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Abstract

Type 2 diabetes (T2D) complications pose a significant global health challenge. Omics technologies have been employed to investigate
these complications and identify the biological pathways involved. In this review, we focus on four major T2D complications:
diabetic kidney disease, diabetic retinopathy, diabetic neuropathy, and cardiovascular complications. We discuss advancements in
omics research, summarizing findings from genetic, epigenomic, transcriptomic, proteomic, and metabolomic studies across different
ancestries and disease-relevant tissues. We stress the importance of integrating multi-omics techniques to elucidate the biological
mechanisms underlying T2D complications and advocate for ancestrally diverse studies. Ultimately, these insights will improve risk
prediction for T2D complications and inform translation strategies.
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Introduction
T2D, the most common form of diabetes, is a complex disorder
characterized by hyperglycemia [1]. This condition can damage
blood vessels, leading to microvascular and macrovascular com-
plications and increased mortality (Fig. 1) [2]. Microvascular com-
plications impact small blood vessels and nerve tissues around
organs like the kidneys, retina, and skin, while macrovascular
complications affect large blood vessels in the cardiovascular
system, potentially causing cardiovascular disease (CVD) and
heart failure. The prevalence of complications among individuals
with T2D varies between different ancestry populations (Table 1),
with estimates highly varying between different studies [3–7].
Studies in European populations show high variability, but the
largest Danish study found that individuals of European ancestry
generally have lower rates of microvascular complications and
higher rates of macrovascular complications compared to those of
African ancestry (Table 1) [6]. Another study including individuals
from multiple countries shows higher rates of both microvascular
and macrovascular complications in Europeans compared to
individuals of African and Asian ancestry [3]. In T2D individuals
of African ancestry, microvascular complications such as diabetic
neuropathy (DN), diabetic retinopathy (DR) and diabetic kidney
disease (DKD) are more prevalent than macrovascular complica-
tions, with DN being the most common [4]. Various risk factors
have been linked to the occurrence of complications including
hypertension, smoking, obesity, age, diabetes duration and male
gender, summarized in Table 2 [3, 5, 8]. High glycemic levels

have been consistently linked to an increased risk of microvas-
cular complications, though it has been shown to have no
association with macrovascular complications in multiple studies
[6]. The growing prevalence of T2D and its complications,
combined with a lack of treatment options, highlights the
urgent need to understand their etiology. Collecting data from
various molecular levels can enhance our understanding of T2D
complications. This review focuses on omics studies of four
major T2D complications: diabetic kidney disease (DKD), diabetic
retinopathy (DR), diabetic neuropathy (DN), and cardiovascular
complications. We cover all major cardiovascular complications
but found no relevant studies on cerebrovascular complications.

Genome-wide association studies of T2D
complications
Genome-wide association studies (GWAS) of T2D complications
have been limited in sample size and statistical power, with few
associations being described in non-European populations so far
[9]. The genetic associations which have been described mostly
correspond to common variants of modest to high effect sizes
(Fig. 2, Table 3).

Diabetic kidney disease (DKD)
Persistent hyperglycemia leads to kidney damage in T2D, charac-
terized by a decline in estimated glomerular filtration rate (eGFR)
and albuminuria, hallmarks of DKD [10]. A variant near UMOD
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Figure 1. Organs affected by different T2D complications.

Table 1. Prevalence of T2D complications among various ancestry groups.

Prevalence European ancestry African ancestry East Asian ancestry South Asian ancestry Hispanic ancestry

DKD 3% (3–35.9%) 13% 10.7% (10.7–28.4% 20.3% 33%
DR 13% (4.9–69%) 15% 14.8% (14.8–23.7%) 16.3% 32.3%
DN 4% (4–83%) 33–48.4% 17.8% (17.8–36.9%) 24.6% 43.1%
CVD 17% (15–72.4%) 1.16% 30.1% 23.3% 29.4%

The prevalence data is sourced from various studies. (References: [3–7])

Table 2. Risk factors associated with T2D complications.

Risk factor Diabetic kidney disease Diabetic retinopathy Diabetic neuropathy Cardiovascular disease

Smoking � × � �
Sex � × × �
Obesity × × × �
Hypertension � � × �
Age � × × �
Diabetes duration � � � �
Total cholesterol � × × �

× indicates no significant association found (References: [3, 5, 8])

and a variant near GABRR1 were linked to eGFR decline and
microalbuminuria in patients with T2D, respectively [11, 12]. Key
pathways underlying DKD and supported by genetics evidence
include mechanisms of renal fibrosis, kidney development, blood
pressure regulation, and immune response (Fig. 3). TENM2, a gene
whose expression correlates with higher eGFR and lower renal
fibrosis, harbors an intronic variant associated with DKD [13].

