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Individual bioenergetic capacity as a
potential source of resilience to Alzheimer’s
disease

Matthias Arnold 1,2 , Mustafa Buyukozkan 3, P. Murali Doraiswamy1,4,5,
Kwangsik Nho6, Tong Wu 2, Vilmundur Gudnason 7,8, Lenore J. Launer 9,
Rui Wang-Sattler 10, Jerzy Adamski11,12,13, The Alzheimer’s Disease Neuroima-
ging Initiative*, Alzheimer’s Disease Metabolomics Consortium*,
Philip L. De Jager 14, Nilüfer Ertekin-Taner 15, David A. Bennett16,
Andrew J. Saykin 6, Annette Peters17,18,19,20, Karsten Suhre 21,
Rima Kaddurah-Daouk 1,4,5, Gabi Kastenmüller 2 & Jan Krumsiek 3

Impaired glucose uptake in the brain is an early presymptomaticmanifestation
of Alzheimer’s disease (AD), with symptom-free periods of varying duration
that likely reflect individual differences in metabolic resilience. We propose a
systemic “bioenergetic capacity”, the individual ability to maintain energy
homeostasis under pathological conditions. Using fasting serum acylcarnitine
profiles from the AD Neuroimaging Initiative as a blood-based readout for this
capacity, we identified subgroups with distinct clinical and biomarker pre-
sentations of AD. Our data suggests that improving beta-oxidation efficiency
can decelerate bioenergetic aging and disease progression. The estimated
treatment effects of targeting the bioenergetic capacity were comparable to
those of recently approved anti-amyloid therapies, particularly in individuals
with specificmitochondrial genotypes linked to succinylcarnitinemetabolism.
Taken together, our findings provide evidence that therapeutically enhancing
bioenergetic health may reduce the risk of symptomatic AD. Furthermore,
monitoring the bioenergetic capacity via blood acylcarnitine measurements
can be achieved using existing clinical assays.

Dysregulation of bioenergetic pathways is a central feature of Alzhei-
mer’s disease (AD), with detectable abnormalities occurring in the
brain years prior to the symptomatic onset of AD dementia1. For
example, studies investigating brain glucose uptake have consistently
identified glucose hypometabolism as a presymptomatic metabolic
manifestation of AD2–4. Additional evidence for early energetic dysre-
gulation in AD comes from epidemiological studies, which have linked
metabolic diseases, such as type 2 diabetes (T2D), and cardiovascular
disease to a significantly increased risk of developing AD later in life5–9.
The delay between the onset of symptomatic disease and apparent

aberrations in energy pathways suggests the existence of a “bioener-
getic capacity”, which can provide a temporary reserve that provides
resilience from pathological symptoms of the disease.

Mitochondria are the essential cellular units of energymetabolism
and are thus central to our proposed framework of energy-related
resilience. They have been actively studied as potential targets for
therapeutic intervention in AD10,11. Cellular energy supply through
mitochondrial metabolism is fueled by three main routes that ulti-
mately feed into the tricarboxylic acid (TCA) cycle: (1) glucose cata-
bolism to pyruvate, (2) beta-oxidation of fatty acids to acetyl-CoA, and
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(3) the degradation of proteins into glucogenic and ketogenic amino
acids (Fig. 1a). These three routes are tightly controlled through a
complex system of receptors and intracellular signaling that respond
to the currentmetabolic state at both the organismal and tissue level12.
In our study, we reduce the complexity ofmitochondrial energetics by
focusing on metabolic states under overnight fasting conditions. As a
result, within the triadof energypathways, dietary glucosemetabolism
assumes a marginal role (similar to the above-mentioned state of
reduced glucose uptake), while themetabolic routes of fatty acids and
proteins become predominant.

Acylcarnitines are a group of molecules whose blood levels
provide accurate readouts specifically of the fatty acid and protein
aspects of mitochondrial metabolism (Fig. 1b)13. They have long been
used for the diagnosis of inborn errors of energymetabolism (IEEMs)
through newborn screenings13,14. As a milder version of these defi-
ciencies, genome-wide association studies (GWAS) have identified
less penetrant single nucleotide polymorphisms (SNPs) that map to
the same genes as in the IEEMs and show similar but weaker effects
on blood acylcarnitine levels15–18. Acylcarnitine levels therefore serve
as sensitive indicators of genetic influences on mitochondrial path-
ways. Beyond genetic variation, various acquired conditions influ-
encemitochondrial pathways and are reflected in blood acylcarnitine
levels. For example, increased levels of intermediate acylcarnitines
from fatty acid and amino acid metabolism have been reported both

in patients with T2D19,20 and in obese individuals with ketogenic
branched-chain amino acid overload21. This suggests that the bioe-
nergetic state of acylcarnitine levels might contain a modifiable
component with consequences on disease risk. Interestingly, even
during healthy aging, blood acylcarnitine levels reflect the age-
dependent decrease in mitochondrial energetic capacity in both β-
oxidation and TCA cycle pathways22–24. It has furthermore been
proposed that blood acylcarnitine levels may be informative about
the fatty acid oxidation status within the dorsolateral prefrontal
cortex25. Alterations to acylcarnitine levels have also been described
in the context of AD, with various studies discussing the biomarker
potential of this metabolite class26–32.

Based on this combined evidence, we hypothesize that acyl-
carnitine profile in fasting blood provides a proxy of an individual’s
bioenergy capacity and thus their resilience buffer. We assume that
deviations in this bioenergetic capacity from the normal popula-
tion average significantly modulate the risk for disease outcomes,
including neurodegenerative diseases like AD (Fig. 1c). In this study
we show that acylcarnitine profiles can be used to: (1) categorize
individuals by resilience status along their bioenergetic capacity.
(2) Disentangle modifiable and genetic contributions to this resi-
lience. (3) Integrate these profiles with genetic variation into a
prognostic instrument that is predictive of future cognitive
trajectories.

Individual bioenergetic capacity: The net result of gene x environment interactions

