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A B S T R A C T

We aimed to assess the exposure to multiple environmental indicators and compare the spatial variation across
participants of the German National Cohort (NAKO) to lay the foundation for health analyses.

We collected highly resolved German-wide data to capture the following environmental drivers: urbanisation
by population density; outdoor air pollution by particulate matter (PM2.5), nitrogen dioxide (NO2), ozone; road
traffic noise; meteorology by air temperature, relative humidity; and the built environment by greenspace and
land cover. All assessed exposures were assigned to the NAKO participants based on their baseline residential
addresses.

The NAKO study regions ranged from highly urbanised areas (Berlin, Hamburg) to rural regions (Neu-
brandenburg). This large variation is reflected in the individual environmental exposures at the place of resi-
dence. In 2019, annual PM2.5 and NO2 levels ranged from 6.0 to 14.6 and 3.7–33.6 μg/m3, respectively. Annual
mean air temperature ranged between 7.8 and 12.7 ◦C. Noise data was available for a subset of urban residents
(22 %), of which 42 % fell into the lowest and 1.8 % into the highest category of Lden 55–59 and Lden >75 dB
(A), respectively. Greenspace also showed considerable differences (Normalised Difference Vegetation Index
between 0.08 and 0.84). Spearman correlation was moderate to high within the different exposure groups, but
mostly low to moderate between the groups.

For the first time, a comprehensive population-based dataset with high quality environmental indicators is
available for the whole of Germany. Expanding the database by adding innovative indicators such as light
pollution, walkability, biodiversity as well as contextual socioeconomic factors will further increase its usefulness
for science and public health.
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1. Introduction

The World Health Organization estimates that a considerable part of
the global disease burden is attributable to environmental factors
(Global Burden of Disease (GBD) Risk Factors Collaborators, 2024;
Prüss-Ustün et al.). Outdoor air pollution alone is ranked the number
one leading risk factor worldwide for attributable morbidity and number
two for global mortality, only surpassed by high blood pressure (Health
Effects Institute). Furthermore, non-optimal temperature is ranked
number ten for mortality (Health Effects Institute).

Environmental risk factors encompass a range of exposures,
including air pollution, ambient noise, water and soil pollution, adverse
meteorological conditions, and characteristics of the built environment
that negatively affect health such as lack of greenspace and biodiversity.
These factors are associated with various adverse health outcomes,
ranging from respiratory diseases, cardiovascular and metabolic condi-
tions, mental and neurological conditions, infectious diseases, birth
outcomes, and cancers (Johannessen et al., 2023; Klompmaker et al.,
2021; Herder et al., 2023; Fuller et al., 2022). The severity of conditions
caused by environmental exposures also varies from subclinical changes
unobserved by the exposed to subtle symptoms, development of new
manifest disease, disease exacerbations, increased medication, hospital
admissions, all the way to increased mortality (Thurston et al., 2017).

A comprehensive assessment of environmental factors is essential for
understanding etiological pathways, assessing causality, detecting syn-
ergies and interactions in epidemiological research and to inform po-
litical actions and public health interventions (Clougherty and
Kubzansky, 2009). For example, recent studies show that air pollution
can exacerbate the health effects of temperature extremes and vice versa
(Rai et al., 2023; Stafoggia et al., 2023). Elevated temperatures exac-
erbate the formation of ground-level ozone (O3), amplifying respiratory
distress and cardiovascular complications (Vicedo-Cabrera et al., 2023;
Bloomer et al., 2009). The built environment can intensify the adverse
effects of heat by contributing to the so-called heat island effect
(Heaviside et al., 2017; Oke, 1973). Noise pollution, a ubiquitous urban
stressor that shares road traffic as one of the main sources with air
pollution, interacts with both air pollution and the type of the built
environment as well as with the availability of greenspace. Ambient
noise exposure can increase the physiological stress response, poten-
tially exacerbating the health impacts of air pollution (World Health
Organization (WHO), 2018).

Assessing environmental exposures is inherently challenging,
because many environmental factors, such as air pollution, noise, and air
temperature, exhibit high spatial and temporal variability on different
geographical and temporal scales. Methodological limitations, including
the need for sophisticated monitoring equipment, long time series of
measurements, spatial heterogeneity, and the influence of individual
behaviours as well as socioeconomic position and neighbourhood on
personal exposure, contribute to the complexity. Moreover, the assess-
ment of long-term exposures often requires expensive and time-
consuming modelling approaches (Chen et al., 2019; Hoek, 2017). For
epidemiological studies, a high degree of harmonisation between study
areas and study periods is essential, allowing pooled assessment of large
cohort data (Brunekreef et al.; Chen et al., 2023).