Another gene, DIS3L2, which is involved in kidney development,
was identified in an exome-wide analysis [14]. Similarly, SCAF8
and CNKSR3, involved in transcription and blood pressure reg-
ulation, carry intergenic variants linked to DKD across multi-
ple populations [15, 16]. Immune modulation also emerged as
an important contributor, with identification of associations for
genes like ERAP2 and NPEPPS, both of which regulate immune
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Figure 2. Scatter plot of minor allele frequency against odds-ratio of vari-
ants found to be genome-wide significant in T2D complications GWAS.

response [14]. GWAS in non-European populations has revealed
ancestry-specific genetic influences, such as an intronic FTO vari-
ant previously associated with obesity, in Japanese individuals [17,
18]. In African Americans, an intronic APOL1 variant [19], and
a newly identified expression quantitative trait locus in TRIM27
in Korean individuals further emphasize the diversity of genetic
drivers in DKD [20].

Diabetic retinopathy (DR)
DR develops through prolonged exposure to hyperglycemia and
is influenced by diabetes duration, as well as high glycemic and
blood pressure levels, leading to progressive damage to the retina
and the macula [21]. The key pathways include angiogenesis,
oxidative stress, and inflammation (Fig. 3). Genetic factors may
play a regulatory role in modulating these pathways. For example,
in Europeans, a variant near GRB2, a gene which activates the
MAPK pathway and promotes angiogenesis, was associated with
DR, as well as a variant in NOX4, with roles in ROS production
and neovascularization [22, 23], and Intronic variants of TCF7L2,
which regulates insulin secretion [24]. Additionally, variants have
been identified in genes for which functional mechanisms leading
to DR still need to be uncovered, such as NVL [25], and CCDC146
[26]. In individuals genetically similar to African Americans and
continental Africans, genetic associations extend to genes includ-
ing GOLIM4, WDR72, HLA-B, GAP43/RP11-326 J18.1, and AL713866.1
[25, 27]. Notably, WDR72, which is expressed in the retina, has
been linked to HbA1c levels, high glycemic levels, eGFR, and
proliferative angiogenesis, highlighting its role in both glucose
regulation and retinal damage [28]. Increased oxidative stress also
plays a role in DR progression, particularly in African ancestry
populations, in which a G6PD exonic variant has been associated
with reduced G6PD levels [24].

Diabetic neuropathy (DN)
DN arises primarily from hyperglycemia-induced vascular and
nerve damage. While strict maintenance of glycemic levels can
reduce the risk of DN in T1D, this strategy is less effective in
T2D, potentially indicating additional biological mechanisms
that exacerbate nerve damage [29]. Key pathways implicated
in DN include sodium channel regulation, neural signaling and
inflammation, with inflammatory pathways being the common
thread linking all microvascular complications (Fig. 3). Variants in
MAPK14 intronic regions have been identified in several studies in
European populations, highlighting the role of mitogen activated
protein kinase pathways in cellular stress response [30]. Further, a
variant near SCN2A, which regulates sodium channels in neurons,

linked to nerve damage, has been associated with DN [31]. Other
variants identified near LOC105371557 and in the 3’ UTR of GYPA,
suggest links to metabolic traits, including obesity, reinforcing its
influence on progression to microvascular complications [26, 32].

Cardiovascular complications in T2D
Pathways leading to cardiovascular complications in T2D
with genetic evidence from multiple studies include glucose
metabolism, oxidative stress, and inflammation, all mechanisms
also implicated in microvascular complications (Fig. 3). Evidence
of the involvement of these pathways has been found across
different populations. GWAS in European, Pakistani, and Egyptian
populations identified a variant near GLUL, which regulates
glutamic acid metabolism, and affects glucose metabolism and
oxidative stress [33–37]. Highlighting the role of DNA repair
and stress response, associations were found in the intron of
MGMT, and CSNK1A1L, which may contribute to inflammation
and cellular damage in cardiovascular complications [38, 39].
Additionally, discovery of a variant near F5 linked to ischemic
stroke, and an intronic variant of RPS6KA2 associated with stress
response in cardiac myocytes, emphasizes the role of blood
coagulation in diabetes-related cardiovascular events [40, 41]. An
intronic variant of PDE4DIP and an intronic variant of PDE1A were
described in the European and Chinese populations, respectively,
both linked to myocardial infarction, further supporting the
role of impaired myocardial function in the development of
macrovascular complications [26, 42]. A variant near NAT8 has
been associated with eGFR, blood pressure, and renal function,
further linking cardiovascular health to kidney function [43–45].

