and MBC from the single
exposure models (for details see the Supplementary methods and
Figs. S1-S2), and in order to investigate the potentially different effects
of the external exposome on the lung function growth phase versus the
lung function decline phase, we decided to apply the elastic net in AC (N
= 6052) and MBC (N = 4724) separately, adjusting for slightly different
sets of covariates. Elastic net was applied to the residuals of the
spirometry parameter from regression on covariates a priori selected
based on previous studies: age, age squared, sex, height, education,
smoking status, passive smoking for MBC and AC; additionally paternal
education, maternal education, and parental smoking for MBC. Even
though the z-scores are by design independent from age, sex, and height,
we decided to adjust the z-scores for age, sex, height, after observing
remaining associations of the z-scores with age, sex, and height.

Given that the external exposome profile is largely driven by the
cohort membership, we a priori decided not to adjust for cohort, at the
cost of residual confounding. We also a priori decided not to adjust for
BMI, considering BMI as a potential mediator of associations between air
pollution or greenness and lung function. Adjustment for cohort or for
BMI was explored as sensitivity analysis.

We developed the elastic net regression models in two steps. In the
first step, the residuals of FEV1 z-scores were regressed on the 10
exposure variables, quadratic terms of each, and all possible two-way
interaction terms (total number of predictors Np = 65). The mixing
parameter alpha was a priori fixed at 0.5, using the sameweights for both
penalty terms L1-norm as in LASSO and L2-norm as in ridge regression.
The penalizing parameter lambda was determined from cross-validation

to minimize cross-validation errors. The final penalty term is calculated
as lambda × (0.5 × L1-norm + 0.5 × L2-norm). In the second step,
elastic net was repeated but without penalizing (i) the variables for
which the first step elastic net estimated non-zero coefficients and (ii)
their lower order terms. This second step was necessary to ensure that
when an interaction term was selected, its corresponding lower order
terms were also included. For example, the interaction term of no2 and
gsc had a non-zero coefficient in the first step, thus its lower order terms
no2 and gsc were not penalized in the second step and therefore forced
into the model.

The final coefficients indicate the effect estimate by 1 standard de-
viation change in the corresponding exposure, conditional on all other
variables.

2.6. Sensitivity analysis

While the elastic net regression using the entire sample was reported
and interpreted as the main finding, model performance was assessed by
10-fold cross-validation. For AC and MBC separately, the observations
were randomly assigned to 10 groups. One group was set aside (a test
set), and the two step elastic net regression was applied to the remaining
9 groups (a training set). This procedure was iterated 10 times, each of
the 10 groups being used as a test set. Stability of the selection of non-
zero coefficients across 10 groups was inspected qualitatively.

To explore if the findings are driven by between-cohort differences,
we conducted leave-one-out cross-validation. For AC and MBC sepa-
rately, one cohort was set aside and the two step elastic net regression
was applied to the remaining cohorts. This procedure was repeated until
every cohort was left out once.

The same procedure was repeated stratified by smoking exposure
and by asthma, for AC and MBC separately.

2.7. Interpretation of elastic net regression results in the context of
different scenarios

A non-zero coefficient out of the elastic net regression means the
effect of a single predictor conditional on all other predictors at the
mean values, which is not informative. The non-linear terms and
penalized nature make it even more difficult to interpret the results from
the elastic net regression. Individual exposome risk scores may be
calculated as weighted sum of all predictors using the non-zero co-
efficients from the elastic net regression as weights. However, such
aggregated exposome risk scores would not be useful for our study aims,
i.e. to explore three domains of external exposome and their interplay in
relation to lung function. We therefore put them into context by
assuming different environmental scenarios such as: (1) improving air
quality: reductions in NO2, PM10, and warm season ozone by 10 µg/m3

and in PM2.5 by 5 µg/m3; (2) increasing greenness: increase in NDVI by
0.1 and reduction in the distance to the nearest green space by 100 m;
(3) climate change: increase in 365-day average of daily mean temper-
ature by 0.5 ◦C, 365-day standard deviation of daily mean temperature
by 1 ◦C, warm season average of daily maximum temperature by 2 ◦C,
and decrease in cold season average of daily minimum temperature by
1 ◦C; (4) improving air quality in the presence of climate change; (5)
increasing greenness in the presence of climate change; (6) improving
air quality and increasing greenness in the presence of climate change.
(4)-(6) are defined as relevant combinations of (1)-(3). For air pollution
and greenness, increments correspond roughly to 1 standard deviation
change, except for the distance to the nearest green space for which its
right-skewed distribution made it unrealistic to assume 1 standard de-
viation reduction. In the scenario of improving air quality, average
exposure to air pollution would be close to the WHO Air Quality
Guidelines (WHO, 2021). For aggregated temperature, increments
correspond roughly to when daily mean temperature increases by 2 ◦C in
summer and decreases by 1 ◦C in winter, considering that more frequent
extreme temperature events are expected in the current climate change
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trend. Marginal effects were calculated in each scenario, assuming the
corresponding increments compared to the observed mean exposures.
Table 2 summarizes the environmental scenarios.

