
Mammalian Genome
https://doi.org/10.1007/s00335-025-10104-4

21 academic research institutions across 15 countries on 
5 continents, including leading laboratories from Europe, 
North America, Asia, and Africa. IMPC members agreed 
a mission to “create a comprehensive catalog of mamma-
lian gene function that is freely available for researchers” 
by producing mouse models with targeted disruptions of 
every human orthologous protein-coding gene in the mouse 
genome. These knockout models have been and continue to 
be subjected to a standardized series of phenotyping assays 
across multiple body systems (Brown and Moore 2012a, b; 
Brown et al. 2005), allowing for identification of key bio-
logical processes and functional pleiotropy (Brown and Lad 
2019), sexual dimorphism (Karp et al. 2017; Wilson et al. 
2022), and essentiality for each gene (Cacheiro et al. 2020). 
Depositing mice and data into publicly accessible reposi-
tories are making these resources available for researchers 
around the world to extend this new knowledge into studies 
of the genetic effects on specific disease mechanisms. These 
efforts aim to accelerate disease diagnoses, identify new 
druggable targets, develop novel therapeutic interventions, 
and enact effective disease prevention strategies (Groza et 
al. 2023).

The impact

To date, data emerging from the study of IMPC mice has 
become an invaluable scientific resource for the biomedical 
research community, facilitating the study of gene function 
and the identification of novel therapeutic targets for human 
diseases. The vast phenotypic data generated not only in the 
project consortium itself but also by the greater biomedical 
research community using IMPC-generated mouse models 
and data has substantially enhanced our understanding of 
gene-disease relationships and genetic influences on mecha-
nisms of disease. A publication tracking system using natu-
ral language processing methods, followed by annotator 
reviews through an IMPC-specific literature monitoring and 
curation tool (Cacheiro et al. 2024), identified nearly 7,500 
papers that have used IMPC mice, data, and/or biomaterials 

The challenge

Complete sequencing of genomes for human, mouse, and 
several other species was a technological breakthrough that 
identified and mapped thousands of genes and non-coding 
regions, much of which had heretofore been unknown. But 
it soon became apparent that significant knowledge gaps 
existed in understanding the in vivo function of most of 
these genes. Scientific research progress to address this 
deficiency was painstakingly slow and arduous, resulting 
in only partial functional annotation of a small number of 
well-characterized genes and gene sets. This self-fulfilling 
research paradigm overlooked genes with little to no known 
function, leaving in its wake a neglected “dark” genome. To 
accelerate progress and reveal gene function and insights 
into genetic associations and causes of disease, a fundamen-
tal shift from incremental steps to transformative change 
was needed. In response, a collaborative, global initiative 
emerged to systematically generate and phenotype a com-
prehensive collection of genetically modified “knockout” 
mouse models. This mandate was adopted and imple-
mented by the International Mouse Phenotyping Consor-
tium (IMPC) (Brown and Moore 2012a, b), a network of 
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to expand preclinical knowledge on a variety of diseases 
and disorders, including cardiac dysfunction (Guo et al. 
2018; Wang et al. 2019; Spielmann et al. 2022), schizo-
phrenia (Mihali et al. 2012; Lago and Bahn 2022; Garrett et 
al. 2024), Alzheimer’s (Rao et al. 2020; Cheng et al. 2021; 
Wang et al. 2021), ciliopathies (Wang et al. 2020; Higgins 
et al. 2022), osteoporosis (Swan et al. 2020; Formosa et al. 
2021; Stein et al. 2023), metabolic syndrome (Ng and Gloyn 
2013; Rozman et al. 2018; Andersen et al. 2022), hearing 
loss (Bowl et al. 2017; Trpchevska et al. 2022), develop-
mental conditions(Dickinson et al. 2016; Dhombres et al. 
2022), ophthalmic disorders (Khaled et al. 2019; Chee et 
al. 2023; Fritsche et al. 2016), dermatopathologies (Morell 
et al. 2022), and others. As shown in Fig. 1, according to 
NIH iCite, a digital tracking tool for citations (Hutchins et 
al. 2019a, b), influence (Hutchins et al. 2016, 2017) and the 
prediction of translational progress (Hutchins et al. 2019a, 
b), the exact number of 7468 IMPC-related publications 
from 2005 to 2024 have resulted in a total of 294,688 cita-
tions. These publications originated either from consortia 
contributing to the development of IMPC like EUMOR-
PHIA (Brown et al. 2005), EUCOMM (Friedel et al. 2007), 
EUMODIC and Sanger MGP (Hrabe et al. 2015; Ayadi et 
al. 2012), from the IMPC itself, or from researchers using 
IMPC resources. Altogether they resulted in a weighted 
relative citation ratio (RCR) of 14943.96, more than double 
the number of total publications, indicating a highly influ-
ential set of articles. These achievements, and surely more 
to come, will fuel successful research grant applications 
and publication of more scientific papers on an even greater 
variety of disease topics in the future, especially as newer 
data are added to the growing catalogue of mouse models 
for more genes in the remaining years of the project.