Fasting blood acylcarnitine profile:
glucose-independent bioenergetic capacity
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Fig. 1 | Concept of individual bioenergetic capacitymirroring impaired energy
metabolism in the brain. a The three main sources of mitochondrial energy
metabolism: glucose, fatty acids, and proteins/amino acids, all of which ultimately
feed into the TCA cycle. Common genetic variants in mitochondrial transporters
and enzymes are assumed to define the inherited bioenergetic potential of each
individual. Our study focuses on fasting individuals, largely removing the effect of
dietary glucose and focusing on the fatty acid and protein routes. b Chain length-
specific role of acylcarnitines as readouts for the bioenergetic capacity through the
functionality, activity, and efficiency of mitochondrial energy metabolism; and
examples of previously reported acylcarnitine level changes for AD-related

phenotypes. c Integrated concept of bioenergetic capacity as the age-specific result
of inherited bioenergetic potential and acquired modifiable metabolic function-
ality. Hypothetical trajectories for high and low inherited bioenergetic potential are
shown, where deviations from the average are determined by modifiable lifestyle
factors, such as physical activity, diet, health status, and other factors. Deviations
from the overall population average are assumed to confer vulnerability or resi-
lience to AD-related pathology and cognitive decline. AD Alzheimer’s disease, FAs
fatty acids, AAs amino acids, CSF cerebrospinal fluid, TCA tricarboxylic acid, β-Ox.
beta-oxidation, PDH Pyruvate dehydrogenase complex.
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Results
Bioenergetic subgroups in AD and their determining factors
We performed subgroup Identification (SGI)33 on 1531 Alzheimer’s
Disease Neuroimaging Initiative (ADNI) participants using fasting
serum profiles of 23 acylcarnitines measured through targeted meta-
bolomics as representative readouts of individual bioenergetic capa-
city. Study characteristics and acylcarnitine descriptions can be found
in Supplementary Data 1 and 2, respectively. Acylcarnitine levels were
corrected for significant medication effects and ADNI study phase
prior to clustering, but otherwise deliberately left uncorrected for any
other potential confounders. SGI revealed a series of associations for
cluster splits in the hierarchical tree relating to demographic variables,
clinical diagnosis, and A-T-(N)-(C) measures34 (Fig. 2a).

The analysis split ADNI participants into two clusters, 2 and 3, at
the top of the tree, with significantly different levels of p-tau in
cerebrospinal fluid (CSF), glucose uptake measured by [18F]
fluorodeoxyglucose-positron emission tomography (FDG-PET), and
the 13-item AD assessment scale-cognitive subscale (ADAS-Cog. 13;
Fig. 2b–d, Supplementary Data 3). Cluster 2 overall contained less
affected individuals with significantly better cognitive function, higher
brain glucose uptake, and lower CSF p-tau levels. This group was fur-
ther divided into two distinct clusters: cluster 7, which on average was
healthier with higher CSF Aβ1-42 levels and higher age, and cluster 6, a
younger group showing signs of earlypathological aging (Fig. 2e, f). On
the other side of the tree, within cluster 3—which exhibited more
progressed levels of AD biomarkers—there were further distinctions in
clusters 8 and 9, which showed significant differences in the distribu-
tion of body mass index (BMI), sex, and diagnostic groups. (Fig. 2g–i).
To rule out that these associations were driven by confounding fac-
tors, we repeated the analysis while adjusting for sex, age, BMI, copies
of APOE ε4, and years of education. All associations remained sig-
nificant (Supplementary Data 4).

To investigate the factors potentially influencing subgroup divi-
sion, we examined the variance explained by non-modifiable and
modifiable factors for each branching point (BP) in the tree. Specifi-
cally, we examined acylcarnitine-related SNPs reported by Shin et al.16

as non-modifiable factors (SNP list is provided in Supplementary
Data 5, replication in ADNI in Supplementary Data 6) and modifiable
acylcarnitine levels (i.e., residuals adjusted for genetic and other non-
modifiable factors) to better understand their impact on subgroup
separation. Overall, sample clustering was mainly determined by the
modifiable, covariate-adjusted acylcarnitine levels, which accounted
for a significant portion of group differences with explained variance
values ranging from 40% to 60% for different cluster BPs (Fig. 2j).
Notably, the most substantial contributions were observed for med-
ium- and long-chain acylcarnitines, highlighting a likelymodifiable role
for beta-oxidation function35,36 (Supplementary Fig. 1).

Genetic influences only accounted for a small proportion of var-
iance (Supplementary Data 7–9), except for one epistatic interaction
effect of two SNPs: The interplay of rs17806888 (mapped to SUCLG2)
and rs924135 (mapped to ABCC1), both of which have been reported to
affect succinylcarnitine levels16, explained 32% of the initial partitioning
of the data into cluster 2 and cluster 3 at the top of the tree (Fig. 2j and
Supplementary Fig. 2).Whenwe examined relations toAD,weobserved
that both single acylcarnitine-related SNPs and epistatic models were
not strongly linked to AD and its biomarkers, although some associa-
tions were independently confirmed in the MayoLOAD and ROS/MAP
studies (Supplementary Fig. 3 and Supplementary Data 10). The few
genetic associations with AD parameters that we found were limited to
influences on short-chain and dicarboxylic acylcarnitines.

These findings indicate that the genetic link between AD, acylcar-
nitine pathways, and the identified bioenergetic subgroups is primarily
linked to the TCA cycle and amino acid-based energy metabolism.

In summary, these results suggest that individual bioenergetic
capacity, represented by fasting serum acylcarnitine levels, can

identify different groups of individuals. These include groups of study
participants with less pronounced AD biomarker profiles, early
pathological aging with decreased CSF Aβ1-42 levels and relatively low
CSF p-tau levels, neurodegenerative processes accompanied by cog-
nitive decline, and more advanced AD biomarker profiles. The strati-
fication of study participants was primarily driven by the modifiable
fraction of acylcarnitine levels involved in beta-oxidation, whereas the
genetic component pointed towards TCA cycle-related mechanisms.

Bioenergetic age correlates with Alzheimer’s disease pathology
Blood acylcarnitine levels have previously been described to sig-
nificantly correlate with age22. Extending this concept, we hypothe-
sized that incorporating acylcarnitine levels into a “bioenergetic age”,
which might deviate from a person’s chronological age, can provide a
single integrated readout of an individual’s bioenergetic capacity.
After cross-normalizing the different cohort datasets for better com-
parability (“Methods” and Supplementary Fig. 4), we fitted a multi-
variable linear model that regresses age on the fasting serum levels of
acylcarnitines in the KORA cohort (Supplementary Fig. 5 and Supple-
mentary Data 11). KORA is a predominantly healthy, population-based
cohort without prevalent AD cases, rendering it an appropriate refer-
ence formodeling the average aging process. The correlation between
bioenergetic age and chronological age in KORA showed an r = 62%.
When applied to the ADNI cohort, correlation dropped to 28% (cog-
nitively normal participants only), which was very similar to what we
observed when replicating the bioenergetic age computation process
in AGES-RS (r = 29%, Supplementary Data 12).

We then examined the different subgroups in ADNI concerning
their bioenergetic age. First, we observed a gradual increase in bioe-
nergetic age across the subgroups in the tree, ranging from cluster 6
with the lowest age, through clusters 7 and 5, to cluster 4 with the
highest age (Fig. 3a, b). Furthermore, this analysis revealed a strong
correlation between bioenergetic age and the first principal compo-
nent of acylcarnitine levels, indicating that the primary axis of variation
in the data and the clustering is associated with bioenergetic age
(Supplementary Fig. 6). As we demonstrated in the previous section,
the clustering seems primarily driven by modifiable factors, likely
associated with individual beta-oxidation capacity. This finding thus
suggests that bioenergetic age is also a modifiable factor, indicating
that individuals could undergo interventions to transition into a dif-
ferent subgroup.