To further facilitate interpreting the results, the FEV1 z-scores were
converted to absolute FEV1 values, taking four representative in-
dividuals of European ethnicity: 15-year old boy with 175 cm height, 15-
year old girl with 165 cm height, 60-year old man with 176 cm height,
and 60-year old woman with 163 cm height. They correspond roughly to
the mean age and sex-specific mean height in MBC and AC, respectively.

All statistical analyses were conducted in R v4.1 (R Core Team. R: A
Language and Environment for Statistical Computing., 2023) using
“glmnet” (Friedman et al., 2010) package for elastic net regression and
“rspiro” (Lytras and rspiro, 2023) for z-score conversion.

3. Results

Table 3 describes the characteristics of the study sample in total per
MBC and AC and per cohort. We analyzed 4724 MBC participants (15.4
± 2.2 years) and 6052 AC participants (59.6 ± 10.9 years). All MBC
participants were below 20 years; participants of the Krakow birth
cohort were younger than participants of the other MBCs (8 vs 15–16
years). SALIA consists of women only, older than participants of other
ACs, with less frequent active smokers but with substantial exposure to
passive smoking. Fig. 2 illustrates the distribution of external exposome
features used in this study. All cohorts showed similar distributions of
no2, ndvi3, and gsc, while exposure varied across cohorts for o3w and
aggregated temperature variables. Participants of the Krakow birth
cohort had particularly high exposures to pm25 and pm10. Fig. S3 vi-
sualizes the distribution of pre-bronchodilation FEV1 z-scores.

3.1. Elastic net regression identified interactions within and between
domains

Final elastic net regression of FEV1 z-score identified 13 and 26 non-
zero coefficients for MBC and for AC respectively (Fig. 3 and Tables S1-
S2). Large numbers of second order terms were identified with non-zero
coefficients, including quadratic terms and interaction terms within and
between domains. For MBC, one quadratic term and one interaction
within air pollution domain (o3wsq and no2_pm10), one between air
pollution and greenness (no2_ndvi3), two between air pollution and
temperature (o3w_tav and o3w_tmnc), and one between greenness and
temperature (ndvi3_tmxw) were identified. For AC, three quadratic
terms and two interaction terms within air pollution domain (no2sq,
pm10sq, o3wsq, no2_o3w, and pm25_o3w), one quadratic term within

greenness domain (ndvi3sq), one interaction term within temperature
domain (tsd_tmxw), three between air pollution and greenness (no2_n-
dvi3, no2_gsc, and o3w_ndvi3), four between air pollution and tem-
perature (no2_tmxw, o3w_tav, o3w_tsd, and o3w_tmnc), two between
greenness and temperature (ndvi3_tsd and ndvi3_tmnc) were identified.
The first order terms were often forced to the final model because of
their higher order terms. Three out of the 7 first order terms included in
the final model for MBC (pm10, ndvi3, and tmnc) were not penalized in
the second step. For AC, all 10 exposures were included in the final
model but six were forced due to their higher order terms (no2, pm25,
pm10, ndvi3, tav, and tmnc). One quadratic term (o3wsq) and three
interaction terms (no2_ndvi3, o3w_tav, and o3w_tmnc) were selected in
both MBC and AC, although the direction of the effect for o3wsq and
no2_ndvi3 is opposite in MBC and AC.

The 10-fold cross-validation showed that stability of selection varied
by variables. Two out of the four interaction terms and the one quadratic
term in MBC were stably selected, i.e. at least in 8 folds, while in AC 7
out of the 12 interaction terms and 3 out of the 4 quadratic terms were
stably selected (Tables S1-S2 and Fig. S4).

The leave-one-out cross-validation showed that the variable selec-
tion was often affected by which cohort was left out (Tables S1-S2 and
Fig. S5). For example, o3w_tmnc was not consistently selected, i.e. non-
zero coefficient in the same direction as the final model, when any of the
five MBCs but GINIplus/LISA South was left out or when any of the three
ACs was left out. Selection of o3wsq, as another example, was more
consistent in both MBC and AC, being selected with non-zero coefficient
in the same direction regardless of which MBC was left out except
PIAMA and regardless of which AC was left out except SAPALDIA.