Several long-standing German cohort studies such as KORA (Holle
et al., 2005), Heinz Nixdorf Recall study (Schmermund et al., 2002), or
SALIA (Schikowski et al., 2010) have contributed substantially to the
understanding of the link between environmental exposures and health.
While most earlier analyses focused on single exposures (Schikowski
et al., 2010; Hoffmann et al., 2007; Peters et al., 1997), in recent years
also the interplay has become the focus of attention (Herder et al., 2023;
Ogurtsova et al., 2023; Niedermayer et al., 2024; Fuks et al., 2019).
However, with baseline recruitment between 1985 and 2003, the co-
horts suffer from loss-to-follow up and healthy survivor bias. They were
also limited to specific study regions partly lacking significant spatial
variation in the exposures. Furthermore, with around 300 to 5000

participants in the analyses (depending on the waves and outcomes
under investigation), the power is partly limited, especially with regard
to subgroup analyses. In 2014, the German National Cohort (NAKO), the
largest population-based epidemiological cohort study in Germany to
date, was incepted and has enrolled more than 200,000 adult partici-
pants in 18 study centres (Peters et al., 2022). The NAKO aims to
investigate the determinants of health and disease in the adult popula-
tion. To this end, a deep characterisation of individual-level risk factors
related to lifestyle and socioeconomic factors, and health variables
including biomarkers and omics, has taken place at the baseline exam-
ination and during follow-up visits. To this wealth of data, we added
individual exposure to environmental factors at the place of residence of
the participants. We specifically focused on air pollution, ambient road
traffic noise, air temperature and relative humidity, and characteristics
of the built environment because of their known high health relevance
(Prüss-Ustün et al.). Moreover, this selection of exposures allows the
focus to shift from single to multi-exposure approaches, as previous
studies have shown that these exposure mixtures are specific to urban
living environments and may have interactive and synergistic joint
health effects (Herder et al., 2023; Chen et al., 2024; Klompmaker et al.,
2019; Dimakopoulou et al., 2024). In this article, we describe the
methods applied to comprehensively characterise the environmental
exposures within the NAKO cohort and present descriptive results of
long-term exposures for the full study population and as well as strati-
fied by study centre and degree of urbanisation.

2. Methods

2.1. Study population

The NAKO baseline examination was conducted between 2014 and
2019 in 18 study centres across Germany (Peters et al., 2022). Age and
sex-stratified random samples of the general population were drawn
from compulsory registries of residents within 16 study regions ranging
from highly urbanised areas (Berlin, Hamburg) with up to 4,123
inhabitants/km2 to rural regions (Neubrandenburg) with 732 inhab-
itants/km2. The final study population consisted of 205,414 men and
women aged 19–74 years. The participants were not required to still live
in the study regions during baseline examination, when also the resi-
dence information was updated. Since up to several years could lie be-
tween the random sampling and baseline assessment, participants could
have already moved out of the study regions.

2.2. Environmental exposures - data gathering, processing, cleaning and
quality control

An overview of the environmental exposures together with the
respective data sources, the specific indicators, and temporal and spatial
resolution is given in Table 1. Data gathering and processing is described
in detail in the following paragraphs. Since all data were collected from
published sources, we refer to the respective references (below and
Table 1) for specific data cleaning and quality control aspects. We
visually investigated implausible values, missing data or extreme out-
liers by generating maps of all parameters.

2.2.1. Urbanisation
Degree of Urbanisation was gathered from Eurostat which classifies

the European local administrative units (LAU; for Germany the munic-
ipalities) into three categories: cities (densely populated areas), towns
and suburbs (intermediate density areas), and rural areas (thinly
populated areas) (EUROSTAT, 2020). We downloaded the source data-
set 2020 which is based on the population grid from 2018 (JRC2018)
and administrative boundaries from 2020 (LAU2 2020). In addition, we
obtained population density at a 5 km × 5 km, 1 km × 1 km and 100 m
× 100 m grid from a private company (WIGeoGIS GmbH) for 2018
reflecting the smaller and larger neighbourhood.

K. Wolf et al.
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2.2.2. Air pollution
Air pollution data was collected from two different sources. First, we

gathered spatially high-resolution data from the ELAPSE (Effects of Low-
Level Air Pollution: A Study in Europe) project which centrally modelled
annual mean concentrations of particulate matter with a diameter below
2.5 μm (PM2.5), nitrogen dioxide (NO2), warm season (April to
September) O3 and the absorbance of PM2.5 (PM2.5abs) by land use
regression (LUR) models for Western Europe for the year 2010 (de
Hoogh et al., 2018). The model was developed by regressing routine
monitoring data from the AirBase network of the European Environ-
mental Agency on satellite observations, chemical transport model es-
timates, land use, and road data and validated the models with 5-fold
cross-validation. The models were then applied to a 100 m × 100 m
grid to compile concentration maps. Second, hourly air quality data with
a spatial resolution of approximately 2 km× 2 kmwas obtained from the
Federal Environment Agency (UBA) (Umweltbundesamt). The UBA
compiled Germany-wide maps using optimal interpolation to combine
air quality measurements with simulated fields of the chemical transport
model REM-CALGRID (Nordmann et al., 2020). We gathered all hourly
maps for particulate matter with a diameter below 10 μm (PM10), PM2.5,
NO2, and O3 for the years 2014–19 and calculated daily (for O3 the daily
maximum 8-h mean following ELAPSE) and annual means (for O3 the
warm season mean following ELAPSE).

2.2.3. Noise
We used a noise map for Germany with a resolution of 10 m × 10 m

that delineates five day-evening-night level (Lden) noise classes (55:
55–59 dB(A), 60: 60–64 dB(A), 65: 65–69 dB(A), 70: 70–74 dB(A), 75:≥
75 dB(A)) (Staab et al., 2024). Missing data was coded as 40 dB(A) for
the areas covered by the Environmental Noise Directive (END) obliga-
tion 2002/49/EG Article 3 section k (Directive, 2002), and as missing
(NA) for the remaining grid cells. The original data was derived from the
strategic road traffic noise maps for Germany for the reference year 2017
from the central European Environment Information and Observation
Network (EIONET) data repository of the European Environment
Agency (European Environment Agency (EEA)a). Since each reporting
unit is responsible for the compilation of the respective map, 84 separate
files were available for urban agglomerations with more than 100,000
inhabitants or affected areas along major roads with more than 3 million
vehicle passages a year. The 84 separate data files therefore had to be

substantially processed, harmonised, corrected for topological errors
and aggregated to the final dataset (Staab et al., 2024).

