Supplemental Information

Supplementary Figures

Figure S1

Figure S1. Control loci do not exhibit changes in nucleosome occupancy upon TRC induction on the episomal reporter system *in vivo*, Related to Figure 1

- A) ChIP-qPCR analysis for RNAPII levels at beta-Actin (ATCB) (n=4) and Intergenic control locus (n=2) of mAIRN HO and CD cells treated with 1 μg/mL DOX for 24 h. Bars indicate mean values with standard deviations (SD) Ordinary one-way ANOVA with Tukey's multiple comparison test.
- B) ChIP-qPCR analysis for histone H3 at ACTB (n=4) and Intergenic (n=2) in the same conditions as in A).

Figure S2. Characterization of monoclonal cell lines with integrated chromosomal TRC reporter genes, Related to Figure 2

- A) qPCR based DNA copy number analysis of several monoclonal cell lines generated by Sleeping Beauty-based integration of the mAIRN reporter sequence into the genome of U-2 OS cells. Signal is expressed as a ratio of mAIRN over ACTB (n=2).
- B) Sanger-sequencing verification of integration site on chr 10 in Clone#12 cells. The displayed fragment of a Sanger-sequencing read shows overlap with both the 5'-region of the reporter construct and the upstream genomic sequence of chr 10.
- C) RT-qPCR analysis of mAIRN RNA expression using primer pair mAIRN#1 in Clone#12 or parental U-2 OS cells treated with 0 or 1 μg/mL DOX for 4 h or 24 h. Error bars indicate mean values with standard deviations (SD). Ordinary one-way ANOVA with Tukey's multiple comparison test.
- D) Representative images of TRC PLA with RNAPII Ser2P and PCNA antibodies in U2OS Clone#1 cells (Ctrl and 4 h time points). Additional EdU click-it staining was performed to label S-phase cells. Cells were treated with 0 or 1 µg/mL DOX for TRC induction. Scale bar 10 µm.
- E) Quantification of TRC PLA foci number in S-phase cells from D) (n=3). Bars indicate mean values with standard deviations (SD). Unpaired t-test.
- F) Representative images of TRC PLA with RNAPII Ser2P and PCNA antibodies in parental U-2 OS cells without any integrations (Ctrl and 4 h time points). Additional EdU click-it staining was performed to label S-phase cells. Cells were treated with 0 or 1 μg/mL DOX for TRC induction. Scale bar 10 μm.
- **G)** Quantification of TRC PLA foci number in S-phase cells from D) (n=3). Bars indicate mean values with standard deviations (SD). Unpaired t-test.
- H) ChIP-qPCR analysis showing FANCD2 levels in asynchronous cells using primer pairs targeting the common fragile site (CFS) genes NRG3 and WWOX. Cells were treated with 0 or 1 µg/mL DOX or alternatively 0.4 µM Aphidicolin (APH) for 24 h to induce FANCD2 at CFS genes (n=4). Error bars indicate SD. Ordinary one-way ANOVA with Tukey's multiple comparison test.

- I) qPCR based DNA copy number analysis of several monoclonal cell lines generated by Sleeping Beauty-based integration of the ECFP reporter sequence into the genome of U-2 OS cells. Signal is expressed as a ratio of ECFP over ACTB (n=1).
- J) RT-qPCR analysis of mAIRN RNA expression using primer pair ECFP#1 in Clone#2 cells treated with 0 or 1 μg/mL DOX for 4 h or 24 h. Error bars indicate SD. Student's t-test.
- K) ChIP-qPCR analysis showing FANCD2 levels in Clone#12 and Clone#2 cells at the mAIRN#2 and ECFP#2 loci, respectively. Cells were treated with 0 or 1 μg/mL DOX 24 h (n=3). Error bars indicate SD. Ordinary one-way ANOVA with Tukey's multiple comparison test.
- L) Quantification of FANCD2 foci number in non-S-phase cells (related to Figure 2G and 2H) (n=3). Bars indicate mean values with standard deviations (SD). Ordinary one-way ANOVA with Tukey's multiple comparison test.
- M) Representative images of RNAPII pS2 immunofluorescence staining (Ctrl, 4 h and 24 h time points). Additional EdU click-it staining was performed to label S-phase cells. Cells were treated with 0 or 1 μg/mL DOX for TRC induction. Scale bar 10 μm.
- N) Quantification of RNAPII Ser2P intensity in arbitrary units (A.U.) in all cells from J) as well as additional time points (n=3). Bars indicate mean values with standard deviations (SD). Ordinary one-way ANOVA with Tukey's multiple comparison test.
- O) Quantification of EdU intensity in A.U. in all cells from J) as well as additional time points (n=3). Bars indicate mean values with standard deviations (SD). Ordinary oneway ANOVA with Tukey's multiple comparison test.
- P) Crystal violet staining after proliferation assay (168 h) of cells treated with 0 or 1 μg/mL DOX combined with 1 or 10 μM ATRi or DMSO control treatment. Related to Figure 2K.
- Q) Crystal violet staining after proliferation assay (168 h) of cells treated with 0 or 1 μg/mL DOX combined with 1 or 10 μM ATMi or DMSO control treatment. Related to Figure 2L.