In the sensitivity analysis, the additional adjustment for cohort or for
BMI did not change the results considerably (Fig. S6).

3.2. Environmental scenarios

Based on the elastic net results, we explored different environmental
scenarios (Table 4). Improving air quality or greenness appeared to in-
crease FEV1 z-score in MBC and AC, while climate change predicted
lower FEV1 z-scores, to larger extent in AC. The positive changes in
FEV1 z-score by improving air quality diminished when at the same time
climate change was assumed in the scenario. When the scenario of
improving air quality in the presence of climate change was compared
with the scenario of climate change alone, the negative changes in FEV1
z-score by climate change were attenuated by improving air quality. In
the presence of climate change, increasing greenness was associated
with lower FEV1 z-score in MBC.

Table 2
Assumed changes in exposures in different environment scenarios.

Values are in original units: µg/m3 for no2, pm25, pm10, o3w; m for gsc; ◦C for tav, tsd, tmxw, tmnc.
* Increments correspond to ca 1 standard deviation change and average exposure to air pollution would be close to the WHO Air Quality Guidelines.
** Increments correspond to ca 1 standard deviation change in NDVI.
*** Increments correspond to when daily mean temperature increases by 2 ◦C in summer and decreases by 1 ◦C in winter.
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Fig. 4 illustrates the predicted changes in the different scenarios,
converting the FEV1 z-scores to absolute FEV1 values for representative
individuals: 15-year old boy with 175 cm height, 15-year old girl with
165 cm height, 60-year old man with 176 cm height, and 60-year old
woman with 163 cm height. For example, change in FEV1 z-score pre-
dicted by improving air quality (reduction of no2, pm10, and o3w by 10

µg/m3 and pm25 by 5 µg/m3) corresponds to 0.18 L higher FEV1 for 60
year-old man with 176 cm height, which is equivalent to age-related
decline in FEV1 for 6 years on average in the elderly.

Table 3
Study sample characteristics and pre-bronchodilation spirometry parameters.

MBC AC

BAMSE GINI/
LISANorth

GINI/
LISASouth

Krakow birth
cohort

PIAMA Total KORA SALIA SAPALDIA Total

N 1924 759 1084 280 677 4724 1050 700 4302 6052
Year of spirometry 2011-

2013
2011-2013 2011-2014 2009-2011 2012-

2014
2009-
2014

2010-
2010

2007-
2010

2010-2011 2007-
2011

Age [years] 16.7 (0.4) 15.0 (0.3) 15.3 (0.3) 7.8 (0.9) 16.4 (0.2) 15.5 (2.1) 54.6 (5.7) 73.5 (3.1) 58.6 (11.0) 59.6
(10.9)

Sex Female 1043
(54.2)

398 (52.4) 561 (51.8) 140 (50.0) 361
(53.3)

2503
(53.0)

550
(52.4)

700
(100.0)

2140 (49.7) 3390
(56.0)

Male 881
(45.8)

361 (47.6) 523 (48.2) 140 (50.0) 316
(46.7)

2221
(47.0)

500
(47.6)

0 (0.0) 2162 (50.3) 2662
(44.0)

Height [cm] 172.9
(9.0)

172.3 (8.1) 170.7 (8.1) 129.2 (7.5) 175.4
(8.7)

170.1
(13.4)

170.0
(9.3)

163.1
(5.9)

169.0 (9.3) 168.5
(9.2)

BMI [kg/m2] 21.8 (3.1) 21.4 (3.5) 20.5 (3.0) 16.4 (2.2) 20.8 (2.6) 21.0 (3.3) 27.3 (4.9) 27.3 (4.5) 26.3 (4.5) 26.6 (4.6)
Education Low 284

(14.8)
0 (0.0)b 47 (4.3) 280 (100.0) 110

(16.2)
721
(15.3)

501
(47.7)

124
(17.7)

223 (5.2) 848
(14.0)

Middle 1637
(85.1)

0 (0.0)b 254 (23.4) 0 (0.0) 313
(46.2)

2204
(46.7)

266
(25.3)

334
(47.7)

2762 (64.2) 3362
(55.6)

High 0 (0.0) 0 (0.0)b 743 (68.5) 0 (0.0) 252
(37.2)

995
(21.1)

281
(26.8)

239
(34.1)

1317 (30.6) 1837
(30.4)