2.2.4. Meteorology
Daily near-surface mean, minimum and maximum air temperature

on a 1 km × 1 km grid was estimated using a three-stage spatiotemporal
model since the year 2000 (Nikolaou et al., 2022). Thereby,
ground-based air temperature measurements were combined with
satellite-based land surface temperature (LST) and spatial predictors. In
the first stage, a linear mixed effects model with daily random intercepts
and slopes was developed on the combinations of days and grid cells
with both air temperature measurements and LST data available to
calibrate their strong relationship, also considering various spatial pre-
dictors. In the second stage, the first-stage model was applied to the days
and grid cells without air temperature measurements but with available
LST data to predict air temperature for these combinations. To achieve
full air temperature coverage for all days and grid cells, the second-stage
temperature predictions were regressed against thin-plate spline inter-
polated temperature values in the third stage. Diurnal temperature
range (Trange) was then calculated as the difference of the daily
maximum and minimum air temperature. All temperature indicators are
also available as seasonal and annual averages since the year 2000.
Based on the air temperature predictions, ground-based relative hu-
midity measurements and further modelled and satellite-derived
spatiotemporal predictors, daily mean relative humidity and the stan-
dard deviation were modelled using a random forest approach and are
available also on a 1 km× 1 km grid since the year 2000 (Nikolaou et al.,
2023). Both the temperature and relative humidity models are contin-
uously updated and are currently available until 2023.

2.2.5. Built environment
As indicator for greenspace, we collected satellite information on the

normalised difference vegetation index (NDVI) which is calculated as
the difference of the reflected radiation in the visible red and in the near
infrared divided by the sum of the two. It ranges from − 1 to 1, with
values close to − 1 indicating water, values close to 0 indicating areas
without living vegetation, and values close to 1 indicating dense green
vegetation (Johannessen et al., 2023). We gathered NDVI data from two
sources with different temporal resolutions. Monthly NDVI data on a 1
km × 1 km grid were available from the NASA Terra Moderate

Table 1
Overview of environmental exposures and specific indicators individually assigned to residential addresses of NAKO participants.

Indicator Specific indicators Statistic Temporal resolution Spatial
resolution

Provenance

Urbanisation Degree of urbanisation Three categories (cities, towns
and suburbs, rural areas)

Reference year (2018) Municipality
level

EUROSTAT (EUROSTAT, 2020)

Population density N/km2 Reference year (2018) 5 km × 5 km
1 km × 1 km
100 m × 100 m

WiGeoGIS GmbH

Air pollution PM2.5, PM2.5abs, NO2, O3 Mean Annual; O3: warm season
(2010)

100 m × 100 m ELAPSE (de Hoogh et al., 2018)

PM10, PM2.5, NO2, O3 Mean; O3: daily maximum 8-h
mean

Daily to annual; O3: warm
season (2014–19)

1 km × 1 km UBA (Nordmann et al., 2020)

Noise Ambient road traffic noise day-
evening-night levels (Lden)

Mean in buffer: 10 m, 100 m Annual (2017) 10 m × 10 m EIONET (European
Environment Agency (EEA)a)

Meteorology Air temperature Mean, min, max, diurnal range Daily, seasonal, annual
(2014–19)

1 km × 1 km HMGU (Nikolaou et al., 2022)

Relative humidity Mean, SD Daily, seasonal, annual
(2014–19)

1 km × 1 km HMGU (Nikolaou et al., 2023)

Built
environment

Greenspace: Normalised Difference
Vegetation Index (NDVI)

Focal mean: 300 m, 1 km Bi-annual (2015–17) 10 m × 10 m German Aerospace Center (
Weigand et al., 2020)

Greenspace: Normalised Difference
Vegetation Index (NDVI)

Mean Monthly to vegetation
period (2014–19)

1 km × 1 km MODIS (Didan, 2015)

Land cover Focal mean: 300 m, 1 km Bi-annual (2015–17) 10 m × 10 m German Aerospace Center (
Weigand et al., 2020)

PM2.5: particulate matter with an aerodynamic diameter ≤2.5 μm; PM2.5abs: PM2.5 absorbance; NO2: nitrogen dioxide; O3: ozone; PM10: particulate matter with an
aerodynamic diameter ≤10 μm; SD: Standard deviation; UBA: Federal Environment Agency.

K. Wolf et al.
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Resolution Imaging Spectroradiometer (MODIS) (Didan, 2015). We
calculated annual vegetation period means by averaging the months
between March and October. To exclude water pixels, we masked the
data using a mask layer (MOD44W). Remaining negative values were set
to missing for both NDVI measures. The German Aerospace Center
provided long-term values at a 10 m × 10 m resolution averaging all
Sentinel-2 images collected between June 27, 2015 and September 29,
2017 with a cloud cover lower than 60 % (Weigand et al., 2020).
Additionally, we obtained land cover data from the German Aerospace
Center, matching the same temporal and spatial resolution (Weigand
et al., 2020). From the original seven land cover types (artificial land,
open soil, high seasonal vegetation, high perennial vegetation, low
seasonal vegetation, low perennial vegetation and water), we combined
the four vegetation categories into one.