Bioenergetic age highlighted interesting relationships between
subgroups and AD pathology throughout the tree (Supplementary
Data 13). First, at the top split, we observed that while clusters 2 and 3
showed only a moderate difference in chronological age, there was a
remarkable difference in bioenergetic age, with cluster 2 being sub-
stantially younger (Fig. 3c). This was in line with the observation that
cluster 3 displayed progressed disease pathology compared to cluster
2. Further down the tree, bioenergetic age confirmed that the overall
healthier cluster number 7 was substantially younger than the group’s
chronological age, offering a potential explanation for their beneficial
phenotypes (Fig. 3d). Importantly, this observed effect was not due to
cluster 7 consisting of younger participants or a lower number of
symptomatic individuals. Rather, we found that individuals within
cluster 7 consistently exhibit the same chronological but significantly
younger bioenergetic age than other participants irrespective of their
diagnostic group (Supplementary Fig. 7). In clusters 8 and 9, we
observe the same effect: Bioenergetically older individuals displayed
increased AD pathology (Fig. 3e). This was further confirmed by sig-
nificant associations of bioenergetic age with AD biomarkers across
the A-T-(N)-(C) spectrum (Supplementary Data 14), and consistent
findings for cognitive function and gray matter volume in AGES-RS
(Supplementary Data 15).

In summary, we found that the acylcarnitine-based bioener-
getic age metric, which we propose as a potential readout of a
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person’s bioenergetic capacity, showed strong associations with AD
biomarkers beyond the natural aging process. Furthermore, our
results suggest that bioenergetic age, which appears to be influ-
enced by modifiable factors related to beta-oxidation function, can
be a target for interventions to improve energy- and aging-related
outcomes.

Bioenergetic age and succinylcarnitine-linked genotypes mod-
ulate future cognitive decline
We next assessed whether the bioenergetic age estimator can predict
the trajectory of cognitive decline in AD, and whether this would allow
us to identify subgroups of individuals that might particularly benefit
from interventions.
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We found that baseline bioenergetic age was significantly asso-
ciated with the rate of cognitive decline in three different cognitive
measures in the ADNI study (Fig. 4a–c). Specifically, bioenergetically
younger individuals demonstrated a significantly slower decline over 5
years (Supplementary Data 16). This result was replicated using long-
itudinal diagnosis data from the AGES-RS study (Fig. 4d, Supplemen-
tary Data 15), providing further evidence that younger bioenergetic
age is protective against cognitive decline. Interestingly, these findings
were largely independent of APOE ε4 status, with the single exception
of the ADNI composite score for memory, for which the interaction
between APOE ε4 status and the bioenergetic age metric reached
nominal significance (P =0.0160).

We subsequently examined longitudinal cognitive trajectories
in connection with the combination of SNPs rs17806888 and
rs924135. These SNPs accounted for a substantial proportion of
variance in the clustering (Fig. 2j). Since two SNPs can generate
multiple genotype combinations, we identified a representative
genotype by evaluating all possible groupings of allele combina-
tions against the rest. We selected the grouping that had the most
significant associations across three cognitive measures: ADAS-Cog
13, memory, and executive function (Supplementary Data 17). The
genotype identified in this manner appears to significantly mod-
ulate cognitive decline (Fig. 4e–g). We attempted to replicate this
grouping, which had similar genotype frequencies as in ADNI (59%
vs. 58% in ROS/MAP; Supplementary Fig. 8), using trajectories of
global cognition over 13 years in the ROS/MAP cohort. Interestingly,
significant results only emerged when the analysis was restricted to
individuals exhibiting clinically evident cognitive changes, such as a
switch in cognitive classification from normal to mild cognitive
impairment (MCI), or MCI to AD (Fig. 4h). These results suggest that
specific genotype combinations related to short-chain acylcarni-
tines can influence the rate of future cognitive decline. Nonetheless,
this effect might only be pertinent to individuals who are suscep-
tible to cognitive alterations.

Finally, we examined the relationship between cognitive decline
and a combination of bioenergetic age and the genotype groupings
within the ADNI cohort. Remarkably, it seems that the protective
influence of advantageous genotype combinations is limited to indi-
viduals with a younger bioenergetic age (Fig. 4i–k). This observation
points to a highly interesting subgroup of individuals, those with
beneficial genotypes but older bioenergetic age, who could potentially
see considerable benefits from early interventions designed to
decrease their predicted bioenergetic age. This subgroup constitutes
~30% of the ADNI participants. Replication analysis of this finding was
not possible, since none of the available datasets except ADNI had
combined fasting acylcarnitine measurements, genotyping, and long-
itudinal cognitive data.

Interventions targeting the bioenergetic capacity might be as
effective as amyloid antibodies
To estimate the potential clinical significance of modulating bioener-
getic age, we conducted a simulated clinical trial in the ADNI cohort.
We evaluated two metrics: (1) the potential clinical benefit of improv-
ing bioenergetic age in general, and (2) the potential benefit specifi-
cally in the groupwith high bioenergetic age but protective genotypes
at rs17806888 and rs924135. We followed the protocol of the recent
lecanemab trial as a reference study, with only minor deviations (see
“Methods”)37. The 0–25% quartile of bioenergetic age at baseline was
considered as “treatment” and the 75–100%quartile as “control” group
(n = 191 each).

Treatment and control groups showed significant differences for
all considered outcomes. This included the Clinical Dementia Rating—
Sumof Boxes score (CDR-SB; primary outcome in the lecanemab trial),
the ADAS-Cog. 13, theMini-Mental State Examination (MMSE), and the
Functional Activities Questionnaire (FAQ) (see Supplementary
Data 18). In addition to symptom severity, the treatment and control
group also significantly differed in distributions of chronological age,
sex, and AD medication intake. There was no significant difference in
APOE ε4 status (n = 102 vs. 108) or presence of the genotype groupings
for rs17806888 and rs924135 (n = 101 vs. 96) between groups.

We then estimatedmean changes in clinical outcomes over an 18-
month period (the duration of the lecanemab trial) for each treatment
group using a mixed model for repeated measurements and adjusted
least-squares mean changes (Table 1). In addition to the covariates
used in the lecanemab trial, the model was corrected for years of
education, chronological age, and sex due to the significant differ-
ences observed for group characteristics. In addition, to account for
the significant correlation between bioenergetic and chronological
age, we included the interaction of chronological age and time as a
covariate. We noted statistically significant effects across outcomes
comparable to those reported for lecanemab, despite the significantly
lower power in this analysis compared to the lecanemab trial (which
had n > 800 per group). Evaluating the treatment vs. control groups in
the group with protective genotypes supports the hypothesized par-
ticular benefit in the group with higher bioenergetic age, with average
meandifferences exceeding those for the groupswithout stratification
by genotype (Table 1, right).