Epigenomics of T2D complications
Epigenomic studies investigate DNA methylation, histone mod-
ifications and RNA-mediated mechanisms, which control gene
regulation through dynamic tissue-specific mechanisms [46] and
can be influenced by environmental factors [47, 48]. To date, no
epigenetic associations with cardiovascular complications have
been described.

Diabetic kidney disease
DKD involves complex regulatory mechanisms, including DNA
methylation, which plays an important role in renal damage,
particularly in the progression of albuminuria and declining eGFR
[49, 50]. Key differentially methylated sites (DMSs) have been
causally linked to eGFR decline using Mendelian randomization,
with COMMD1, TMOD1, and FHOD1 emerging as significant players
in this context [51]. These epigenetic changes are further sup-
ported by methylation-associated variants that influence gene
expression related to eGFR and kidney fibrosis, notably in LACTB
and IRF5, both of which contribute to kidney function regula-
tion [52]. Evidence from epigenetic studies have also implicated
inflammation processes in DKD with reduced methylation of
TNF in DKD, or hypomethylation of FOX1 leading to increased
inflammation [53–56]. Single cell analysis has revealed alterations
in the glucocorticoid receptor signaling within diabetic kidneys,
affecting chromatin accessibility. These changes likely modulate
localized anti-inflammatory responses, providing further insights
into the molecular mechanisms driving DKD [57].

Diabetic retinopathy
Global DNA methylation changes have been found to be predictive
of DR and its progression, independently of classical risk factors,
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Figure 3. Biological pathways found to be shared between all T2D complications.

underscoring their role in disease pathogenesis [58]. Addition-
ally, epigenetic modifications that affect key pathways involving
inflammation, oxidative stress, and vascular damage have been
described. For instance, demethylation of two sites in S100A13 has
been shown to activate key inflammatory and stress-related path-
ways, including p38 MAPK, NFκB, and RAGE, exacerbating hyper-
glycemia and promoting vascular damage [59, 60]. The hyper-
glycemic environment seen in DR leads to elevation of ROS and
mitochondrial DNA hypermethylation, which in turn alters mito-
chondrial gene expression and further contributes to disease
progression [61, 62].

Diabetic neuropathy
In DN, disrupted pathways involving nerve myelination, extracel-
lular matrix integrity and insulin signaling are key contributors
to nerve damage, for which altered gene expression through DNA
methylation has been described [63, 64]. DMSs in genes such
as PLCG2, GNAS, MAPK8IP3, TIMP2, IRS2, and ISF-I are associ-
ated with nerve fiber loss, affecting nerve structure and function
through impaired myelination and extracellular matrix (ECM)
disruption [64]. Additionally, long non-coding RNAs (lncRNAs),
such as LINC00324 and TUBA4B, known to modulate DNA methy-
lation and histone modifications, have been described but the
affected pathways remain unknown [65]. The interplay between

methylation changes and lncRNAs suggests a multilayered epi-
genetic landscape that contributes to neuropathic complications
in T2D.

Transcriptomics of T2D complications
Diabetic kidney disease
DKD is driven by a pro-inflammatory environment, where
immune cell infiltration like T-cells, B-cells, plasma cells,
and monocytes, as well as upregulation of key inflammatory
pathways, play a central role in disease progression [57, 66, 67].
Transcriptomic analyses of kidney biopsies reveal upregulation
of JAK–STAT and NFkB pathways, particularly in late-stage DKD,
which contributes to sustained inflammation and tissue damage
[68, 69]. AKIRIN2, a regulator of TNF and IL-1β signaling is also
upregulated in kidney tissue and correlates with severity of
renal fibrosis [13]. Single cell studies provide further insights into
functional disruptions in the nephron. Downregulation of sodium,
potassium and calcium transporters like NKA, KCNJ16, and
NKCC2 in the ascending loop of Henle impairs ion reabsorption,
while upregulation of NKA in the late distal convoluted tubule
leads to increased potassium loss, contributing to electrolyte
imbalances commonly seen in DKD [70]. Bulk RNA sequencing
of DKD kidney samples reveals broader disruptions in apoptosis,
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ECM organization, and amino acid metabolism pathways, further
emphasizing the complexity of molecular changes that drive
kidney damage and functional decline in DKD [67, 71, 72].
Additionally, early stage DKD is characterized by upregulation
of genes such as RBP4 and GLP1R, associated with renal function
and protective effects, though these are suppressed in advanced
DKD [73].