2.3. Procedure for linkage of environmental data with health data to
secure data protection

The NAKO independent trust centre at the University Medicine of
Greifswald administrates the person identifying data like the addresses.
It performed the geocoding of participants’ residential sampling and
baseline addresses using a proprietary algorithm (Appendix A, Supple-
mentary Methods). Only the geocodes together with a specific pseu-
donym (ID-EDU) were securely transferred once to the NAKO
environmental data unit (EDU) located at Helmholtz Munich (Fig. 1).
The EDU assigned the environmental exposures to the geocoded ad-
dresses. For subsequent epidemiological analyses, only the assigned
exposure values are linked to the respective health information. For each
data application, the data transfer unit submits the ID-EDU with an
application-specific pseudonym (ID-A) to the EDU. The EDU combines
the requested environmental data replacing ID-EDU with ID-A and
hands it back for linkage with the health data. In future, we also intend
to integrate a selection of the environmental variables such as the annual
averages into the research database at the data integration centre.

2.4. Harmonisation and assignment of environmental exposures to
participants’ addresses

Before the actual assignment, all exposure maps were harmonised
and in case reprojected into an INSPIRE (Infrastructure for Spatial In-
formation in the European Community) (European Commision (EC),
2019) conform joint projection (EPSG:3035, ETRS89-extended/LAEA
Europe) which is the recommended standard for Europe (European
Commission). The respective reference grids were downloaded from the
German Federal Agency for Cartography and Geodesy (©
GeoBasis-DE/BKG (2018)). Since the original UBA air pollution data was
issued in two different spatial resolutions (until 2016: ~1.7 km x ~2.3
km; from 2017 on: 2.4 km × 2.4 km), we applied bilinear resampling to
the 24 h-mean concentrations to achieve a consistent INSPIRE conform
spatial resolution of 1 km × 1 km for the whole study period.

For most of the exposure maps, we assigned the values of the cor-
responding grid cells the participants’ geocodes were located in using
the extract() function from the R package raster (raster, 2024). For the
spatially highly resolved noise data, we calculated the mean noise levels
in buffers of 10 and 100 m around the geocodes to derive area-weighted
mean noise levels on a continuous scale. Beforehand, grid cells without
data (coded as 40 dB(A) or NA) were set to 40 dB(A) as lower limit of
detection. Similarly, for the spatially highly resolved greenspace and
land cover data from the German Aerospace Center, we calculated sur-
rounding focal means of 300 m and 1 km to capture the built environ-
ment in the neighbourhood of the place of residence. The degree of
urbanisation was assigned based on the municipality identification
number.

2.5. Description of the multi-exposure environment

We generated maps for all environmental exposures to visualise the
spatiotemporal patterns across Germany. To describe the participants’
individual exposure to the environmental indicators, we calculated
descriptive statistics and compiled boxplots, the latter also stratified by
study centre and degree of urbanisation. Moreover, we calculated
Spearman correlation coefficients to investigate the interplay between
the multiple environmental exposures.

Fig. 1. Procedure to link environmental data to NAKO participants and secure data protection of individual address information. The blue dashed arrow visualises an
intended workflow that is not yet established. ID-A: application-specific pseudonym; ID-EDU: geocode-specific pseudonym. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

K. Wolf et al.
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3. Results

3.1. Distribution of residential addresses

From the originally recruited 205,414 participants, 362 participants
had revoked their informed consent completely, resulting in 205,053
participants by the end of the baseline recruitment in October 2019
(Peters et al., 2022). Further revocations (N = 307) and addresses that
could not be geocoded (N = 4) reduced the number of participants
included in this analysis to 204,742. Of these, 6,940 participants
changed their address between random sampling and baseline exami-
nation, of which 5,310 participants moved more than 1 km, 1,487
moved more than 10 km, and 234 movedmore than 100 km away. Fig. 2
visualises the number of participants for these two time periods per grid
cell of a 5 km× 5 km raster laid over Germany. The distributions clearly
demonstrate that almost all participants lived in the study regions dur-
ing recruitment, whereas several moved out and spread across Germany
between sampling and baseline examination. A detailed overview of the
number of participants per study centre (where the examination took
place) and study region (where the participants lived at the date of
baseline examination) showed that 819 participants no longer lived in
one of the study centre regions and 53 participants travelled to another
study centre for the examination (Appendix B, Supplemental Table S1).
The following descriptive analyses refer to the participants’ residences
at baseline examination.

3.2. Degree of urbanisation

The study regions were categorised as either urban (Hamburg, Bre-
men, Berlin, Hannover, Münster, Essen, Leipzig, Düsseldorf, Man-
nheim), or as a mixture of mostly suburban and rural areas
(Neubrandenburg), or a mixture of all three categories (Kiel, Halle,
Saarbrücken, Regensburg, Augsburg, Freiburg) (Fig. 3). Accordingly, 71
% of the participants resided in urban areas (N = 146,616), 16 % in
suburban areas (N= 32,203), and 13 % in rural areas (N= 25,848). This
variation is also reflected in the population density ranging from 16 to
300,378 inhabitants per 5 km × 5 km grid cell (Table 2 and Supple-
mental Fig. S1) and the individually assigned environmental exposures.