Discussion
In this study, we investigated the association between AD pathology
and bioenergetic capacity, approximated using fasting serum acyl-
carnitine levels. This bioenergetic capacity is influenced by a combi-
nation ofmodifiable and autosomalmitochondrial genes and naturally
declines with age. Historically, acylcarnitine profiles have been widely
used in clinical practice for detecting inborn errors in mitochondrial

Fig. 2 | Acylcarnitine profiles stratify participants from the ADNI study in
groups of different AD pathology. a Acylcarnitine-based hierarchical clustering,
with informative branches highlighted with solid-colored lines. Solid gray lines
indicate cluster pairs that showed no significant associations. Clinical and demo-
graphic parameters at split points indicate significant differences between the
individuals in the left and right subclusters (identified by number labels in the
dendrogram) below that respective point. b–d Individuals in cluster 2 have lower
CSF p-tau levels, higher brain glucose uptake assessed by FDG-PET, and better
cognitive function measured by the ADAS-Cog. 13 subscale compared to cluster 3.
e, f Further down on the left-hand side of the tree within favorable cluster 2, cluster
6 contains younger individualswith lower (worse)CSFAβ1-42 compared to cluster 7.
g–i On the right-hand-side of the tree, within cluster 3, cluster 8 contains a higher
number of CSF amyloid-positive (indicated in the legend by “+”) individuals with
clinical AD and a higher proportion of females compared to cluster 9. j We inves-
tigated factors impacting subgroup division by examining both non-modifiable
(acylcarnitine-related SNPs) and modifiable (adjusted acylcarnitine levels) factors.
The results reveal a substantial amount (40–60%) of variance explained by

genetics-corrected acylcarnitine levels, primarily medium- and long-chain, with
overall rather minor contributions from genetic factors. The epistatic interaction
between rs17806888 and rs924135, which explained ~32% of the variance between
clusters 2 and 3, is a notable exception. Both variants have been reported to sig-
nificantly influence succinylcarnitine, highlighting a genetic link to the TCA cycle
and amino acid-based energy metabolism. Variables marked with * have been
centered to zero mean and scaled to unit variance. Abbreviations: CSF cere-
brospinal fluid, FDG-PET Fluorodeoxyglucose-Positron Emission Tomography,
ADAS-Cog. 13 Alzheimer’s Disease Assessment Scale—Cognitive Subscale 13, BMI
body mass index. Box plots display the median (central line), interquartile range
(box bounds),whiskers extending to the smallest and largest valueswithin 1.5 times
the interquartile range from the quartiles, and notches indicating the 95% con-
fidence interval for the median. Details for each statistical test and the corre-
sponding sample sizes are provided in Supplementary Data 3. All tests were two-
sided and raw p values were reported. Source data are provided as a Source
Data file.
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energy metabolism38. Moreover, numerous previous studies have
shown the relevance of blood acylcarnitine levels and related mito-
chondrial pathways in metabolic disease and AD28–32,39,40. The present
study combines theseearlierfindingswith a translational frameworkof
bioenergetic capacity with the potential for targeted interventions,
based on collective evidence from more than 9000 individuals.

Hierarchical clustering-based SGI classified participants along the
progression of their AD biomarkers. This stratification was pre-
dominantly driven by the modifiable, non-genetic fraction of acylcar-
nitine levels, specifically medium- and long-chain acylcarnitines
associated with beta-oxidation function, accounting for 40–60% of
variance explained. Notably, the division into the initial two main
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clusters was additionally influenced by an interaction between two
genetic variants associated with succinylcarnitine, an intermediate of
the TCA cycle, and amino acid-based energy metabolism. These
observations indicate that beta-oxidation might be a promising target
for intervention, whereas targeting the TCA cycle may be complicated
by complex genetic influences.

To integrate our findings into a unified score approximating an
individual’s bioenergetic capacity, we derived a “bioenergetic age”
metric. This metric showed strong correlations with AD biomarkers,
including brain glucose uptake, cognitive function, and disease pro-
gression. Furthermore, the two-SNP genotype related to succi-
nylcarnitine, which influenced the clustering, was also predictive of
cognitive decline. This is in line with previous findings reporting an
association of genetic variation in the SUCLG2 gene with cognitive
decline41. Combined analysis of the bioenergetic age with the two-SNP
model revealed that certain allele combinations appeared to result in
resilience against cognitive decline, but only in individuals with a
younger bioenergetic age. Furthermore, a simulated clinical trial
indicates that effect sizes of potential treatments targeting the bioe-
nergetic capacity might be comparable to the recently approved anti-
amyloid drug lecanemab. Throughout all results, it is evident that
acylcarnitines as a group correlate significantly with disease bio-
markers and severity, underscoring their potential relevance in AD
pathology. Thus, with further clinical validation, acylcarnitines could
be leveraged to improvedisease staging andpotentially guide targeted
therapeutic interventions.

Based on our results, we propose the following model of bioe-
nergetic dysregulation in AD: as individuals age, their bioenergetic
capacity decreases. This decrease accelerates with the onset of AD due
to dysfunctional glucose uptake in the brain. The body then relies on
alternative energy sources, primarily lipids via beta-oxidation and
eventually protein-based energy production. Individuals with larger
bioenergetic capacity, due to favorable genetics and maintained
metabolic health, can temporarily compensate for these changes,
resulting in resilience. However, when beta-oxidation can no longer
provide sufficient energy, the body resorts to amino acid-based energy
production. Only at that stage, amino acid metabolism will be nega-
tively affected by genetic influences on related transporters and
enzymes. This results in a ripple effect, increasing vulnerability to
pathological processes and leading to accelerateddiseaseprogression.
Overall, the bioenergetic capacity may thus be likened to a metabolic
reserve providing a significant source of resilience against the disease.
This is in line with previous research, showing the brain can exhibit a
metabolic signature of cognitive resilience in individuals over 80
years old42.

Our present study has several limitations: (1) a major goal of this
work was to demonstrate the relevance of acylcarnitine metabolism in
AD. To this end, we focusedon classical biomarkers, such asCSFAβ1-42,
p-tau, FDG-PET, and cognitive measures. Future studies are needed to
consider additional, emerging evidence suggesting a complex land-
scape of mixed pathologies extending beyond the amyloid cascade
hypothesis43,44. Of note, our primary clinical outcomes for assessing
potential resilience were cognitive function and activities of daily

living. Regardless of the precise molecular etiology of the disease,
improvements in these areas are considered the most important out-
comes for patients suffering from dementia. (2) Our simulated clinical
trial was not a properlymatched randomized clinical trial (RCT), which
is a result of the bioenergetic age being significantly associated with
demographics, biomarker status, and symptom severity. Conse-
quently, the trial groups were significantly different in these regards,
which would be avoided in a real RCT. To address this, we employed a
complex statistical model incorporating various confounding and
interaction effects to mitigate as many of these factors as possible.
Future studies are needed to further corroborate our findings. (3) Our
conclusions are based on fasting serum acylcarnitine levels, which do
not specify affected brain regions or cell types. Although earlier find-
ings show correlations between acylcarnitine levels in the blood and
the dorsolateral prefrontal cortex25, the general association between
peripheral and central metabolism is often still hypothetical. Further
research is needed to determine the exact relationship and relevance
to specific brain functions, including beta-oxidation and TCA cycle
efficiency in different cell types.