An expanding community of users and growing numbers 
of papers indicate that the IMPC is fulfilling expectations 
and delivering new scientific knowledge about genes and 
gene function that is useful for the scientific community. 

While this demonstrates the IMPC has been effectively illu-
minating the previously dark genome, these metrics do not 
reflect the translational impact of IMPC. For example, how 
has IMPC inspired clinical insights, catalyzed the accuracy 
and speed of disease diagnoses, accelerated the identifica-
tion of novel druggable targets, led to the development of 
new or repurposing of existing therapeutics, or validated 
effective preventative strategies. These are very difficult 
measures to assess. An analysis using the translation module 
of NIH iCite that predicts the translation of scientific knowl-
edge into clinical studies (Hutchins et al. 2019a, b) reveals 
that 789 of the 7468 IMPC publications mentioned above 
have been cited in clinical publications. Indeed, by identi-
fying and characterizing disease-associated genes, IMPC 
resources are contributing to the development of preclini-
cal models with predictive value for eliminating diagnostic 
odysseys, enhancing drug discovery, and reducing disease 
incidence. As a platform for translating newly revealed 
molecular mechanisms underlying diseases to impacts on 
human health, IMPC resources have contributed signifi-
cantly to improvements in the diagnosis, treatment, and 
prevention of a wide range of conditions, from rare genetic 
disorders to common diseases like cancer, cardiovascular 
diseases, cognitive decline, and metabolic disorders.

Moreover, phenotype observations from IMPC knock-
out mice have directly impacted clinical medical practice, 
especially in personalized medicine. Our recent analysis 
highlighting the value of the IMPC for human genetic stud-
ies found that the resource has been implicated in at least 
109 validated rare disease–gene associations over the last 
decade (Cacheiro et al. 2024). In addition, knockout mod-
els of human disease-associated genes have been crucial 
for evaluating the efficacy and safety of new therapies and 
improving the precision of treatments tailored to individual 
genetic profiles of patients. The public health impact of 
IMPC is also substantial in that it fosters the development 
of new diagnostic tools and therapies that can address unmet 

Fig. 1  Influence of IMPC publications according to NIH iCite ​(​​​h​t​t​p​s​:​/​/​i​c​i​t​e​.​o​d​.​n​i​h​.​g​o​v​​​​​) on 5 December 2024
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clinical needs of patient populations. Specific examples for 
this usage of the IMPC resource in preclinical research are 
described in the following paragraphs.

Specific examples

The IMPC has facilitated the development of new tools for 
diagnosing, managing, and preventing complex diseases, as 
studies using IMPC mice have led to discovery and char-
acterization of potential biomarkers that could be used for 
early detection and diagnosis, monitoring disease progres-
sion, prognostication, and the development of personalized 
therapeutic strategies. For example, studies using Prkcb 
knockout mice support PKC-beta as a potential new drug 
target for the treatment of high-fat induced non-alcoholic 
fatty liver disease (Shu et al. 2021). In addition, mice with 
low Tgfbr2 expression are predisposed to spontaneous gas-
trointestinal tract tumors, suggesting that TGFBR2 could be 
a potential biomarker for early detection of colorectal cancer 
in humans (Gough et al. 2021). Experiments using Bcl2l11 
knockout mice showing premature neuronal apoptosis have 
led to investigations into using BCL2L11 as a biomarker to 
assess neurodegenerative disorders and cognitive decline in 
Alzheimer’s and Parkinson’s diseases (Sionov et al. 2015). 
Further, Fto knockout mice showing metabolic dysfunction 
have prompted studies of FTO gene variants as biomarkers 
for obesity risk in humans (Najd-Hassan-Bonab et al. 2022). 
Also, altered immune responses and increased susceptibil-
ity to lupus-like phenotypes in Ifnar1 knockout mice have 
highlighted interferon (IFN) signaling pathways and IFN-
induced biomarkers as potential diagnostic markers of auto-
immune disease (Ban et al. 2021).