3.3. Air pollution

The spatially highly resolved ELAPSE models showed a larger vari-
ation with generally higher 2010 annual average PM2.5, NO2 and O3
levels ranging from 9.0 to 23.9, 4.7–78.1 and 46.2–102.6 μg/m3,
respectively, compared to the less spatially-resolved UBA models (2014

annual average PM2.5, NO2 and O3 ranging from 6.5 to 20.5, 4.3–35.7
and 65.5–96.5 μg/m3, Table 2 and Supplemental Figs. S2 and S3). The
improvement in air quality over the years was further seen when
comparing the UBA estimates for 2014 and 2019 with median PM2.5 and
NO2 concentrations decreasing from 14.2 to 17.8 to 10.2 and 15.6 μg/
m3, respectively, except for O3 which increased from 82.3 to 87.9 μg/m3

(Table 2 and Supplemental Fig. S3). Nevertheless, in 2019, 100% and 82
% of the participants were still exposed to concentrations above the
WHO recommendations of 5 μg/m3 for PM2.5 and 10 μg/m3 for NO2
(Supplemental Fig. S4) (World Health Organization WHO, 2021). A
comparison of the concentrations by degree of urbanisation and study
region showed highest levels for urban and lowest for rural areas, and a
large heterogeneity across the study regions in terms of levels and ranges
(Supplemental Figs. S5–S8).

3.4. Noise

As a result of the strategic noise mapping only being required for
selected exposed areas, data was primarily available for participants

Fig. 2. Distribution of residential addresses from NAKO participants at random sampling (left) and baseline examination (right) per 5 km grid.

Fig. 3. Degree of Urbanisation (DEGURBA) based on source dataset from
EUROSTAT, 2020 across Germany.

K. Wolf et al.



Environmental Research 273 (2025) 121259

6

living in urban areas of which about one third were exposed to levels of
55 dB(A) and higher (Supplemental Figs. S9 and S10). Noise levels were
available for 8 % of the participants living in suburban areas and for 3 %
living in rural areas. Comparing the study regions, levels were highest in
the city centres (Hamburg, Bremen, Hannover, Münster, Essen, Düssel-
dorf, Mannheim) with altogether highest levels in Düsseldorf
(Supplemental Fig. S11). After setting all missing values to a lower limit
of detection of 40 dB(A), the weighted mean noise levels in buffers of 10
and 100 m showed a mean of 44.4 and 44.6 dB(A), respectively
(Table 2).

3.5. Meteorology

Annual mean, minimum and maximum air temperature for 2014
ranged between 8.0 and 12.4, 3.7–8.3 and 12.4–17.6 ◦C and Trange be-
tween 6.3 and 10.6 ◦C (Table 2). While minimum temperature
decreased, the other indicators slightly increased from 2014 to 2019,
especially Trange from a mean of 9.0–9.4 ◦C (Table 2 and Supplemental
Fig. S12). Similar to noise, highest levels were observed for urban areas
and lowest for rural areas except for Trange which showed an opposite
trend (Supplemental Fig. S13). Moreover, the violin plots and boxplots
across study regions indicated heterogeneity in the levels and ranges but

Table 2
Distribution of environmental exposures at baseline residences of NAKO participants (N = 204,742).

Indicator
Year Missing

N (%) Mean SD Min 5 % Median 95 % Max IQR

Urbanisation
Pdens 5 km (N) 2018 0 (0) 68,940 68,574 16 1,686 45,734 230,394 300,378 90,009
Pdens 1 km (N) 2018 12 (0) 4,682 4,387 0 144 3,463 14,133 22,178 5,310
Pdens 100m (N) 2018 262 (0.1) 97.4 87.0 0 8 70 296 1,516 109

Air pollution
ELAPSE model
PM2.5 (μg/m3) 2010 0 (0) 17.3 2.0 9.0 14.1 17.2 20.6 23.9 2.9
PM2.5abs (10− 5/m) 2010 0 (0) 1.7 0.4 0.7 1.0 1.6 2.3 4.1 0.5
NO2 (μg/m3) 2010 0 (0) 27.2 8.2 4.7 14.3 26.9 41.4 78.1 10.6
O3 (μg/m3) 2010 0 (0) 84.0 5.4 46.2 74.4 84.7 91.4 102.6 6.4

UBA model
PM10 (μg/m3) 2014 0 (0) 18.7 3.7 7.6 11.2 18.8 25.3 27.0 3.8

2019 0 (0) 14.5 2.3 6.9 10.7 14.4 18.4 21.4 2.8
PM2.5 (μg/m3) 2014 0 (0) 14.1 2.9 6.5 9.4 14.2 20.0 20.5 2.6

2019 0 (0) 10.4 1.6 6.0 8.2 10.2 13.8 14.6 2.0
NO2 (μg/m3) 2014 0 (0) 17.4 6.8 4.3 5.5 17.8 29.3 35.7 9.8

2019 0 (0) 15.8 6.2 3.7 5.5 15.6 26.8 33.6 8.8
O3 (μg/m3) 2014 0 (0) 81.5 4.9 65.5 72.3 82.3 88.8 96.5 6.1

2019 0 (0) 87.4 3.5 73.7 80.7 87.9 92.1 95.1 5.3
Noise
Lden 10m (dB(A)) 2017 0 (0) 44.4 7.9 40.0 40.0 40.0 62.8 75.0 5.6
Lden 100m (dB(A)) 2017 0 (0) 44.6 6.1 40.0 40.0 40.7 57.1 73.0 8.3