Diabetic retinopathy
DR is characterized by key pathways involving angiogenesis, neo-
vascularization, inflammation, and vascular damage. Increased
vascular permeability and fluid leakage are hallmarks of DR, with
angiogenesis playing a central role [74, 75]. Upregulation of PDGFB,
critical for corneal neovascularization, and downregulation of
ADAMTS4, an antiangiogenic factor, were found in retinal samples
in late DR [76]. Additionally, increased TTR expression found in
human retinal endothelial cells has been found to protect against
neovascularization in DR via lncRNAs [77]. Fibrosis, which con-
tributes to retinal detachment, is associated with upregulation of
POSTN and ET in retinal fibroblasts [78, 79]. Promising therapeutic
strategies are emerging from targeting POSTN to inhibit neovas-
cularization [79]. Inflammatory pathways also play a crucial role,
with upregulation of ICAM1 and CD44 antigen in retinal tissue
associated with proliferative DR, linking vascular damage and
immune response to disease severity [79].

Diabetic neuropathy
DN is driven by a complex interplay between inflammation,
metabolic dysregulation, and ECM disruption. In the progres-
sion of DN, there is upregulation of inflammation-associated
genes such as chemokines, cytokines and interleukins, while
pathways involved in glucose metabolism and anti-inflammatory
responses, such as PPAR signaling and TNF-α, are downregulated,
as seen in nerve biopsy and dorsal root ganglia tissue [80, 81].
This imbalance contributes to neuropathic pain experienced by
dorsal root ganglia neurons, a hallmark of DN [81]. Foot ulcers,
a major DN sub-phenotype, exhibit a distinct gene expression
profile, with healing fibroblasts upregulating anti-inflammatory
genes like CHI3L1 and TNFAIP6 along with ECM remodeling
genes such as MMP1 and MMP3 [82]. Additionally, an increase
in pro-inflammatory M1 macrophages, characterized by the
upregulation of genes like IL1B, S100A8, and S100A9, highlights the
localized pro-inflammatory response critical for wound healing
but also underscores the chronic inflammation that hinders
recovery in diabetic wounds.

Cardiovascular complications in T2D
CVD in T2D occurs from interlinked pathways that overlap with
cardiovascular disease, including lipid, lipoprotein, and glucose
metabolism, as well as fatty acid, and bile acid metabolism [83,
84]. Additionally, pathways related to coagulation and inflam-
mation, such as Toll-like receptor, chemokine, MAPK, cytokine,
and PDGF signaling, which play crucial roles in vascular damage
and atherosclerosis, were found in disease relevant tissues and
blood in T2D and CVD [83, 84]. Further insights highlight the
role of branched-chain amino acid (BCAA) metabolism and ECM
remodeling in cardiovascular complications [83]. Specific genes
identified include HMGCR, a target for statins, and CAV1, linked to
hyperglycemia, insulin resistance, and atherosclerosis in mouse
models. Other notable genes like IGF1 and SPARC are associated
with insulin resistance and coronary artery lesions, while PCOLCE
and COL6A2 are involved in ECM regulation [83]. These interlinked

pathways highlight the complex molecular landscape of cardio-
vascular risk in T2D.

Proteomics of T2D complications
Diabetic kidney disease
DKD is marked by proteomic perturbations that reflect underlying
pathways of inflammation, fibrosis, and lipid metabolism [85–88].
Circulating biomarkers such as LAYN, ESAM, DLL1, MAPK11, and
endostatin are linked to severe DKD, with a role in promoting
kidney fibrosis and inflammation [85]. These inflammatory and
fibrotic pathways are central to DKD progression, which is also
seen in other omics studies [14, 52–56, 68, 69]. Proteomic differ-
ences between early and late-stage DKD further underscore these
pathways. In late-stage DKD, elevated levels of inflammatory
regulators like SERPINA1 and SERPING1 are observed in urine,
while fibrosis-related proteins such as COL1A1 and COL3A1 are
lower, indicating a pro-inflammatory environment and possible
tissue damage [87]. Moreover, glomerulosclerosis, a hallmark of
DKD severity, is characterized by upregulation of proteins involved
in inflammation (C3, C8, C9) and lipid metabolism, such as ApoE
[89]. Overall, these proteomic signatures reflect the muti-factorial
nature of DKD, which corroborates the findings reported at other
omics levels.