Our key proposition—that the reduction of bioenergetic age will
increase bioenergetic capacity and thus resilience in a genotype-
specific manner—requires further validation in independent cohorts
due to the rarity of studies that combine genetic, metabolomics, and
longitudinal cognitive data. Once established as a robust marker of
mitochondrial health, bioenergetic age combined with the two-SNP
genotype could be utilized to select individuals for targeted inter-
ventions. Interventions to boost the bioenergetic capacity might
include (1) low-carb or ketogenic diets, which directly influence mito-
chondrial beta-oxidation through nutritional lipids45, (2) physical
activity, which is known to beneficially affect energy metabolism and
mitochondrial fitness46,47, and (3) the use of drugs like Metformin,
which was originally used to treat insulin resistance and T2D but
recently has increasingly been shown to have additional beneficial
effects, including the improvement of mitochondrial health48,49.
Importantly, the bioenergetic age score could serve as a monitoring
tool for such interventions, using established, cost-efficient, and fast
acylcarnitine-measuring technologies, for example, based on dried
blood spots50. While the ultimate long-term benefits of an intervention
study can only be seen after decades, bioenergetic aging assessed
through such minimally invasive acylcarnitine measurements is
expected to predict the success or failure of long-term interventions
within a substantially shorter time frame.

Methods
ADNI study
The ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging,
positron emission tomography, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the
progression ofMCI and earlyAD. For up-to-date information, seewww.
adni-info.org. Written informed consent was obtained at enrollment,
which included permission for analysis and data sharing. Consent

Fig. 3 | Bioenergetic age as a readout of bioenergetic capacity and determinant
of bioenergetic subgroups. a Principal component (PC) analysis of acylcarnitine
profiles shows that the first PC expectedly follows the cluster structure from
Fig. 2. b Interestingly, the bioenergetic age predicted for the individuals within
the dataset similarly corresponds with this cluster organization. c Individuals in
the pathologically healthier cluster 2, although only slightly younger than those in
cluster 3 in terms of chronological age, display a significantly reduced bioener-
getic age. d Cluster 7, which is chronologically older than cluster 6 but demon-
strates favorable disease pathology, presents a bioenergetic age that is younger
than their chronological age. This observation suggests that cluster 7 may

constitute a resilient subgroup of individuals. e Similar to the previous two
examples, individuals characterized by an advanced bioenergetic age exhibit
more pronounced Alzheimer’s disease pathology compared to those with a
younger bioenergetic age. Box plots display the median (central line), inter-
quartile range (box bounds), whiskers extending to the smallest and largest
values within 1.5 times the interquartile range from the quartiles, and notches
indicating the 95% confidence interval for the median. Details for each statistical
test and the corresponding sample sizes are provided in Supplementary Data 13.
All tests were two-sided and raw p values were reported. Source data are provided
as a Source Data file.
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forms were approved by each participating site’s institutional
review board.

Data was obtained from the AMP-AD Knowledge Portal (https://
adknowledgeportal.synapse.org), see “Data Availability Statement”
and the ADNI database at https://adni.loni.usc.edu. The AMP-AD

Knowledge Portal is the distribution site for data, analysis results,
analytical methodology, and research tools generated by the AMP-AD
Target Discovery and Preclinical Validation Consortium and multiple
Consortia and research programs supported by the National Institute
on Aging.
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data are provided as a Source Data file.
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Metabolomics data was available for 1681 participants. Samples
were profiled with the targeted Biocrates p180 kit (Biocrates,
Innsbruck, Austria). Metabolomics data processing largely followed a
previously published protocol32: Of the 186metabolites covered by the
platform, four were removed due to technical issues, leaving a total of
182 metabolites for further analysis. Samples were distributed across
23 plates. Each plate included NIST Standard Reference samples.
Twenty-two metabolites with large numbers of missing values (>40%)
were excluded and plate batch effects were removed by cross-plate
mean normalization using NIST sample metabolite concentrations.
The sample setmoreover containedblindedduplicatedmeasurements
for 19 samples (ADNI-1) and blinded triplicated measurements for
17 samples (ADNI-GO and -2) distributed across plates. These dupli-
cated and triplicated study samples were used to remove 20 meta-
bolites with coefficients of variation >20% or intra-class correlation
<65%. Biological replicates were then averaged, and non-fasting par-
ticipants (n = 108)were excluded.We imputedmissingmetabolite data
using half the value of the lower limit of detectionpermetabolite, log2-
transformed metabolite concentrations, centered and scaled dis-
tributions to a mean of zero and unit variance and winsorized single
outlying values to 3 standard deviations. Mahalanobis distance was
used for the detection of multivariable subject outliers. Applying a
critical Chi-square value of P <0.01 resulted in the removal of 42 sam-
ples. Finally, metabolites were adjusted for significant medication
effects using stepwise backwards selection (for details see Toledo
et al.30). The final dataset contained 140 metabolite measurements,
covering 23 acylcarnitine species (Supplementary Data 2), for 1531
individuals.

Representative phenotypes across A-T-(N)-(C) measures34 were
used as clinical phenotypes, including baseline levels of CSF amyloid
β1-42 (CSF Aβ1-42, A), CSF p-tau (T), ROI-based FDG-PET measures of
average glucose uptake across the left and right angular, left and right
temporal, and bilateral posterior cingulate regions (N), and ADAS-Cog.
13 scores (C). Diagnostic groups were coded as follows: 1 = cognitively
normal (CN) individuals and individuals with subjective memory
complaints (SMC); 2 = early MCI (EMCI); 3 = EMCI with CSF Aβ1-42
pathology; 4 = late MCI (LMCI); 5 = LMCI with CSF Aβ1-42 pathology;
6 = AD cases; 7 = AD cases with CSF Aβ1-42 pathology. Sex, age, BMI,
years of education, and copies of APOE ε4 were included as covariates
in cross-sectional association tests. Epistatic analyseswere additionally

adjusted for the ADNI study phase. Longitudinal analyses of cognitive
trajectorieswere adjusted for age anddiagnosis at baseline, sex, copies
of APOE ε4, education, and ADNI study phase. Longitudinal analyses
were restricted to 5 years of follow-up to retain statistical power
(minimal n = 378).

Whole genome genotyping was available for 1548 ADNI partici-
pants, with 1378 participants having overlapping metabolomics data.
Genotyping data were collected using the Illumina Human 610-Quad,
HumanOmni Express, and HumanOmni 2.5M BeadChips. Pre-
imputation quality control procedures included filtering for SNP call
rate <95%, Hardy-Weinberg equilibrium test p value < 1 × 10−6, minor
allele frequency <1%, participant call rate <95%, and discordance
between reported and inferred sex. Non-Hispanic Caucasian partici-
pants were selected using HapMap 3 genotype data and multi-
dimensional scaling analysis. Genotype imputation was performed for
each BeadChip type separately using the Haplotype Reference Con-
sortium reference Panel r1.1.