Meteorology
Air temperature
Tmean (◦C) 2014 64 (0) 11.2 0.7 8.0 9.7 11.4 12.0 12.4 0.9

2019 64 (0) 11.3 0.8 7.8 9.6 11.4 12.3 12.7 1.0
Tmin (◦C) 2014 64 (0) 6.8 0.7 3.7 5.4 7.0 7.7 8.3 1.0

2019 64 (0) 6.5 0.7 2.9 4.9 6.7 7.4 7.7 1.0
Tmax (◦C) 2014 64 (0) 15.8 0.7 12.4 14.6 15.8 16.7 17.6 0.9

2019 64 (0) 15.9 0.6 12.6 14.8 15.9 16.8 17.4 1.0
Trange (◦C) 2014 64 (0) 9.0 0.5 6.3 8.2 8.9 9.7 10.6 0.6

2019 64 (0) 9.4 0.6 7.1 8.5 9.4 10.4 11.8 0.8
Relative humidity
RH Mean (%) 2014 129 (0.1) 79.3 1.8 75.6 76.2 79.3 82.1 85.1 3.0

2019 129 (0.1) 74.9 2.4 70.2 71.4 74.9 79.0 81.8 3.7
RH SD (%) 2014 129 (0.1) 10.1 1.3 7.0 8.3 10.0 12.1 13.3 2.4

2019 129 (0.1) 12.0 1.2 7.2 9.3 12.2 13.7 15.3 1.4
Greenspace
MODIS
NDVI 2014 6,641 (3.2) 0.56 0.10 0.08 0.38 0.57 0.70 0.83 0.15

2019 6,641 (3.2) 0.54 0.10 0.08 0.37 0.55 0.68 0.84 0.14
German Aerospace Center
NDVI 300m 2016 422 (0.2) 0.10 0.03 0.00 0.05 0.10 0.16 0.28 0.04
NDVI 1 km 2016 422 (0.2) 0.11 0.03 0.01 0.05 0.11 0.16 0.29 0.05

Land cover
Land cover 300m
Artificial land (%) 2015 521 (0.2) 67.9 24.8 0 18 74 98 100 37
Open soil (%) 2015 521 (0.2) 0.07 0.63 0 0 0 0 33 0
Vegetation (%) 2015 521 (0.2) 31.0 24.6 0 2 25 80 100 37
Water (%) 2015 521 (0.2) 1.0 3.8 0 0 0 6 76 0

Land cover 1 km
Artificial land (%) 2015 521 (0.2) 53.5 26.2 0 6 56 91 99 43
Open soil (%) 2015 521 (0.2) 0.15 0.58 0 0 0 1 21 0
Vegetation (%) 2015 521 (0.2) 44.0 26.3 1 8 41 92 100 42
Water (%) 2015 521 (0.2) 2.2 5.0 0 0 0 11 66 2

N: Total number; SD: Standard deviation; IQR: interquartile range; Pdens: population density; PM2.5: particulate matter ≤2.5 μm; PM2.5abs: PM2.5 absorbance; NO2:
nitrogen dioxide; O3: ozone; PM10: particulate matter ≤10 μm; Lden: Ambient road traffic noise day-evening-night levels; T: temperature; Trange: Diurnal temperature
range; RH: Relative humidity; NDVI: Normalised Difference Vegetation Index; MODIS: NASA Terra Moderate Resolution Imaging Spectroradiometer.
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also with regard to the changes from 2014 to 2019, e.g., mean air
temperature increased considerably for Berlin and Hannover but was
rather stable or slightly decreased for other regions (Supplemental
Fig. S14). Annual mean relative humidity decreased from 79.3 % in
2014 to 74.9 % in 2019, whereas the mean standard deviation increased
from 10.1 to 12.0 % (Table 2 and Supplemental Fig. S15). The range of
mean relative humidity was comparably larger in urban areas than in
suburban or rural regions with heterogeneous distributions across the
study centres (Supplemental Figs. S16 and S17).

3.6. Built environment

Long-term NDVI from the German Aerospace Center was similar for
both surroundings (300 m and 1 km) with comparably small levels
ranging from 0.01 to 0.29 for the latter (Table 2 and Supplemental
Fig. S18). The vegetation period average from MODIS monthly values
showed considerably larger levels and contrasts, e.g., 0.10–0.83 for
2014 (Table 2). The respective MODIS maps indicated some variation
over the years with e.g., lower levels for 2018, but no clear time trend
(Supplemental Fig. S19). As expected, a higher degree of vegetation was
observed for rural regions compared to urban areas and levels decreased
from 2014 to 2019 with a stronger decrease in rural regions
(Supplemental Figs. S20 and S21). Land cover showed highest pro-
portions for artificial land with a mean of 67.9 % within 300 m and 53.5
% within 1 km and vegetation (31.0 % within 300 m and 44.0 % within
1 km, see Table 2 and Supplemental Fig. S22).