Othera 0 (0.0) 0 (0.0)b 38 (3.5) 0 (0.0) 0 (0.0) 38 (0.8) − − − −

N/A 3 (0.2) 759 (100.0)b 2 (0.2) 0 (0.0) 2 (0.3) 766
(16.2)

2 (0.2) 3 (0.4) 0 (0.0) 5 (0.1)

Maternal
educationc

Low 126 (6.5) 89 (11.7) 71 (6.5) 0 (0.0) 3 (0.4) 289 (6.1) − − − −

Middle 954
(49.6)

398 (52.4) 332 (30.6) 96 (34.3) 591
(87.3)

2371
(50.2)

− − − −

High 844
(43.9)

272 (35.8) 681 (62.8) 184 (65.7) 83 (12.3) 2064
(43.7)

− − − −

Paternal
educationc

Low 157 (8.2) 222 (29.2) 126 (11.6) 3 (1.1) 7 (1.0) 515
(10.9)

− − − −

Middle 989
(51.4)

216 (28.5) 186 (17.2) 116 (41.4) 548
(80.9)

2055
(43.5)

− − − −

High 778
(40.4)

321 (42.3) 772 (71.2) 161 (57.5) 122
(18.0)

2154
(45.6)

− − − −

Smoking Current 222
(11.5)

36 (4.7) 83 (7.7) 0 (0.0) 78 (11.5) 419 (8.9) 207
(19.7)

16 (2.3) 757 (17.6) 980
(16.2)

Former 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 38 (5.6) 38 (0.8) 438
(41.7)

125
(17.9)

1660 (38.6) 2223
(36.7)

Never 1702
(88.5)

723 (95.3) 1001 (92.3) 280 (100.0) 561
(82.9)

4267
(90.3)

405
(38.6)

559
(79.9)

1885 (43.8) 2849
(47.1)

Passive smoking 70 (3.6) 99 (13.0) 54 (5.0) 35 (12.5) 42 (6.2) 300 (6.4) 174
(16.6)

426
(60.9)

541 (12.6) 1141
(18.9)

Maternal smokingc 27 (1.4) 84 (11.1) 53 (4.9) 11 (3.9) 101
(14.9)

276 (5.8)    

Paternal smokingc 43 (2.2) 90 (11.9) 41 (3.8) 15 (5.4) 138
(20.4)

327 (6.9)    

FEV1 [L] 3.9 (0.7) 3.5 (0.6) 3.5 (0.6) 1.6 (0.3) 3.9 (0.7) 3.6 (0.9) 3.3 (0.8) 2.2 (0.4) 3.0 (0.8) 3.0 (0.8)
FVC [L] 4.7 (0.9) 4.1 (0.8) 4.0 (0.8) 1.7 (0.3) 4.7 (0.9) 4.2 (1.1) 4.3 (1.0) 2.9 (0.5) 4.1 (1.0) 4.0 (1.1)
FEV1/FVC 0.85

(0.07)
0.86 (0.06) 0.88 (0.06) 0.94 (0.06) 0.84

(0.06)
0.86
(0.07)

0.77
(0.07)

0.76
(0.07)

0.73 (0.07) 0.74
(0.07)

FEV1 z-score − 0.04
(0.93)

− 0.68 (0.91) − 0.45 (0.93) − 0.22 (1.01) − 0.53
(0.92)

− 0.32
(0.96)

0.32
(1.20)

0.21
(1.04)

− 0.03
(1.04)

0.06
(1.08)

FVC z-score 0.15
(0.91)

− 0.56 (0.91) − 0.47 (0.94) − 0.68 (0.97) − 0.37
(0.89)

− 0.23
(0.97)

0.48
(1.00)

0.26
(0.95)

0.41 (0.90) 0.40
(0.92)

FEV1/FVC z-score − 0.34
(0.96)

− 0.23 (0.95) 0.03 (1.00) 1.01 (1.16) − 0.31
(0.98)

− 0.15
(1.04)

− 0.34
(0.91)

− 0.18
(0.89)

− 0.70
(0.91)

− 0.58
(0.93)

Asthma ever Yes 333
(17.5)

35 (4.6) 103 (10.9) 32 (11.4) 93 (13.8) 596
(13.1)

45 (4.3) 61 (8.8) 539 (12.5) 645
(10.7)

No 1571
(82.5)

718 (95.4) 845 (89.1) 248 (88.6) 580
(86.2)

3962
(86.9)

1004
(95.7)

633
(91.2)

3763 (87.5) 5400
(89.3)