ROS/MAP study
The Religious Order Study (ROS) and the Rush Memory and Aging
Project (MAP) studies51 are longitudinal cohort studies of aging and
AD, conducted by the Rush Alzheimer’s Disease Center and designed
to beused in joint analyses tomaximize sample size. Both studies were
approved by an Institutional Review Board at Rush University Medical
Center. All participants signed an informed consent and a repository
consent to allow their biospecimens and data to be used for ancillary
studies. Further, all participants signed an Anatomic Gift Act for organ
donation for research. More details can be found at www.radc.
rush.edu.

Imputed genome-wide genotype data for 2059 study participants
was obtained from the AMP-AD Knowledge Portal (https://
adknowledgeportal.synapse.org), see “Data Availability Statement”. A
description of this data, including quality control procedures and
imputation, was previously published52. We further included pheno-
typic data on clinical diagnosis at death, global cognition during life-
time, amyloid-β and paired helical filament (PHF)-tau protein load in
brain tissue, global burden of AD neuropathology (mean of neuritic
plaques, diffuse plaques, and neurofibrillary tangles).

Epistatic analyses were adjusted for sex, age at death, education,
post-mortem interval, and number of copies of APOE ε4 as covariates.

Table 1 | End points of the simulated 18-month clinical trial

All genotypes Genotypes [slower decline]

Outcome 0–25% quartile 75–100% quartile 0–25% quartile 75–100% quartile

CDR-SB

Adjusted mean change 0.906 1.441 0.751 1.647

Adjusted mean change difference −0.534 (−0.816 to −0.252) −0.896 (−1.285 to −0.507)

P value 2.14 × 10−4 7.09 × 10−6

ADAS-Cog. 13

Adjusted mean change 2.520 3.942 2.317 4.680

Adjusted mean change difference −1.422 (−2.458 to −0.387) −2.362 (−3.805 to −0.920)

P value 7.14 × 10−3 1.37 × 10−3

MMSE

Adjusted mean change −1.061 −1.803 −0.738 −2.086

Adjusted mean change difference 0.742 (0.246 to 1.237) 1.349 (0.669 to 2.028)

P value 3.39 × 10−3 1.07 × 10−4

FAQ

Adjusted mean change 2.542 3.999 2.146 4.104

Adjusted mean change difference −1.458 (−2.202 to −0.713) −1.958 (−2.996 to −0.919)

P value 1.32 × 10−4 2.32 × 10−4
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Longitudinal analysis of cognitive trajectories was adjusted for base-
line age (instead of age at death) and clinical diagnosis, while post-
mortem interval wasomitted here. Longitudinal analysis was restricted
to 13 years of follow-up, as at this time point we had a similar sample
size left (n = 368) as in the longitudinal analyses in ADNI.

MayoLOAD study
TheMayo Study of late-onset AD (MayoLOAD)53 is a case/control study
from three different series: Mayo Clinic Jacksonville, Mayo Clinic
Rochester, andMayo Clinic Brain Bank series. The study was approved
by the appropriate institutional review board and appropriate
informed consent was obtained from all participants. Preprocessed
genotype data for 2067 participants were obtained from the AMP-AD
Knowledge Portal (https://adknowledgeportal.synapse.org), see “Data
Availability Statement”. Briefly, samples with call rates <90% were
removed. In addition, samples were discarded based on mismatch
between inferred and reported sex. Further, samples were filtered
based on inferred relatedness to ensure that the resultant sample
set represents unrelated individuals. SNPs with call rates <90%,
minor allele frequencies <0.01, and/or Hardy-Weinberg P values <
0.001 were eliminated. Total genotyping rate after filtering was 99.2%.
Genotypes were then imputed using the 1000 genomes phase 3
reference panel54 by first prephasing genotypes using SHAPEIT2 (v
2.12)55 and then imputing using IMPUTE2 (v 2.3.2)56.

Data on clinical diagnosis was numerically coded into four cate-
gories: 1 = controls with no evidence for AD-related neuropathology;
2 = clinically normal controls without neuropathology assessment;
3 = clinical AD without neuropathology confirmation; 4 = clinical
diagnosis of AD dementia with neuropathology-confirmed AD. Cov-
ariates for the study included sex, age at death, and number of copies
of APOE ε4.

KORA study
TheCooperative Research in the Region of Augsburg (KORA) study is a
population-based sample from the general population living in the
region of Augsburg, Southern Germany57. Here we used data from the
KORA F4 study, the first follow-up examination of KORA S4 in
2006–2008. The study, including the protocols for subject recruit-
ment and assessment and the informed consent for participants, was
reviewed and approved by the local ethical committee (Bayerische
Landesärztekammer).

Metabolomics data was available for 3029 predominantly healthy
participants with data on fasting serum acylcarnitine levels, sex, age,
and BMI. Metabolic profiling was conducted using the targeted Bio-
crates p150 kit (Biocrates, Innsbruck, Austria), a precursor of the p180
kit where measurements of acylcarnitines are performed analogously
as on the p180 kit. A detailed description of the processing of meta-
bolomics data is provided in Mittelstrass et al.58. Briefly, similar to the
ADNI procedure, filters for coefficient of variation (<25%), missingness
(<10%), and correlation of repeated measurements (>50%) were
applied to remove metabolites of limited measurement quality. Mul-
tivariable subject outliers were identified using the Mahalanobis dis-
tance, remaining missing values were imputed, and data was log-
transformed for subsequent analyses. Data for 22 out of 23 acylcarni-
tines investigated in ADNI (Supplementary Data 2) were available here,
with the exception being levels of C4:1, which was not reliably mea-
sured in KORA.

AGES-Reykjavik study
The Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-RS)
is an epidemiologic study focusing on four biologic systems: vascular,
neurocognitive (including sensory), musculoskeletal, and body com-
position/metabolism59. AGES-RS was approved by the National
Bioethics Committee in Iceland that acts as the Institutional Review
Board for the Icelandic Heart Association (approval number: VSN-00-

063) and by the National Institute on Aging Intramural Institutional
Review Board. A multistage consent is obtained in AGES-RS to cover
participation, use of specimens and DNA, and access to administrative
records.

Fasting serum-based measurements for the 23 acylcarnitines
generated with the targeted Biocrates p180 kit (Biocrates, Innsbruck,
Austria) were available for 575 AGES-RS participants at baseline, of
which 544 had a follow-up diagnostic assessment after 5 years. As in
ADNI, data was batch-normalized, log2-transformed, centered, scaled,
and adjusted for medication effects. All analyses in AGES-RS were
adjusted for age, sex, education, and copies of APOE ε4. In the analysis
of gray matter volume, intracranial volume was included as an addi-
tional covariate.