Diabetic retinopathy
As seen in omics studies described previously, the key path-
ways driving DR involve inflammation, oxidative stress, and ECM
remodeling. Elevated levels of interleukins like IL-4 and TNF,
along with complement system proteins, and neutrophil signaling
molecules have been observed in DR-relevant fluids like tears, vit-
reous humor, and saliva [90–92]. These inflammatory responses
contribute to retinal damage and neovascularization, both hall-
marks of DR. Conversely, ADAM10, a key negative regulator of
ocular angiogenesis and inflammation, has been found to be
downregulated [93]. Oxidative stress is a further major path-
way with increased expression of stress response proteins like
CALML5, GLUL, CALML3, CTSL, and PDIA3, further exacerbating
retinal injury [90]. Retinal homeostasis is also disrupted with pro-
teins such as FGF, PRCP, and AGT, crucial for maintaining retinal
health being upregulated in the tear fluid of patients with DR
[90]. Finally, ECM-related proteins involved in inflammation and
neovascularization like MMP3 and MMP9, are also upregulated in
DR, which further contributes to pathological angiogenesis and
tissue remodeling [90].

Diabetic neuropathy
Corroborating evidence from previous omics studies, proteomic
studies of DN have revealed pathways related to inflammation,
neuronal damage, and neurodegeneration. A central aspect is the
role of ECM proteins like endostatin, Annexin A3, and tenascin
R, which contribute to inflammation and axonal degeneration
in neurons from nerve biopsies and dorsal root ganglia, driving
DN progression [94]. In parallel, proteins involved in neuronal
maintenance like MBP and MPO, show dysregulation, reflecting
impaired myelination and exacerbating nerve damage [95]. The
dysregulation of pathways observed in DN is further compounded
by hyperphosphorylation of eEF2, a key player in RNA binding
and protein translation [96]. This promotes endoplasmic retic-
ulum stress, chronic pain, and neurodegeneration, illustrating
the complex network of pathways that drive nerve deterioration
in DN.
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Cardiovascular complications in T2D
Proteomic analyses highlight the role of key pathways like sys-
temic inflammation, insulin resistance, endothelial dysfunction
and lipid metabolism in cardiovascular complications of T2D
[97]. Inflammatory pathways marked by upregulation of pro-
inflammatory cytokines, like TNF-α and IL-1β, are central to
the pathogenesis of macrovascular complications [97]. In paral-
lel, insulin resistance contributes to endothelial dysfunction and
impaired glucose metabolism, as shows by elevated serum levels
of GLP-1, Leptin and C-peptide in individuals with CAD and T2D
[97]. Adiponectin, an important regulator of glucose metabolism
and vascular health is notably reduced in these individuals, which
suggests dysregulation of protective pathways [98]. Proteins asso-
ciated with vascular health and tissue repair including GDF15,
renin, serine protease HTRA1, and EGFR, highlight the complex
dynamics of inflammatory and metabolic pathways in cardiovas-
cular complications [98].

Metabolomics of T2D complications
Diabetic kidney disease
As seen in other omics studies, evidence for involvement
of several metabolic pathways, inflammation, and vascular
dysfunction has been observed in metabolomic studies of DKD.
Key metabolites, particularly phenyl compounds like p-cresol
sulfate and phenylacetylglutamine in plasma, are known to cause
proximal tubular injury in the kidneys, directly connecting them
to end-stage DKD and co-occurring cardiovascular complications
[99]. These metabolites, along with myo-inositol, pseudouridine,
and uric acid show disrupted metabolic environment in patients
with advanced DKD, where accumulation of these compounds
leads to tissue damage [99]. Serum metabolites involved in
the urea cycle also play a crucial role in DKD progression by
contributing to systemic inflammation and worsening disease
severity [100, 101]. N-acetylneuraminic acid contributes to
inflammatory response observed in DKD by binding to the ROCK
protein, a regulator of vascular inflammation [102]. Piperidine,
similarly linked to both retinal and renal complications, regulates
blood flow and vascular resistance, exacerbating damage in
multiple tissues [102].