Figure S3. TRC-driven DNA replication fork progression impairments strictly match the replication timing of the chromosomal reporter sites, Related to Figure 3

- A) BrdU flow cytometry analysis of asynchronous, double thymidine block arrested, and 4 h S-phase released cells. Frames in the cell distribution graphs show gating of G1, S, and G2 cell populations. Quantification of percentage of cells in each cell cycle phase shown below (n=3).
- B) DRIP-qPCR analysis showing R-loop levels at the RPL13A positive control site in G1 or 4 h released S-phase cell treated with 0 or 1 µg/mL DOX. For RNase H conditions, isolated genomic DNA from cells was treated with E. coli RNase H1 overnight to degrade R-loops (n≥3). Error bars indicate SD. Ordinary one-way ANOVA with Tukey's multiple comparison test.
- C) RT-qPCR analysis of mAIRN gene expression levels (mAIRN#1) in G1 or 4 h released S-phase cell treated with 0 or 1 µg/mL DOX (n=4). Error bars indicate SD. Ordinary one-way ANOVA with Tukey's multiple comparison test.
- **D)** Heatmap showing replicate correlation (Spearman's R) of both BrdU-seq replicates for all treatment conditions and time points. 'n' indicates the number of genomic bins.
- **E)** MA plot showing differential regulation of global BrdU-seq signal, 5 kb bins. Significant bins are highlighted in red, not significantly changed bins are shown in grey.
- **F)** Genome browser snapshot of BrdU-seq signal at the integrated mAIRN reporter construct at the 2 h S-phase timepoint in 0 or 1 μg/mL DOX treated cells, replicate 2.
- G) MA plot showing differential regulation of BrdU-seq signal at the 4 h S-phase release time point comparing DOX vs Ctrl conditions in the +/- 100 kb regions around the integration sites shown in Fig. 3D, 5 kb bins. Significant bins are highlighted in red, not significantly changed bins are shown in grey.
- H) Same as G) for the 6 h S-phase release time point.
- I) Same as G) for the 8 h S-phase release time point.

Figure S4

Figure S4. Fork stalling and nucleosome disruption are driven by stable RNase H1 resistant mAIRN R-loops, Related to Figure 4

- A) ChIP-qPCR analysis showing RNAPII Ser2P levels at the ACTB control locus in synchronized S-phase cells 4 h after release from double thymidine block. Cells were treated with 0 or 1 μg/mL DOX for 4 h (n=3). Error bars indicate SD. Welch's t-test.
- B) ChIP-qPCR analysis showing histone H3 levels at the NRXN2 control locus in the same conditions as in A) (n=3).
- C) Representative Western Blot showing RNase H1-FLAG levels in Clone#12 upon overexpression of RNase H1 (RNH1) or an empty vector plasmid (Ctrl) for 24h. ORC2 loading control.
- D) ChIP-qPCR analysis of FANCD2 levels in Clone#12 cells at the mAIRN#1 locus upon overexpression of RNase H1 or an empty vector plasmid for 24h. Cells were treated with 0 or 1 µg/mL DOX for 24 h (n≥2). Error bars indicate SD. Ordinary one-way ANOVA with Tukey's multiple comparison test.
- E) ChIP-qPCR analysis showing histone H3 levels at the mAIRN#1 locus in the same conditions as in D) (n=3).
- F) ChIP-qPCR analysis of Histone H3 levels in Clone#12 and Clone#2 cells at the mAIRN#2 and ECFP#2 loci, respectively. Cells were treated with 0 or 1 μg/mL DOX for 24 h (n=3). Error bars indicate SD. Student's test.
- G) ChIP-qPCR analysis for NRXN2 control locus in Clone#12 and Clone#2 cells in the same conditions as in F). Error bars indicate SD. Ordinary one-way ANOVA with Tukey's multiple comparison test.