As well as being used for investigating novel biomarkers, 
IMPC knockout mouse models have also uncovered funda-
mental biological mechanisms that have accelerated drug 
discovery pipelines by helping researchers identify new 
drug targets, validate existing ones, and assess drug efficacy 
and safety. Experiments using IMPC mice have supported 
research studies targeting Tgfbr2 for cancer drug discovery 
(Gough et al. 2021), S1pr1 for neurological diseases (Kan-
djani et al. 2023), Fto for obesity and metabolic diseases 
(Azzam et al. 2022), Sirt6 for aging and cancer (Akter et al. 
2021), and Prokr2 for obesity and circadian rhythm disor-
ders (Sarfati et al. 2010; Martinez-Mayer and Perez-Millan 
2023). Studies on these models have provided preclinical 
validation of drug targets and help optimize therapeutic 
strategies.

The IMPC has also provided critical insights into the 
genetic basis of diseases, identifying key molecular path-
ways and potential therapeutic targets for precision medi-
cine and pharmacogenomics. Research using IMPC mouse 

models have demonstrated how genetic alterations influ-
ence disease phenotypes, guiding the design of safe and 
effective treatments that are tailored to individual genetic 
profiles. For example, drug efficacy in gene-targeted thera-
peutics have been predicted in studies on Tgfbr2 knockout 
mice (Zhao et al. 2024), drug safety associated with genetic 
variability has been assessed in Cpd2d6 mice (Taylor et al. 
2020), and genetic factors that make individuals susceptible 
to type 2 diabetes, obesity, and cardiovascular diseases have 
been identified using Pparg mice (Lefterova et al. 2014). 
With respect to brain research, Slc20a2 mice have pro-
vided a solid preclinical model to study the development 
and treatment of a rare neurodegenerative disorder of brain 
calcification (Jensen et al. 2018), P2rx7 mice can be used 
to study immunological features and subtypes of depres-
sion (Urbina-Trevino et al. 2022), and several IMPC lines 
are suitable models for drug repurposing studies in schizo-
phrenia (Lago and Bahn 2022). These models have helped 
researchers better understand the genetic underpinnings of 
diseases, predicted drug responses, optimized therapeutic 
strategies, and identified at-risk populations who may ben-
efit from personalized treatments.

For example, Kmo (kynurenine 3-monooxygenase), an 
enzyme in the kynurenine pathway, plays a role in the exces-
sive inflammatory response to pancreatitis which involves 
release of pro-inflammatory cytokines, oxidative stress, and 
activation of immune cells (Mole et al. 2016). Kmo knock-
out mice produced by the KOMP2 project reduced levels of 
inflammatory cytokines like quinolinic acid and prevented 
the excessive activation of macrophages and neutrophils in 
an experimental model of acute pancreatitis. Not only did 
this study provide compelling evidence that the Kmo knock-
out mouse was a valuable tool for understanding genetic 
regulation of acute pancreatitis, but it also demonstrated that 
Kmo inhibition could modulate metabolic pathways related 
to inflammation. This finding may be especially relevant in 
the context of critical illness and organ failure. In this way, 
these studies have laid the groundwork for exploring Kmo 
as a druggable target for the development of KMO inhibi-
tors to control inflammation, prevent organ damage, and 
improve survival in acute pancreatitis and other diseases.

Notably, in recent years IMPC has also facilitated 
research exploring the feasibility and efficacy of gene ther-
apy approaches in a broad range of disease areas. Examples 
range from genetic forms of deafness or hearing loss and 
associated vestibular deficits (Michalski and Petit 2022; 
Ding et al. 2021; Maudoux et al. 2022), restoration of visual 
function for blue cone monochromacy and retinal degenera-
tion (Deng et al. 2018, 2019; Beryozkin et al. 2021; Qian 
et al. 2022; Hsu et al. 2023; Lu et al. 2023; Abu-Diab et al. 
2023), managing hereditary spastic paraplegia (Hauser et al. 
2019; Chen et al. 2023; Lim et al. 2024) and other upper 

1 3



S. M. Hölter et al.

Consortium (DTCC) and UM1HG006370 to the Mouse Phenotying 
Informatics (MPI2) consortium.

Data availability  No datasets were generated or analysed during the 
current study.
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