3.7. Multi-exposure environment

Spearman correlation was moderate to high within the different
exposure groups, e.g., ranging from 0.5 to 0.9 for the air pollutants
(except O3 which showed an inverse association), 0.8 for the noise in-
dicators, NDVI (0.9) and population density (0.6–0.8), respectively
(Fig. 4). Regarding the built environment, artificial land and vegetation
within 300 m showed an extremely high inverse correlation (− 1.0) but

no correlation with open soil or water at all. Also, vegetation and NDVI
were highly correlated (0.7–0.9) and thus, both were inversely corre-
lated with population density (− 0.7 to − 0.6). The meteorological in-
dicators showed high correlation between the minimum, mean and
maximum temperature (0.8–0.9) and high inverse correlation between
mean relative humidity and its standard deviation or maximum tem-
perature (− 0.8). Correlations between the groups were mostly low to
moderate, but high correlations were observed for population density
with minimum and mean temperature, ELAPSE NO2 and PM2.5abs (all
0.8).

4. Discussion

This paper describes the comprehensive characterisation of the
multi-exposure environment of Germany’s largest prospective adult
cohort NAKO. We present exposure maps for long-term air pollution,
ambient road traffic noise, meteorology (air temperature, relative hu-
midity), and characteristics of the built environment (urbanisation,
greenspace, land cover) based on their high relevance for health. After
harmonisation and processing of the maps, we extracted relevant in-
dicators at the participants’ residential addresses to assess individual
exposures. We observed a large variation in all of the assigned envi-
ronmental exposures which is based on the heterogeneity of the 16 study
regions including highly urbanised areas, medium-sized cities but also
rural regions.

With regard to air pollution, the PM2.5 and NO2 maps of both sources
(ELAPSE and UBA) generally showed similar exposure patterns and
spatial contrasts. Although the assigned concentrations displayed a
greater variability for the higher spatially resolved ELAPSE data with
higher 2010 averages compared to the lower spatially resolved UBA data
for 2014 and 2019, the correlation was high (0.6 and 0.8 for UBA 2019
PM2.5 and NO2 with ELAPSE). For O3, the spatial contrasts varied over
the years for the UBA predictions and showed only a low correlation
with ELAPSE (0.3 with UBA 2019). Similar to PM2.5 and NO2, the
assigned ELAPSE O3 concentrations displayed greater variability than

Fig. 4. Spearman correlation coefficients of the environmental exposures at residential baseline addresses (most recent available year).
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the UBA O3 concentrations. However, while O3 increased from the start
of the baseline examination in 2014 to the end in 2019, we observed a
decrease in PM2.5 and NO2 which aligns with European-wide models
(Shen et al., 2022) and measurements (European Environment Agency
(EEA)b). In 2019, all participants were exposed to concentrations below
the current annual EU air quality standards of 25 and 40 μg/m3 for PM2.5
and NO2, but most of them were above the annual WHO guideline levels
of 5 and 10 μg/m3. The European Union (EU) has recently revised its
Ambient Air Quality Directive (AAQD) which entered into force in
December 2024 (Directive, 2024). The revised AAQD aims to align more
closely with the WHO recommendations and foresees 10 and 20 μg/m3

for PM2.5 and NO2 by 2030. In addition to regulated air pollutants, the
WHO suggested to assess exposure to black carbon and ultrafine parti-
cles (UFP) due to their potential health relevance, which has been taken
up by the EU in its revised AAQD by including mandatory UFP moni-
toring (World Health Organization WHO, 2021; Directive, 2024). Evi-
dence is still limited since measurements and models are lacking. We
assigned PM2.5abs as indicator for black carbon and aim to add UFP as
soon as data is available for our NAKO study regions.

Air pollution is often correlated with road traffic noise due to shared
sources, but we observed only a low to moderate correlation between
our air pollution and noise indicators. We used harmonised strategic
noise maps delivered under the END (Directive, 2002; European Com-
mision (EC), 2002) since a Germany-wide noise model was not avail-
able. Of all NAKO participants, 22 % were exposed to road traffic noise
levels above 55 dB Lden which are considered harmful for health
(European Environment Agency (EEA)c). However, recent studies indi-
cate that even noise levels below 55 dB Lden, which are currently not
required in the END mapping, can already contribute to adverse health
effects (Veber et al., 2022; Hegewald et al., 2021). Since the modelling
and documentation of levels below 55 dB(A) is not required, the NAKO
noise database contains this information only for a subset of the study
population. Moreover, we could not assign noise values to 31 % of our
participants since they lived in regions outside the mandatory END
mapping. The END noise maps also showed discrepancies regarding the
underlying noise mapping methods, data formats, borders, and report-
ing (Staab et al., 2024; Khomenko et al., 2022). Thus, we agree with
Khomenko and colleagues (Khomenko et al., 2022) that continuous
noise data mapping with wider noise exposure ranges would improve
the data quality and accuracy to assess population exposure to road
traffic noise in current as well as future analyses. For subsequent
epidemiological analyses using this data, we therefore presume an un-
derestimation of the actual association with health.