Figure S5. TRC induction does not disrupt global transcription and nucleosome dynamics, Related to Figure 4

- A) RT-qPCR analysis of gene expression levels of genes containing or neighboring different reporter integration sites. Synchronized G1 or 4 h released S-phase cells were treated with 0 or 1 µg/mL DOX for 4 h. (n=3). Error bars indicate SD. Ordinary one-way ANOVA with Tukey's multiple comparison test.
- B) MA plot showing differential regulation of global RNAPII Ser2P ChIP signal, 1 kb bins. Significant mAIRN bins are highlighted in red, not significantly changed bins are shown in grey.
- C) MA plot showing differential regulation of global histone H3 ChIP signal, 1 kb bins. Significant mAIRN bins are highlighted in red, not significantly changed bins are shown in grey.
- D) Representative genome browser snapshot of a 20 kb region around the Chr 9 integration site (highlighted bar) showing RNAPII Ser2P and histone H3 occupancy in DOX treated or untreated conditions in synchronized S-phase cells.
- E) Representative genome browser snapshot of a 40 kb region around the Chr 10 integration site (highlighted bar) showing RNAPII Ser2P and histone H3 occupancy in DOX treated or untreated conditions in synchronized S-phase cells.

Figure S6

Figure S6. H3K79 methylation is enriched at genomic TRC and R-loop sites, Related to Figure 5

- A) Histone H3 ChIP-qPCR in G1 or 4 h released S-phase cell treated with 0 or 1 μg/mL DOX. H3 levels were tested at the reporter sequence with primers at TSS, mAIRN#1, or mAIRN#2 (n=3). Error bars indicate SD. Ordinary one-way ANOVA with Tukey's multiple comparison test.
- **B)** Same as in A) with primers at the NRXN2 control locus.
- C) Analysis of H3K4me3, D) H3K27me3, E) H3K36me3, and F) H3K79me3 ChIP signal from HeLa cells at genic origins within actively transcribed genes. The analysis windows around the regions are 24 kb in size and at least 5 kb away from promoters and terminators. Error bands represent a 95 % confidence interval as determined by a bootstrap of the mean.
- G) Box-plot comparing H3K79me2 and H3K79me3 ChIP signal at sites overlapping (+) or not overlapping (-) with R-loops. Bin size 5 kb. ´n´ indicates number of genomic bins.
- H) Genome browser snapshot of two genomic example regions with R-loop-prone genes from chr 7 and chr 19 showing overlapping qDRIP-seq, H3K79me2, and H3K79me3 ChIP-seq signal in HeLa cells.
- I) Same as in C) for H2AK119ub in MCF7 cells.

Figure S7. Effect of DOT1L inhibition on H3K79 methylation and transcription at control sites, Related to Figure 6

- A) Representative Western blot of H3K79me3 upon 1 μM and 5 μM DOT1L inhibition (EPZ-5676) or DMSO control treatment for 8 h or 72 h. GAPDH and ORC2 loading controls. Quantification of H3K79me3 signal shown below.
- B) H3 normalized H3K79me2 ChIP-qPCR in cells treated with 5 μM DOT1L inhibition (EPZ-5676) for 8 h and 72 h as well as 0 or 1 μg/mL DOX. H3K79me2 levels at the control site were tested with the ACTB intron 3 (ACTB#in3) primers (n=3). Error bars indicate SD. Ordinary one-way ANOVA with Tukey's multiple comparison test.
- **C)** Histone H3 ChIP-qPCR at the mAIRN#1 and NRXN2 control locus in the same conditions as in **B)**.
- D) Quantification of TRC PLA foci (RNAPII Ser2P and PCNA antibodies) in S-phase cells. Cells were treated with DMSO or 720 or 1 µg/mL DOX for 4 h (n=3). Bars indicate mean values with standard deviations (SD). Unpaired t-test.
- E) Representative Western Blot of DOT1L and H3K79me2 levels upon knockdown of DOT1L (siDOT1L) for 24 h, 48 h, and 72 h compared to non-targeting siRNA control (Ctrl). GAPDH loading control. Quantification of DOT1L and H3K79me2 signal shown below.
- F) Quantification of PLA foci (DOT1L and PCNA antibodies) in EdU+ or EdU- cells. Cells were treated with Ctrl or siDOT1L (n=4). Single antibody controls for PCNA and DOT1L show the level of background signal (n=3). Bars indicate mean values with standard deviations (SD). Unpaired t-test.
- G) Analysis of H3K79me2 ChIP signal from MOLM13 cells at intragenic origins within actively transcribed genes previously defined in HeLa cells. The analysis windows around the regions are 24 kb in size and excluded from the analysis if positioned within 5 kb from promoters and terminators. H3K79me2 signal accumulates at HO side of origins in gene bodies compared to the CD side. Error bands represent a 95 % confidence interval as determined by a bootstrap of the mean.
- H) RT-qPCR analysis of RNA expression using primer pair ALAS1 and PUM1 in cells treated with 5 µM DOT1L inhibition (EPZ-5676) or DMSO control treatment for 8h. Additionally, 0 or 1 µg/mL DOX were added for 4 h (n=3). Error bars indicate mean

values with standard deviations (SD). Ordinary one-way ANOVA with Tukey's multiple comparison test.