Continuous variables presented as mean (standard deviation) and categorical variables as count (%).
MBC: mature birth cohort; AC: adult cohort; BMI: body mass index.
a only defined in MBC as “cannot be assigned to a specific school type”.
b no information was available on the number of current school years or on the completed educational level in GINI/LISA North.
c only considered in MBC.
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Fig. 2. Distribution of external exposome features per cohort.
Units in x-axis: µg/m3 for no2, pm25, pm10, o3w; m for gsc; ◦C for tav, tsd, tmxw, tmncDistribution is drawn in green for mature birth cohorts and yellow for adult
cohorts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Non-zero coefficients from elastic net regression of FEV1 z-score*.
* Residuals from regression on a priori selected sets of covariates: age, age squared, sex, height, education, smoking status, passive smoking for MBC and AC;
additionally paternal education, maternal education, and parental smoking for MBC. Coefficients refer to the effect size of increase in the corresponding exposure by
1 standard deviation, conditional on all other exposures at the mean values; MBC: mature birth cohort; AC: adult cohort.
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3.3. Smoking exposure stratified analyses

While elastic net regression produced differences in non-zero co-
efficients in never- and ever-smokers in AC (Fig. S7 (b) and Table S4),
they resulted in similar predicted FEV1 z-scores in the environmental
scenarios (Table 4). In MBC, elastic net regression produced different
results in smoking-free and smoking-exposed individuals (Fig. S7 (a) and
Table S3). When the results were explored in the environmental sce-
narios, differences between smoking strata in the expected changes in
FEV1 z-score were observed in the scenarios of improving air quality.
Improving air quality was associated with positive changes in FEV1 z-
score in smoking-free but not in smoking-exposed. More generally, the
predicted FEV1 z-score changes under different environmental scenarios
in smoking free participants followed the principles as observed and
described above for the total study population more closely than in

smoking exposed in MBC (Table 4).

3.4. Asthma stratified analyses

In the asthma-stratified analysis, the non-asthmatics stratum showed
similar results to the main results, while the elastic net on the asthmatics
resulted in none or much fewer non-zero coefficients in AC (Fig. S8 (b)
and Table S6). In MBC, elastic net regression in the non-asthmatics
resulted in non-zero coefficients larger in number and magnitude than
in the asthmatics (Fig. S8 (a) and Table S5). Improving air quality was
associated with much larger positive changes in FEV1 z-score in asth-
matics than in non-asthmatics. Climate change was associated with
negative changes in FEV1 z-score in non-asthmatics but not in asth-
matics. The expected changes in FEV1 z-score under different exposure
scenarios in non-asthmatics were more similar to the main results for

Table 4
FEV1 z-score changes predicted by the elastic net regression in different environmental scenarios.

Scenario MBC AC

All(N =

4724)
Smoking-
free(N =

3917)

Smoking-
exposed(N =

807)

Asthma
(N =

596)

Non-
asthma
(N =

3962)

All(N =

6052)
Smoking-
free(N =

2849)

Smoking-
exposed(N =

3203)

Asthma
(N= 645)

Non-
asthma(N
= 5400)

1. Improving air quality +0.11 +0.12 − 0.12 +1.66 +0.065 +0.35 +0.47 +0.36 +0.046 +0.36
2. Increasing greenness +0.011 +0.00 +0.00 +0.012 +0.0094 +0.0093 − 0.0055 +0.00019 − 0.050 +0.014
3. Climate change − 0.033 − 0.043 − 0.029 +0.19 − 0.048 − 0.16 − 0.15 − 0.19 +0.00 − 0.19
4. Improving air quality in
the presence of climate
change

+0.0086 +0.034 − 0.31 +1.96 − 0.014 +0.16 +0.24 +0.17 +0.046 +0.16

5. Increasing greenness in
the presence of climate
change

− 0.026 − 0.043 − 0.029 +0.25 − 0.056 − 0.12 − 0.14 − 0.19 − 0.050 − 0.15

6. Improving air quality and
increasing greenness in
the presence of climate
change

+0.033 +0.034 − 0.31 +1.94 − 0.0032 +0.21 +0.19 +0.17 +0.093 +0.21

MBC: mature birth cohort; AC: adult cohort; smoking-free is defined in AC if the individual was never smoker and in MBC if the individual was never smoker and
neither maternal nor paternal smoking was reported; smoking-exposed is defined in AC if the individual was current or ex-smoker and in MBC if either the individual
was current or ex-smoker or maternal or paternal smoking was reported.