Comparability of AD case ascertainment in ADNI and AGES-RS
Both ADNI and AGES-RS use a threshold-based identification of indi-
viduals who are screen-positive for cognitive impairment. This
includes the MMSE and a test for logical memory from the Wechsler
Adult Intelligence Scale—Revised59–61 Case ascertainment further
includes a larger battery of cognitive tests and further includes
assessment of neuropsychiatric symptoms/depression and (instru-
mental) activities of daily functioning. Consensus diagnosis of possible
and probable AD in both cohorts was based on the criteria defined by
the National Institute of Neurological and Communicative Disorders
and Stroke–Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA). Both cohorts have been meta-analyzed before,
including in the International Genomics of Alzheimer’s Project
(IGAP)62.

Subgroup identification analysis (SGI)
We used the SGI software package33 for automatic SGI. For the present
study, the analysis consisted of the following three steps. First, the data
matrix was standardized (mean 0, standard deviation 1 for each
metabolite) before analysis. The samples were then hierarchically
clustered based on their acylcarnitine profiles using the Euclidean
distancemetric andWard linkage63. This resulted in a dendrogram, i.e.,
a binary tree that provides the hierarchical structure of sample simi-
larities. Second, we performed an association analysis with AD-related
phenotypes and the 32 acylcarnitine-associated SNPs. Each BP in the
dendrogram provides two subgroups of participants, from the top BP
that separates the entire dataset into two parts over smaller clusters
down to the bottom where subgroups consist of only a few samples
each. For each BP, an association test of the respective left vs. right
cluster was performed using linear regression for A-T-(N)-(C) mea-
sures, and ordinal regression for copies of APOE ε4 and the numeric
coding of diagnosis. To avoid low-powered statistical tests, BPs were
only tested if both of the two underlying subgroups were larger than
N = 77 samples (valid cluster pairs), which corresponds to 5% of all
samples. Third, we adjusted p values for multiple testing by correcting
the number of valid cluster pairs s = 11. Since a dendrogram’s clusters
are nested, non-overlapping groups, the s statistical tests performed
are strictly independent. Thus, control of the family-wise error rate can
be achieved using a Bonferroni-like multiple testing correction by
adjusting each p value by a factor of s (corresponding to an adjusted
threshold of p ≤ 4.55 × 10−3).

Collection of SNPs and SNP combinations associated with blood
acylcarnitine levels
We obtained a list of 32 acylcarnitine-associated SNPs (Supplementary
Data 5) from a large GWAS study performed on a total of 7824 indi-
viduals from the KORA and TwinsUK studies16. The generalizability of
the effects of these SNPs on ADNI was tested using a targeted genetic
association screening, where we tested for influences of all 32 SNPs
against all 23 acylcarnitine species assuming an additive genetic
model. Only age and sex were included as covariates, following the
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protocol of the reference study. Associations were considered to be
significant if they had an FDR-adjusted p value ≤0.05.

The reference GWAS further lists multi-SNP combinations of one
lead SNP per associated locus that in concert explained the largest
fraction of the heritable population variance of single acylcarnitine
concentrations in blood. We used these multi-SNP combinations in
epistatic modeling.

Epistatic analysis
Todeterminemulti-locus epistatic associationswith the clustering and
AD-related outcomes, we ran an epistasis model using SNP combina-
tions for each acylcarnitine with significant associations in more than
one locus. For these multi-locus genetic models, we combined SNP
genotypes in all combinations into aggregated genotypes h to test
pure genetic interactions; for example, if SNP1 has alleles TA for an
individual, and SNP2 has alleles CC, then the aggregated genotype is
TACC. Since each SNP can have up to three different genotypes (major
allele homozygote, heterozygote, minor allele homozygote), the
aggregation of N SNPs can yield up to 3N combinations. For each
outcome (cluster pairs and AD-related phenotypes) y and aggregated
genotype h, we then computed the following two statistical models:
the base model M1 regressing the outcome in question (dependent
variable) on the set of confounders only; and the full model M2 that
includes h in addition to confounders. The models use ordinal
regressionwith log-log link functions and logistic regression for binary
outcomes. The genetic variable h is treated as a factor and is thus
expanded into a binary indicator variable for each factor level during
model fitting. If a factor level is observed in less than 10 participants, it
was omitted due to lack of statistical power. To control for spurious
effects of overly fractionated factor variables with many different SNP
combinations, we additionally capped the maximum number of
degrees of freedom (DFs). This was achieved by imposing a ridge-type
penalty following the suggestions described by Harrell64 and setting
the maximum number of DFs to 15. Statistical significance was finally
assessed using a likelihood ratio test between M1 and M2.

Analysis of explained variance
The variance between cluster pairs explained by significant genetic
effects (both for single SNPs and multi-SNP combinations) was esti-
mated using McKelvey’s measure, which has been described as a
robust approach for logistic regression models65. To estimate the
variance explained by each of the 23 acylcarnitines, we calculated a
linear mixed model including a random intercept for each BP, as
implemented in the variancePartition R package66. To account for
potential confounding through non-modifiable factors,we included all
significant SNPs, the interaction between rs17806888 and rs924135, as
well as age, sex, BMI, andEducation ascovariates in themodel. Analysis
of explained variance was restricted to cluster pairs for which we
observed significant differences in AD-related phenotypes or demo-
graphic variables.

Normalization of acylcarnitine levels across cohorts
To enable comparability of semi-quantitative acylcarnitine levels
across cohorts, we performed a reference group-based cross-normal-
ization for all 22 acylcarnitines thatweremeasured in KORA, ADNI, and
AGES-RS. We first extracted all healthy female individuals from the
three cohorts. Additional selectionparameters inKORAbesides female
sex included age 60–72 years and BMI 23.31–29.72 kg/m2. In ADNI and
AGES-RS we included all cognitively normal females with an age of 72
years or younger. With the assumption that the real acylcarnitine level
distributions are similar for these reference groups, measurement
values were then centered and scaled in each cohort separately. In the
final step,we filtered outmultivariate outliers (n = 3; all ADNI) based on
the Mahalanobis distance (see more details in the description of ADNI

data). The remaining reference subjects were used to rescale z-scored
acylcarnitine concentrations in the respective complete cohorts.

Computation and analysis of bioenergetic age
After normalizing acylcarnitine levels to these reference groups, we
calculated a linear regressionmodel using the reference-transformed
22 acylcarnitines to predict chronological age in KORA. To investi-
gate the robustness of the model, we performed 10-fold, 3 times
repeated cross-validation (Supplementary Data 11). The coefficients
of the model are provided in Supplementary Data 19. We then
applied this model to ADNI and AGES-RS using reference-
transformed acylcarnitine levels. In this analysis, we did not adjust
acylcarnitine levels for the ADNI study phase, as participants in ADNI-
GO/2 were on average 2.65 years younger than participants in ADNI-1
(P = 5.76 × 10−13), such that adjustment would have confounded the
reference set-based rescaling. The z-scored difference between
chronological age and bioenergetic age was derived by subtracting
their z-scored transformations, centering to zero, and scaling to unit
variance. Differences between ADNI cluster pairs associated with AD-
related phenotypes and the three age measures (chronological age,
predicted bioenergetic age, and their delta) were assessed using
linear regression without adjustment for any additional variables.
Cross-sectional associations of predicted bioenergetic age with A-T-
(N)-(C) measures in ADNI, as well as with total gray matter volume,
cognition, and clinical diagnosis in AGES-RS were tested using linear
regression while adjusting for all relevant covariates (see study-
specific sections), including chronological age.