- I) RT-qPCR analysis of RNA expression at mAIRN#2 in cells treated with 25 µM DOT1L inhibition (EPZ-004777) or DMSO control treatment for 8h. Additionally, 0 or 1 µg/mL DOX were added for 4 h (n=3). Error bars indicate SD. Student's t-test.
- J) Same as in I) for control loci ALAS1 and PUM1.
- K) RT-qPCR analysis of RNA expression at mAIRN#2 in cells treated with siCtrl or siDOT1L for 72h. Additionally, 0 or 1 μg/mL DOX were added for 4 h (n=3). Error bars indicate SD. Student's t-test.
- L) Same as in I) for control loci ALAS1 and PUM1.

Table S1: Integration site positions

CHROMOSOME	START LOCATION	END LOCATION	NAME	PHASE	STRAND
2	104941714	104941978	Chr 2 site 1	0	
2	168374974	168375175	Chr 2 site 2	0	
5	134521192	134521451	Chr 5 site	0	
9	137626501	137626702	Chr 9 site	0	
10	87030690	87030891	Chr 10 site	0	

Table S2: Experimental model systems

REAGENT or RESOURCE	SOURCE	IDENTIFIER
U-2 OS Tet-ON	Takara Clontech	Michael Kirsch; Cat# 630919
HEK293 Tet-ON	Takara Clontech	Cat# 631182

Table S3: Antibodies

Antibody Name	SOURCE	IDENTIFIER
Monoclonal mouse IgM anti RNA	BioLegend	Cat#920204;
polymerase II RPB1 (H5)		RRID:AB_2616695
Polyclonal rabbit IgG anti PCNA	Abcam	Cat#ab18197;
		RRID:AB_444313
Polyclonal goat anti mouse IgG Alexa	Invitrogen	Cat#A-32723,
Fluor Plus 488 labeled		RRID:AB_2633275
Polyclonal goat anti rabbit IgG Alexa	Invitrogen	Cat#A-11008;
Fluor Plus 488 labeled		RRID:AB_143165
Polyclonal goat anti mouse IgG Alexa	Invitrogen	Cat#A-11032;
Fluor Plus 594 labeled		RRID:AB_2534091
Polyclonal goat anti rabbit IgG Alexa	Invitrogen	Cat#A-11037;
Fluor Plus 594 labeled		RRID:AB_2534095
Polyclonal goat anti mouse IgG Alexa	Invitrogen	Cat#A-32728;
Fluor Plus 647 labeled		RRID:AB_2866490
Polyclonal goat anti rabbit IgG Alexa	Invitrogen	Cat#A-21245;
Fluor Plus 647 labeled		RRID:AB_2535813
Monoclonal mouse IgG1 anti BrdU (B44)	BD bioscience	Cat#347580,
		RRID:AB_400326
Mouse monoclonal anti-RNA Polymerase	Merck	Cat#05-952; RRID:
II CTD Antibody (8WG16)		AB_11213782
Polyclonal rabbit anti human FANCD2	NovusBio	Cat#NB100-182;
		RRID:AB_10002867
Polyclonal rabbit IgG anti ORC2	Thermo Fisher Scientific	Cat#PA5-67313;
		RRID:AB_2663245
Monoclonal mouse IgG anti GAPDH	Merck	Cat#CB1001-500UG;
(6C5)		RRID:AB_2107426
Monoclonal rabbit IgG anti yH2A.X	Cell Signaling	Cat#9718S;
(Ser139) (20E3)	Technology	RRID:AB_2118009