Fig. 4. FEV1 changes predicted by the elastic net regression in different environmental scenarios for representative individuals.
Observed: Mean values of exposure observed in the current study sample, MBC and AC combined. Scenario 1: Improving air quality (reductions in NO2, PM10, and
warm season ozone by 10 µg/m3 and in PM2.5 by 5 µg/m3; increments correspond to ca 1 standard deviation change and average exposure to air pollution would be
close to the WHO Air Quality Guidelines). Scenario 2: Increasing greenness (increase in NDVI by 0.1 and reduction in the distance to the nearest green space by 100
m; increments correspond to ca 1 standard deviation change in NDVI). Scenario 3: Climate change (increase in 365-day average of daily mean temperature by 0.5 ◦C,
365-day standard deviation of daily mean temperature by 1 ◦C, warm season average of daily maximum temperature by 2 ◦C, and decrease in cold season average of
daily minimum temperature by 1 ◦C; increments correspond to when daily mean temperature increases by 2 ◦C in summer and decreases by 1 ◦C in winter). Scenario
4: Improving air quality in the presence of climate change (combination of scenarios 1 and 3). Scenario 5: Increasing greenness in the presence of climate change
(combination of scenarios 2 and 3). Scenario 6: Improving air quality and increasing greenness in the presence of climate change (combination of scenarios 1, 2, and
3). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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both MBC and AC than in the asthmatics (Table 4).

4. Discussion

We explored cross-sectional associations of long-term exposure to air
pollution, greenness, and temperature with lung function separately in
two different age groups representing both, the lung function growth
and the lung function decline phase. By applying elastic net regression,
we were able to associate extensive number of exposome features, i.e. 10
exposure variables across the three domains and square terms of each
exposure as well as all two-way interactions to select variables with
mutually adjusted, strong effect estimates. Elastic net regression selected
large numbers of quadratic terms and interactions, which reinforces the
relevance of an exposome perspective in studying environmental factors
for respiratory health, where exposures are correlated and can impact on
shared or dependent biological pathways (Peters et al., 2021).

Interactions indicate that the lung function association of one
exposure depends on the level of the second exposure. The joint effects
can be synergistic – exposure to one risk factor may induce a pathway
that aggravates the effect of the other risk factor – or they may exhibit
shielding effects – two exposures share the biological mechanism which
may become saturated. Conceivably, by including interaction terms, we
may also capture different characteristics of the exposure and therefore
mitigate misclassification risks and unmask different pathways affected
by subgroups of an exposure domain. For example, while NDVI does not
distinguish the types of green, its interaction terms as we observed with
no2, o3w, tsd, tmnc in AC and no2 and tmxw in MBC, may capture the
climate- and temperature-dependent type or use of the green, or the
vegetation type. Vegetation type may have an adverse effect on lung
function if allergenic. Lambert et al observed that exposure to pollen in
infancy was associated with reduced lung capacity at age 15 years
(Lambert, 2021). Proximity to greenspace may invite physical activity
and therefore have a positive effect on lung function (Fuertes, 2018).

The large number of non-zero coefficients for interaction terms
makes it difficult to translate the results. The coefficient resulting from
the elastic net regression is interpreted as the effect size of increase in the
corresponding exposure by 1 standard deviation, conditional on all
other exposures at the mean values, which is not informative when the
aim is to understand the effects of multiple exposures in the context of
each other.

To provide more informative interpretation, we applied different
environmental scenarios. Substantial improvement in air quality pre-
dicted better FEV1 in both AC and MBC, but to a substantially lower
extent in MBC. When stratified by asthma in MBC, children with asthma
appeared to strongly benefit from improving air quality, while
increasing greenness or climate change made little difference given the
predominant effect of improving air quality. When stratified by smoking
in MBC, improving air quality did not predict better FEV1 in smoking-
exposed children but in smoking-free children. Adults appeared to
benefit from improving air quality regardless of their smoking status or

asthma status. In both age groups, this benefit appeared to diminish in
the presence of climate change, pointing to the potential co-benefit of
climate change mitigation policies (see Box).

Equivalently, substantial increase in greenness predicted slightly
better FEV1 in both age groups, but not in the presence of climate
change. Rising temperature may change the duration and intensity of
pollen and other aeroallergens (Zhang and Steiner, 2022; Storkey et al.,
2014).

Climate change alone predicted lower FEV1 in AC and to less extent
in MBC. Previous studies reported respiratory effects of short-term
exposure to temperature. High temperature was associated with lower
lung function (Lepeule, 2018), higher risk of asthma exacerbations in
children (Schinasi, 2022), and higher risk of COPD hospitalization
(Konstantinoudis, 2022). Both heat and cold were associated with res-
piratory prescriptions (Royé, 2021), respiratory mortality (Iñiguez et al.,
2021), and respiratory symptoms in COPD patients (Scheerens, 2022).
We observed that the negative changes in FEV1 z-score by climate
change were attenuated by improving air quality and to much lower
extent by increasing greenness.