Analysis of longitudinal cognitive trajectories
For analyses of cognitive trajectories in ADNI, we included the com-
posite ADNI scores for memory (ADNI-MEM)67 and executive function
(ADNI-EF)68 in addition to the ADAS-Cog. 13, which have been descri-
bed to be more sensitive to subtle cognitive changes and have been
used in studying resilience to AD before69. We tested longitudinal
associations with predicted bioenergetic age using linear mixed-
effects models with cognitive scores as dependent variables. The
explanatory variable of interest was the interaction of bioenergetic age
and time. Models were adjusted for relevant covariates (see descrip-
tion of ADNI data), including chronological age at baseline, and
allowed for random intercepts for each participant. For binarization of
the SNP combination of rs17806888 and rs924135 into two groups
(slower vs. faster progression of cognitive decline), we used the same
linear mixed effect model (replacing bioenergetic age with genotype
aggregates) and iterated over all binary combinations of aggregated
genotypes. We removed aggregates with less than 20 observations to
avoid spurious associations, leaving us with six aggregated genotypes.
We then selected the combination that showed the highest sig-
nificance across the three cognitive scores using Fisher’s sum of logs
method70. The three-way interaction analysis was performed in the
same way (explanatory variable of interest: time× bioenergetic age ×
SNP grouping), while for the calculation of the association p value, we
used an ANOVA, where the reduced model omitted the interaction
with time. In AGES-RS, we used standard linear regression to test for an
association between baseline predicted bioenergetic age and pheno-
conversion after 5 years, while adjusting for relevant covariates. To
replicate the genotype grouping obtained in ADNI in ROS/MAP, we
applied the same (in terms of predictors/covariates) linear mixed-
effects model as in ADNI using global cognition as outcome. As repli-
cation in the full subset of the ROS/MAP cohort available here failed,
we selected a subset of n = 1081 participants (a total of 1936 with
cognitive and genetic data available) where a clinically relevant change
in cognitive status (from cognitively normal toMCI or AD, or fromMCI
to AD) was noticed in any follow-up visit (1–26 years, meantime until
change = 5.71 years).
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Simulated clinical trial to estimate the potential treatment
effects targeting the bioenergetic capacity
For the simulated trial, we restricted ADNI participants to cognitively
normal controls with subjective memory complaints, individuals with
MCI, and mild AD cases, which had data available both at baseline and
the 1-year and 2-year follow-up visits (final follow-up for mild AD cases
in ADNI). Cognitively normal controls without any complaints were
excluded to allow comparisons with the lecanemab trial37. Participant
characteristics are provided in Supplementary Data 18. The treatment
and control groups were defined as the 0–25% quartile and the
75–100% quartile in bioenergetic age at baseline, respectively. As
outcomes, we used the CDR-SB and ADAS-Cog. 13 (for comparisons to
the lecanemab trial, although here the ADAS-Cog. 14 was used), as well
as the MMSE and the FAQ score to cover a broad spectrum of eva-
luations of both cognitive function and activities of daily living.

The analysis for outcome changes from baseline to 24 months
followed the lecanemab trial protocol with minor adjustments. As in
the reference trial, we used linear mixed effect models for repeated
measures (including participant ID as random intercept) modeling the
longitudinal outcome scores as dependent variables and the following
explanatory variables: baseline outcome score, trial group, visit (year
after baseline), baselinediagnosis (cognitively normal,MCI, AD), useof
memantine and/or acetylcholinesterase inhibitors, copies of APOE ε4,
racial/ethnic category, baseline outcome score-by-visit interaction to
model the differences in progression, and trial group-by-visit interac-
tion as the variable of interest. Deviating from the lecanemabprotocol,
we included years of education, sex, chronological age, and chron-
ological age-by-visit interaction as additional fixed effects to account
for non-matched group characteristics. To calculate contrasts within
the genotype grouping of rs17806888 and rs924135 associated with
slower cognitive decline, we additionally included genotype grouping,
genotype grouping-by-trial group interaction, and genotype grouping-
by-visit interaction as covariates and the three-way interaction geno-
type grouping-by-trial group-by-visit as variable of interest. Finally, we
estimated adjusted least-squares mean changes and adjusted least-
squaresmean change differences across outcomes from the 24-month
model restricting trial time to 18 months.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
KORA data can be accessed upon request at https://helmholtz-
muenchen.managed-otrs.com/external/. AGES-RS data can be acces-
sed upon request according to informed consent at https://hjarta.is/
en/research/ages-phase-1/. All other omics datasets are available via
the AD Knowledge Portal (https://adknowledgeportal.org). The AD
Knowledge Portal is a platform for accessing data, analyses, and tools
generated by the AcceleratingMedicines Partnership (AMP-AD) Target
Discovery Program and other National Institute on Aging (NIA)-sup-
ported programs to enable open-science practices and accelerate
translational learning. The data, analyses, and tools are shared early in
the research cycle without a publication embargo on secondary use.
Data are available for general research use according to the following
requirements for data access and data attribution (https://
adknowledgeportal.org/DataAccess/Instructions). For access to the
content described in this manuscript see: ADNI metabolomics data
from the AbsoluteIDQ-p180 kit is available at the AD Knowledge Portal
under https://doi.org/10.7303/syn5592519 (ADNI-1) and https://doi.
org/10.7303/syn9705278 (ADNI-GO/-2), the full complement of clinical
and demographic data for the ADNI cohorts are hosted on the LONI
data sharing platform and can be requested at https://adni.loni.usc.
edu/data-samples/adni-data/#AccessData. ROS/MAP imputed geno-
type data are available at the AD Knowledge Portal under https://doi.

org/10.7303/syn3157329, study meta-data, basic covariates, and clin-
ical variables are available under https://doi.org/10.7303/syn3157322.
The full complement of clinical and demographic data for the ROS/
MAP cohorts is hosted on the Rush Alzheimer’s Disease Center data-
sharing platform and can be requested at www.radc.rush.edu. Mayo-
LOAD genotyping data are available at the AD Knowledge Portal under
https://doi.org/10.7303/syn3157238, study meta-data and covariates
are available under https://doi.org/10.7303/syn3205821.6. Source data
are provided with this paper.

Code availability
All R code required to conduct the analyses reported here is available
at https://github.com/compneurobio/bioenergetic_capacity.
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