Monoclonal mouse IgG anti DNA-RNA-	Merck	Cat#MABE1095;
hybrid (S9.6)		RRID:AB_2861387
Polyclonal RNA polymerase II CTD	Abcam	Cat#ab5095;
repeat YSPTSPS (phospho S2)		RRID:AB_304749
Polyclonal rabbit anti Histone H3	Abcam	Cat#ab1791;
		RRID:AB_302613
Polyclonal rabbit anti Histone H3K4me3	Abcam	Cat#ab8580;
		RRID:AB_306649
Monoclonal rabbit anti Ubiquityl-Histone	Cell Signaling	Cat#8240S;
H2AK119ub (D27C4)	Technology	RRID:AB_10891618
Polyclonal rabbit anti Histone H3K79me2	Active Motif	Cat#39143;
		RRID:AB_2561018
Polyclonal rabbit anti Histone H3K79me3	Abcam	Cat#ab195500;
		RRID:AB_2888917
Monoclonal rabbit IgG anti DOT1L	Cell Signaling	Cat#77087;
(D1W4Z)	Technology	RRID:AB_2799889
Goat Anti-Rabbit IgG (H+L), Horseradish	Invitrogen	Cat#G21234;
peroxidase conjugate		RRID:AB_2536530
Goat Anti-mouse IgG (H+L), Horseradish	Invitrogen	Cat#G21040;
peroxidase conjugate		RRID:AB_2536527
DYKDDDDK (FLAG) Tag Polyclonal	Thermo Fisher Scientific	Cat# PA1-984B
Antibody		RRID:AB_347227

Table S4: Bacterial Strains

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Escherichia coli DH5alpha	Thermo Fisher Scientific	Cat#18265017	

Table S5: Chemicals and recombinant proteins

REAGENT OR RESOURCE	SOURCE	IDENTIFIER
Puromycin	Sigma Aldrich	Cat#P9620-10ML
Thymidine	Sigma-Aldrich	Cat#T9250-5G
5-Ethynyl-2'-deoxyuridine (EdU)	Carl Roth	Cat#7845.3
5-Bromo-2'-Deoxy-Uridine (BrdU)	Sigma Aldrich	Cat#B5002-1G
Lipofectamine 3000	Thermo Scientific	Cat#L3000001
Dulbecco's Modified Eagle Medium (DMEM)	Gibco	Cat# 41966-029
Penicillin-Streptomycin-Glutamin (100x) (PSG)	Gibco	Cat# 10378-016
Fetal bovine serum for cell culture (tetracycline-free) (FBS tet-)	Takara	Cat# 631106
Dulbecco's phosphate-buffered saline (PBS)	Gibco	Cat# 14190-094
0.25 % Trypsin-EDTA (1x)	Gibco	Cat# 25200-072
Opti-MEM I (1X) + GlutaMAX -I	Gibco	Cat# 51985-034
RNase A	Thermo Scientific	Cat#EN0531

E. coli RNase H	New England Biolabs	Cat#M0297S
DNase I	New England Biolabs	Cat# M0303S
MNase	New England Biolabs	Cat#M0247S
Proteinase K	SERVA	Cat#33756
TRIzol	Invitrogen	Cat#15596-026
phenol:chlorophorm:isoamyl alcohol (25:24:1; v/v)	Invitrogen	Cat# 15593-031
OmniPur Phenol:Chloroform:Isoamyl Alcohol, 25:24:1	Millipore	Cat#6805-100ML
Glycogen	Thermo Fisher Scientific	Cat#AM9510
Ampure XP beads	Beckman Coulter	Cat#A63880
Protein A/G agarose	Thermo Scientific	Cat#20421
Pierce Protein G Magnetic Beats	Thermo Scientific	Cat# 88847
Halt Protease-Inhibitor-Cocktail (100x)	Thermo Scientific	Cat#78429
Halt Protease and Phosphatase Inhibitor Cocktail (100x)	Thermo Scientific	Cat# 78446
Trizol reagent	Invitrogen	Cat# 15596018
Propidiumiodid	Invitrogen	Cat# P3566
SiR-DNA	Tebu-bio	Cat#SC007
4',6-Diamidino-2-phenylindole dihydrochloride (DAPI)	Sigma Aldrich	Cat# 32670
AlexaFluor 594 azide	ThermoFisher Scientific	Cat# A10270
AlexaFluor 488 azide	ThermoFisher Scientific	Cat# A10266
Ascorbic acid	Sigma-Aldrich	Cat#A7506-100G
BSA Fraction V	Sigma-Aldrich	Cat#10735078001
Hydroxyurea (HU)	Biomol	Cat#H9120.10
VE-821 (ATR inhibitor)	Biomol	Cat#Cay17587-5
KU-60019 (ATM inhibitor)	Sigma Aldrich	Cat#SML1416-5MG
EPZ-5676 (DOT1L inhibitor)	BPS Bioscience	Cat#27625
EPZ 004777	Tocris	Cat#5567
Aphidicolin (APH)	Santa Cruz	Cat#SC-201535
Doxycycline hydrochloride (DOX)	Sigma-Aldrich	Cat#D3447
Igepal CA-630	Sigma-Aldrich	Cat#I3021-100ML
Tween-20	Kraft	Cat#21440.2000
Triton X-100	Sigma-Aldrich	Cat#X100-100ML
Deoxycholic acid	Santa Cruz	Cat#sc-214865A
[α-32P] dATP	Hartmann Analytik	Cat#SCP-203