We analyzed MBC and AC separately, to explore difference in the
external exposome effects on lung function growth phase and lung
function decline phase. The elastic net regression results from MBC and
AC differed in terms of the selected variables, the direction and
magnitude of effect estimates, and the stability of the selection. More
variables were selected with larger effect estimates in AC than in MBC.
The expected changes in FEV1 z-scores in the environmental scenarios
were consistent in the direction but larger in AC than in MBC. This
observed difference may indicate life-course differences in exposure
susceptibility or latency of complex environment effects on lung func-
tion. What we observed in the adults’ lung function may be the results of
accumulated exposure.

Our study has several strengths and limitations. We took advantage
of well-characterized population-based cohorts from multiple European
countries with spirometry performed according to the American
Thoracic Society/European Respiratory Society. While our study sample
covered late adulthood (38 – 81 years), our sample does not cover the
whole life-course. The age range 19–37 years, which includes the lung
function plateau phase, preceding the decline at older ages, is neither
covered by MBC nor by AC. Every individual in our study sample was
assigned to high resolution exposure estimates derived from the same
pan-European models specifically developed in the EXPANSE project.
However, our study is still subject to differential measurement error by
exposures. Type, likelihood, and magnitude of measurement error vary
across exposures, presenting a common challenge in exposome studies.
We applied the exposome approach to examine comprehensive in-
teractions between air pollution, greenness, and temperature, which is
rarely done in environmental epidemiology studies. Elastic net regres-
sion works well with collinearity and performs variable selection on the
grounds of the strength of their association with the outcome variable,
which suits the aim of this study. However, the variable selection may be

Box

Potential Policy Implications in the Context of Future Replication of the Results

- The benefit of air quality improvement on lung function may decrease in the presence of climate change.
- The benefit of residential greenspace on lung function may decrease in the presence of climate change possibly through temperature effects
on vegetation.

- Climate change itself, characterized by daily temperature increase in summer and decrease in winter, predicts lower lung function.
- Urban planning and environmental policies should consider the interdependency of respiratory health effects of air pollution, greenspace,
and temperature.
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unstable in case of strong collinearity. Cross-validation showed various
degree of stability in the variable selection. Such unstably selected
variables may be a chance finding or a result of high correlation between
variables. In case of highly correlated predictor variables, the elastic net
regression may select either of them, leading to unstable selection. But
this unstable selection would likely not affect the prediction perfor-
mance. Another limitation of the elastic net regression is the difficulty to
obtain unbiased standard error. The cross-sectional and observational
nature of this study does not allow causal inference. We acknowledge
that by assigning the same season cutoffs for warm season ozone, we
may have added different misclassification of this exposure in different
countries. The four aggregated temperature variables may not capture
extreme temperature changes over short periods sufficiently and the
climate change scenario may not reflect the temperature trends and
patterns currently being observed in Europe. Although spirometry was
performed in all participating cohorts according to the ATS/ERS rec-
ommendations, the spirometry measurement may still be affected by
differences in device and fieldworker. One mitigation measure was to
focus on FEV1 as the lung function outcome of interest in this study, as
FEV1 is measured with least error. Bias due to different spirometry de-
vices would have been addressed in part by adjustment for cohort (or for
study center in case of multi-center studies), but we a priori decided
against it, because large proportion of the variation in the exposome
profile is driven by cohort membership and therefore adjustment for
study center would lead to inflated standard error. Indeed, we observed
that variable selection was less stable in the leave-one-out cross-vali-
dation. By not adjusting for cohort, we cannot rule out that our findings
may be biased by residual confounding. Finally, we conducted a com-
plete case analysis, which may have introduced bias and therefore
limited the generalizability of our findings.