Air temperature levels mostly increased during our baseline exami-
nation with highest levels for urban areas confirming the general Eu-
ropean and global trends due to climate change (Copernicus). We
assigned several indicators (minimum, mean, maximum, Trange) as next
to increases in temperature and temperature extremes, also the
increased intraday und interday variability can be harmful for health
(Masselot et al., 2023; Zhang et al., 2023; Khraishah et al., 2022; Guo
et al., 2016; Liu et al., 2023; Wu et al., 2022). In addition, relative hu-
midity is usually taken into account as potential confounder or effect
modifier but has also been reported as an independent risk factor for
health (Mei et al., 2023; Guarnieri et al., 2023; Lepeule et al., 2018).
Furthermore, factors of the built environment play an important role
when investigating the effects of temperature, e.g., the cooling effects of
greenspace and mitigation of urban heat islands (Heaviside et al., 2017;
Qin et al., 2024). Greenspace is also inversely correlated with air
pollution and noise. Moreover, interactive effects have been reported for
heat and air pollution (Rai et al., 2023; Stafoggia et al., 2023). The role
of population density or urbanicity can be considered either as an effect
modifier or a risk factor (Niedermayer et al., 2024; Poulsen et al., 2023;
Ohanyan et al., 2022), depending on the specific outcome of interest.
This is particularly relevant for NAKO, which included study regions
encompassing urban, suburban, and rural areas. Thus, future analyses
should investigate not only single exposures but the joint and interactive

effects from an exposome perspective to improve our understanding of
the complex interplay, among each other but also with individual
characteristics of the NAKO participants.

A major strength of our study is the large number or participants
living in rural to urban regions reflecting a large variation in their multi-
exposure environment. We enriched the wealth of NAKO data by adding
high-quality environmental indicators which enables future multi-
exposure analyses. The environmental exposures characterised in this
paper showed high to moderate overall correlation. It is important to
point out that the study regions display different correlation patterns
and therefore, the overall power to disentangle the specific effects as
well as quantify the interactions between environmental exposures is
exceeding substantially the power of smaller, single region studies. We
will continuously extend the portfolio by adding further indicators of
climate change, for example number of heat and cold days, soil mois-
ture, novel exposures like light pollution, walkability and biodiversity.
In addition, we will enhance already characterised environmental ex-
posures by improved exposures maps, for example assigning higher
temporally and spatially resolved air pollution exposures from the
EXPANSE project (Shen et al., 2022). The longitudinal analysis of
environmental effects on health is enabled by two key factors: annual
exposure to environmental factors over long time periods and repeated
examinations in NAKO. In addition, daily exposures at participants’
residences are available for a number of environmental factors,
including air pollution and ambient temperature. These, combined with
physical examinations such as blood pressure, cognitive and lung
function tests, also allow the investigation of short-term effects on a
range of health outcomes. Furthermore, we will also consider regional
and neighbourhood indicators such as unemployment rates, area
deprivation, and education or income levels, in addition to individual
socioeconomic factors. Similar to urbanicity, these factors can be
considered either as modifier for environmental exposures or as an in-
dependent risk factor for various health outcomes (Dreger et al., 2019;
Cui et al., 2024; Lin et al., 2023). Finally, we tried to minimise the un-
certain geographic context problem by i) assessing the individual ex-
posures at the residential locations which we proxy as a key place of
exposure, ii) using the highest spatial resolution that was comparable for
all data points across Germany, and iii) calculating different buffer sizes
around the residencies to assess different spatial neighbourhoods with
buffer sizes based on the literature and prior knowledge.

Nevertheless, a major challenge is the difference in the spatial and
temporal coverage and resolution of available exposure data which
might introduce exposure measurement error in future epidemiological
analyses. Rather than considering measurement data from routine
monitoring sites, our focus was on the assignment of highly resolved
spatial or spatio-temporal data available for entire Germany to assess
participants’ individual exposure at their residences. Especially for
noise, the coverage is limited which lead to a high number of missings or
of participants in low exposure levels. Also, the categorical nature of the
data and restricted comparability across the modelled regions will be a
challenge for subsequent environmental health analyses. Moreover,
exposure to railway or aircraft noise has not been assigned in this first
step due to linear and selective exposure but might be included in future.
Moreover, the use of exposure variables with different time periods
might influence the results of the epidemiological analyses. However,
long-term studies are mainly investigating spatial contrasts which have
been reported to remain stable over time (Brunekreef et al.; de Hoogh
et al., 2018; Cesaroni et al., 2012; Vienneau et al., 2017). For air
pollution, we therefore decided to not only assign the UBA data which
cover the NAKO baseline examination period but also the older 2010
annual averages from ELAPSE due to the higher spatial resolution. A
general challenge is the exposure assessment by linking environmental
data to the residential addresses without knowing the exact amount of
time that people spend at home as currently, time-activity patterns are
not available for the NAKO participants. However, studies comparing
differences between residential and time-activity integrated exposures
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showed large correlations between exposure levels (>0.8) and almost
identical health effect estimates (Hoek et al., 2024). As these compara-
tive studies were mainly conducted in North America and Europe, we
are confident that this also applies to our cohort and that the bias related
to the assessment of long-term exposure at the residential address in
subsequent epidemiological analyses is likely small. Last, we did not
consider synergistic or interactive effects to identify co-occurring
exposure profiles and disentangle the main drivers. Sophisticated
methods are required to further elucidate the exposome perspective,
which are beyond the scope of this paper but should be investigated in
the future.

5. Conclusion

For the first time in Germany, a comprehensive population-based
dataset with high-quality environmental indicators is available. This
opens new potential for innovative research and deriving policy-
relevant information. Questions such as whether social disparities in
health are interlinked with environmental exposures can now be ana-
lysed, covering the population in whole Germany in a comparative
approach. Expanding the database by adding innovative indicators such
as light pollution, walkability, or biodiversity as well as socioeconomic
factors such as unemployment rate or area deprivation will further in-
crease its impact on science and public health.
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