Table S6: Critical commercial assays

REAGENT or RESOURCE	SOURCE	IDENTIFIER
SuperSignal™ West Pico PLUS Chemiluminescent Substrate	ThermoFisher	Cat#34580

iTaq Universal SYBR Green Supermix	Bio-Rad; REF	Cat#1725121
Proteinase K	SERVA	Cat#33756
SuperScript III First-Strand Synthesis System	Thermo Fisher Scientific	Cat#18080-051
Invitrogen™ Click-iT™ EdU Cell Proliferation Kit for Imaging, Alexa Fluor 488 dye	Invitrogen	Cat#C10337
Invitrogen™ Click-iT™ EdU Cell Proliferation Kit for Imaging, Alexa Fluor 594 dye	Invitrogen	Cat#C10339
Duolink detection reagents (ligation/amplification) - FarRed	Sigma Aldrich	Cat#DUO92013
Duolink detection reagents (ligation/amplification)- Green	Sigma Aldrich	Cat# DUO92014
Duolink <i>In Situ</i> PLA Probe Anti-Mouse PLUS	Sigma Aldrich	Cat#DUO92001
Duolink <i>In Situ</i> PLA Probe Anti-Rabbit PLUS	Sigma Aldrich	Cat#DUO92002
Duolink <i>In Situ</i> PLA Probe Anti-Mouse MINUS	Sigma-Aldrich	Cat#DUO92004
Duolink <i>In Situ</i> PLA Probe Anti-Rabbit MINUS	Sigma Aldrich	Cat#DUO92005
RadPrime DNA labeling Kit	Thermo Fisher Scientific	Cat#18428011
NEBNext Ultra II DNA Library Kit with Purification Beads	New England Biolabs	Cat#E7103S
Qubit 1X dsDNA HS Kit	Thermo Fisher Scientific	Cat#Q33230
Gibson Assembly Cloning Kit	New England Biolabs	Cat# E5510S

Table S7: Oligonucleotides

PRIMER	SOUR CE	SEQUENCE 5'-3'	APPLICATIO N
TSS FWD	This paper	ATGTCGAGGTAGGCGTGTAC	ChIP-qPCR
TSS REV	This paper	TGAAGCCTCGGGTACCGAGCTCGAATTC	ChIP-qPCR
mAIRN#1 FWD	This paper	TAGAGGATTCCGCAAAGGAA	ChIP-qPCR, DRIP, RT- qPCR, Copy number analysis
mAIRN#1 REV	This paper	TTCACCCTAGCGCTGAATCT	ChIP-qPCR, DRIP, RT- qPCR, Copy number analysis
mAIRN#2 FWD	This paper	CGAGAGAGGCTAAGGGTGAA	ChIP-qPCR, DRIP, RT- qPCR, Copy

			number
			analysis
mAIRN#2/	This	ACATGGTCCTGCTGGAGTTC	ChIP-qPCR,
ECFP#2 REV	paper		DRIP, RT-
			qPCR, Copy
			number
			analysis
ECFP#1 FWD	This	ACGTAAACGGCCACAAGTTC	ChIP-qPCR,
	paper		RT-qPCR,
			Copy number
			analysis
ECFP#1 REV	This	AAGTCGTGCTGCTTCATGTG	ChIP-qPCR,
	paper		RT-qPCR,
			Copy number
			analysis
ECFP#2 FWD	This	TGGTTTGTCCAAACTCATCAA	ChIP-qPCR,
	paper		RT-qPCR,
			Copy number
			analysis
NRXN2 FWD	This	CGCAAAGCCCAGTTGTTCTG	ChIP-qPCR
	paper		
NRXN2 REV	This	TTAAATTGGGGTTGCCGTGC	ChIP-qPCR
	paper		
Intergenic	This	CCAGGTGGGTCTCGAACTTC	ChIP-qPCR,
FWD	paper		DRIP
Intergenic	This	CAGGCTGGGCAACATACTGA	ChIP-qPCR,
REV	paper		DRIP
ACTB FWD	This	CGGGGTCTTTGTCTGAGC	ChIP-qPCR,
	paper		Copy number
			analysis
ACTB REV	This	CAGTTAGCGCCCAAAGGAC	ChIP-qPCR,
	paper		Copy number
			analysis
ACTB#in3	(1)	TAACACTGGCTCGTGTGACAA	ChIP-qPCR
FWD			
ACTB#in3	(1)	AAGTGCAAAGAACACGGCTAA	ChIP-qPCR
REV			
M13 FWD	This	GTAAAACGACGGCCAGT	ChIP-qPCR,
	paper		DRIP
M13 REV	This	CAGGAAACAGCTATGAC	ChIP-qPCR,
	paper		DRIP
RPL13A FWD	This	AGGTGCCTTGCTCACAGAGT	DRIP
	paper		
RPL13A REV	This	GGTTGCATTGCCCTCATTAC	DRIP
	paper		
ACTB RT-	This	CCTGGCACCCAGCACAAT	RT-gPCR
qPCR	paper		
ACTB RT-	This	GGGCCGGACTCGTCATACT	RT-qPCR
qPCR	paper		
ALAS1 FWD	(2)	GGCAGCACAGATGAATCAGA	RT-gPCR