5. Conclusions

Long-term exposure to air pollution, greenness, and temperature and
their interactions showed associations with FEV1 in European adults,
and to less extent in children and adolescents. The lung function asso-
ciations of exposure domains are best characterized in an exposome
approach.
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shagen: Writing – review & editing, Project administration, Funding
acquisition. Regina Pickford: Writing – review & editing, Project
administration. Youchen Shen: Writing – review & editing, Data
curation. Roel C.H. Vermeulen:Writing – review & editing, Resources,
Project administration, Investigation, Funding acquisition, Conceptual-
ization. Jelle J. Vlaanderen: Writing – review & editing, Project
administration, Funding acquisition. Megi Vogli: Writing – review &
editing, Project administration, Data curation. Kathrin Wolf:Writing –
review& editing, Data curation. Zhebin Yu:Writing – review& editing,

Project administration, Data curation. Erik Melén: Writing – review &
editing, Investigation, Funding acquisition, Data curation, Conceptual-
ization. Agnieszka Pac: Writing – review & editing, Supervision, Re-
sources, Project administration, Investigation, Funding acquisition, Data
curation. Annette Peters: Writing – review & editing, Supervision,
Resources, Project administration, Investigation, Funding acquisition,
Data curation. Tamara Schikowski: Writing – review & editing, Su-
pervision, Resources, Funding acquisition, Data curation.Marie Standl:
Writing – review & editing, Supervision, Resources, Project adminis-
tration, Investigation, Funding acquisition, Data curation. Ulrike
Gehring: Writing – review & editing, Project administration, Data
curation, Conceptualization.Nicole Probst-Hensch:Writing – review&
editing, Writing – original draft, Supervision, Project administration,
Methodology, Funding acquisition, Conceptualization.

Funding

The EXPANSE project is funded by the European Union’s Horizon
2020 research and innovation program (No. 874627) (see supplement
for cohort-specific funding).

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.envint.2025.109269.

Data availability

The data that support the findings of this study are available upon
reasonable request separately from the participating cohorts.

References

Adam, M., et al., 2015. Adult lung function and long-term air pollution exposure.
ESCAPE: a multicentre cohort study and meta-analysis. Eur Respir J 45, 38–50.

Agusti, A., Faner, R., 2019. Lung function trajectories in health and disease. Lancet Respir
Med 7, 358–364.

Agustí, A., Noell, G., Brugada, J., Faner, R., 2017. Lung function in early adulthood and
health in later life: a transgenerational cohort analysis. Lancet Respir. Med. 5,
935–945.

Bussalleu, A., et al., 2024. Modelling Europe-wide fine resolution daily ambient
temperature for 2003–2020 using machine learning. Sci. Total Environ. 928, 172454.

Cheng, Y.-J., et al., 2021. Longitudinal change in lung function and subsequent risks of
cardiovascular events: evidence from four prospective cohort studies. BMC Med. 19,
153.

Copernicus Climate Change Service. May 2024 marks 12 months of record-breaking
global temperatures. https://climate.copernicus.eu/may-2024-marks-12-months-
record-breaking-global-temperatures.

Copernicus Climate Change Service. 2022 saw record temperatures in Europe and across
the world. https://climate.copernicus.eu/2022-saw-record-temperatures-europe-
and-across-world.

Downs, S.H., et al., 2007. Reduced exposure to PM10 and attenuated age-related decline
in lung function. N Engl J Med 357, 2338–2347.

Evoy, R., et al., 2022. Impact of acute temperature and air pollution exposures on adult
lung function: A panel study of asthmatics. PloS One 17, e0270412.

Friedman, J., Hastie, T., Tibshirani, R., 2010. Regularization paths for generalized linear
models via coordinate descent. J. Stat. Softw. 33, 1.

Fuertes, E., et al., 2018. Leisure-time vigorous physical activity is associated with better
lung function: the prospective ECRHS study. Thorax 73, 376–384.

Fuertes, E., et al., 2020. Residential greenspace and lung function up to 24 years of age:
The ALSPAC birth cohort. Environ. Int. 140, 105749.

Gehring, U., et al., 2013. Air pollution exposure and lung function in children: the
ESCAPE project. Environ. Health Perspect. 121, 1357–1364.

Higbee, D.H., Granell, R., Sanderson, E., Davey Smith, G., Dodd, J.W., 2021. Lung
function and cardiovascular disease: a two-sample Mendelian randomisation study.
Eur. Respir. J. 58, 2003196.

Holm, S.M., Balmes, J.R., 2022. Systematic Review of Ozone Effects on Human Lung
Function, 2013 Through 2020. CHEST 161, 190–201.

A. Jeong et al. Environment International 196 (2025) 109269 

10 

https://doi.org/10.1016/j.envint.2025.109269
https://doi.org/10.1016/j.envint.2025.109269
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0005
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0005
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0010
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0010
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0015
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0015
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0015
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0020
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0020
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0025
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0025
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0025
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0040
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0040
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0045
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0045
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0050
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0050
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0055
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0055
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0060
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0060
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0065
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0065
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0070
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0070
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0070
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0075
http://refhub.elsevier.com/S0160-4120(25)00020-0/h0075
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