ALAS1 REV	(2)	CCTCCATCGGTTTTCACACT	RT-qPCR
PUM1 FWD	(2)	CAGGCTGCCTACCAACTCAT	RT-qPCR
PUM1 REV	(2)	GTTCCCGAACCATCTCATTC	RT-qPCR
MRSP9-AS2	This	GCTTGTGAGCAACCCAAGAA	RT-qPCR
FWD	paper		
MRSP9-AS2	This	CGGCATCTCGTTAGCTCTGA	RT-qPCR
	paper		
CERS6 FWD	This paper	AAGCTGGGAGATCGTTGGAC	RT-qPCR
CERS6 REV	This	CATCCTTGGACACCTTGCCT	RT-gPCR
	paper		
STK39 FWD	This	AGGAGGTTATCGGCAGTGGA	RT-qPCR
	paper		
STK39 REV	This	CTGGTCTGGCATTTTTCCAAGT	RT-qPCR
	paper		
FAM25A FWD	This	ATCCTAGTTCACCACTGTCTGC	RT-qPCR
	paper		
FAM25A REV	This	CTTCCACGGCATGAATGGCTC	RT-qPCR
	paper		
GLUD1 FWD	This	TGCAAGGGAGGTATCCGTTA	RT-qPCR
	paper		
GLUD1 REV	This	CAAACGGCACATCAACCACT	RT-qPCR
	paper		
MT073_gib_in	This	CTATCTAGACGCCATATTAGTCATTGGTTATATA	Cloning
s_FWD	paper	GCATAAATCAATATTGGCT	
MT073_gib_in	This	ATTGTTGTTGTTAGGTTTTACTTGCTTTAAAAAA	Cloning
S_REV	paper		
MI0/3_glb_b	Ihis		Cloning
	paper		
	This	ACTAATATGGCGTCTAGATAGCGGACCCC	Cloning
b_IEV	paper		
Int_site chr10	This	CCACCCACATCCTGCTGATT	Sanger
FWD	paper		sequencing
siPOOL 2 -	sitool	Cat#si-G020-84444	siRNA KD
siDOT1L	S		
	Biotech		
siPOOL 2 -	siTOOL	Cat#si-C002	siRNA KD
negative	S		
control	Biotech		

Table S8: Plasmids

PLASMID	INSERT	CONSTRUCTION/SOURCE
K031_pSH26 1x LEXA	-	(3)
K069_pSH36 1xLEXA	-	(3)
K072_pSH37 1xLEXA	-	(3)
K191_pSB100	-	Tomas Zikmund

K192_pSBtet_DNMT3A_P 2A_dsRed2	-	Tomas Zikmund
K275_pMT03_sb_mAIRN_ puroR	Tight-TRE promoter_m AIRN- reporter_SV 40-polyA	Tight-TRE promoter_mAIRN-reporter_SV40- polyA insert was amplified from K069_pSH36 1x LEXA with primers MT073_gib_ins_FWD and MT073_gib_ins_REV, Sleeping Beauty backbone from K192_pSBet_DNMT3A_P2A- dsRed2 was amplified using primers MT073_gib_bb_FWD and MT073_gib_bb_REV, insert and backbone were joined using Gibson assamebly
K276_pMT04_sb_ECFP_p uroR	Tight-TRE promoter_E CFP - reporter_SV 40-polyA	Tight-TRE promoter_ECFP-reporter_SV40-polyA insert was amplified from K031_pSH26 1x LEXA with primers MT073_gib_ins_FWD and MT073_gib_ins_REV, Sleeping Beauty backbone from K192_pSBet_DNMT3A_P2A- dsRed2 was amplified using primers MT073_gib_bb_FWD and MT073_gib_bb_REV, insert and backbone were joined using Gibson assamebly
K016_pcDNA3.1(+) ΔN1- 27 RNAseH1-FLAG	-	(3)
K206_pcDNA3.1(+)	-	(3)

Table S9: Software and algorithms

REAGENT or RESOURCE	SOURCE	WEB LINK
ImageJ	NIH	https://imagej.net/ij/index.html
FlowJo (version 10)	BD Bioscience	
bwa (version 0.7.17)	(4)	https://github.com/lh3/bwa
samtools (version 1.16.1 and 1.17)	(5)	https://www.htslib.org/doc/samtools.html
tiddit (version 3.3.2)	(6)	https://github.com/SciLifeLab/TIDDIT/releases/tag/TIDDIT-3.3.2
bedtools (version 2.31.0)	(7)	https://github.com/arq5x/bedtools2/releases/tag/ v2.31.0
rtracklayer (version 1.54.0)	R Core Team	https://bioconductor.org/packages/3.18/bioc/htm I/rtracklayer.html
GenomicRanges (version 1.46.1)	(8)	https://bioconductor.org/packages/release/bioc/ html/GenomicRanges.html
R v4.1.2	R Core Team	https://www.r-project.org
trim_galore (version 0.6.10)	(9)	https://www.bioinformatics.babraham.ac.uk/proj ects/trim_galore/
bowtie2 (version 2.5.1)	(5)	https://bowtie- bio.sourceforge.net/bowtie2/index.shtml
picard MarkDuplicates (version 3.0.0)	Broad Institute	https://broadinstitute.github.io/picard/

deeptools (version	(10)	https://deeptools.readthedocs.io/en/develop/ind
3.5.2)		<u>ex.html</u>
DESeq2 package	(11)	https://github.com/thelovelab/DESeg2
(version 1.34.0)		
sva package (version	(12)	https://bioconductor.org/packages/release/bioc/
3.42.0)		html/sva.html
pheatmap (version	Raivo Kolde	https://CRAN.R-project.org/package=pheatmap
1.0.12)		
macs2 (version 2.2.9.1)	(13)	https://pypi.org/project/MACS2/
Fusion (version 2.3)	Andor Oxford	https://andor.oxinst.com/downloads/view/fusion-
	Instruments	release-2.3

References

- 1. Skourti-Stathaki,K., Kamieniarz-Gdula,K. and Proudfoot,N.J. (2014) R-loops induce repressive chromatin marks over mammalian gene terminators. *Nat. 2014* 5167531, **516**, 436–439.
- 2. Dong,X., Yang,Q., Du,Z., Zhang,G., Shi,C., Qin,X. and Song,Y. (2022) Identification of optimal reference genes for gene expression normalization in human osteosarcoma cell lines under proliferative conditions. *Front. Genet.*, **13**.
- 3. Hamperl,S., Bocek,M.J., Saldivar,J.C., Swigut,T. and Cimprich,K.A. (2017) Transcriptionreplication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. *Cell*, **170**, 774.
- 4. Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*, **25**, 1754–1760.
- 5. Danecek,P., Bonfield,J.K., Liddle,J., Marshall,J., Ohan,V., Pollard,M.O., Whitwham,A., Keane,T., McCarthy,S.A. and Davies,R.M. (2021) Twelve years of SAMtools and BCFtools. *Gigascience*, **10**.
- Lindstrand,A., Eisfeldt,J., Vezzi,F., Olason,P. and Nilsson,D. (2017) TIDDIT, an efficient and comprehensive structural variant caller for massive parallel sequencing data. *F1000Research*, 6.
- 7. Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics*, **26**, 841–842.
- Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., Morgan, M.T. and Carey, V.J. (2013) Software for Computing and Annotating Genomic Ranges. *PLOS Comput. Biol.*, 9, e1003118.
- Krueger, F., James, F., Ewels, P., Afyounian, E., Weinstein, M., Schuster-Boeckler, B., Hulselmans, G. and Sclamons (2023) FelixKrueger/TrimGalore: v0.6.10 - add default decompression path. *Zenodo*, 10.5281/ZENODO.7598955.
- Ramírez,F., Ryan,D.P., Grüning,B., Bhardwaj,V., Kilpert,F., Richter,A.S., Heyne,S., Dündar,F. and Manke,T. (2016) deepTools2: a next generation web server for deepsequencing data analysis. *Nucleic Acids Res.*, 44, W160–W165.
- 11. Love,M.I., Huber,W. and Anders,S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.*, **15**.
- 12. Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe, A.E. and Storey, J.D. (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. *Bioinformatics*, **28**, 882–883.
- Zhang,Y., Liu,T., Meyer,C.A., Eeckhoute,J., Johnson,D.S., Bernstein,B.E., Nussbaum,C., Myers,R.M., Brown,M., Li,W., *et al.* (2008) Model-based analysis of ChIP-Seq (MACS). *Genome Biol.*, 9.