Diabetic retinopathy
As seen before, oxidative stress and inflammation are central
to DR progression, with several other metabolic pathways play-
ing key roles. The involvement of purine metabolism in ROS
production is evident with elevated levels of guanine, inosine,
and hypoxanthine reported in vitreous humor samples in DR,
contributing to cellular oxidative stress [103]. Higher plasma lev-
els of asymmetric dimethyl arginine, which inhibits nitric oxide
and generates ROS, have been associated with higher DR risk,
further emphasizing the role of oxidative stress in DR [104–106].
Conversely, some metabolites, like linoleic and arachidonic acids,
may offer protection against DR by maintaining capillary integrity,
regulating neovascularization, and reducing retinal inflamma-
tion, potentially countering the damaging effects of oxidative
stress [107, 108]. Dysregulation of the pentose phosphate pathway
(PPP) is crucial in DR pathogenesis, as increased plasma levels of
metabolites like 2-deoxyribonic acid, 3,4-dihydroxybutyric acid,
erythritol, gluconic acid and ribose have been observed in patients
with DR [109]. This metabolic change reflects the oxidative stress
characteristic of DR [103, 110]. Further, decreased xanthine levels
in the vitreous humor serve as a strong predictor of DR, potentially
increasing ROS levels and activating the PPP [103].

Diabetic neuropathy
Key pathways described to be disrupted in DN include lipid
metabolism, mitochondrial dysfunction, and vascular circulation,
which together contribute to nerve damage and bioenergy
imbalance. Increased triglyceride levels in plasma and sural
nerve cells are closely linked with DN, suggesting that impaired
mitochondrial function and altered nerve bioenergetics can lead
to triglyceride accumulation and contribute to the disease [111,
112]. Corroborating this, phospholipids like phosphatidylcholine
and phosphatidylethanolamine, essential for mitochondrial
function and myelin maintenance, are significantly depleted in
patients with DN. This depletion affects myelination in Schwann
cells, which require N-acetylaspartic acid for myelin synthesis [96,
113]. Moreover, metabolic byproducts like phenylacetylglutamine,
a biomarker of DN, further exacerbate DN by promoting platelet
aggregation and thrombosis, thereby impairing peripheral nerve
and microvascular circulation [114].

Cardiovascular complications in T2D
Lipid and amino acid metabolism dysregulation are key con-
tributors to macrovascular damage and CVD in T2D, mainly
through pathways connected to oxidative stress, mitochondrial
dysfunction, and inflammation [115, 116]. Reduced serum levels
of phosphatidylcholine, lysophosphatidylcholine, and lysophos-
phatidylethanolamine have been identified as potential risk
factors for CVD in T2D, suggesting impaired lipid metabolism and
cell membrane integrity [117]. Low phosphatidylcholine levels,
in particular, may indicate myocardial membrane damage, exac-
erbated by oxidative stress and mitochondrial dysfunction [118,
119]. In parallel, elevated BCAAs (isoleucine, valine, leucine) have
been associated with coronary heart disease (CHD) in patients
with T2D [120, 121], in line with evidence from transcriptomics
studies. BCAAs contribute to cardiovascular risk by promoting
oxidative stress and mitochondrial dysfunction, while also
activating the mTOR pathway, which accelerates atherosclerosis
and increases plasma glucose levels, thus exacerbating coronary
vascular damage [122, 123].

Discussion and future directions
We highlight key biological pathways underlying T2D complica-
tions, mostly shared across various complication groups. Central
pathways include inflammation, vascular damage, metabolism
of essential biomolecules, ECM remodeling, and mitochondrial
dysfunction. Both pro- and anti-inflammatory pathways are key
in complication development, with a critical balance needed for
tissue healing. Systemic inflammation exacerbates complication
symptoms. Lipid and fatty acid metabolism are key in cardiovas-
cular complications, while purine and amino acid metabolism are
crucial for microvascular complications. Overall, these insights
offer a deeper understanding of the mechanisms driving T2D
complications development. However, research in this field still
faces significant limitations which are discussed below, along
with recommendations for addressing these challenges. Addi-
tional evidence is needed to further validate pathways identified
in individual studies, and to better describe and understand the
link between genetics and T2D complications.

Despite increasing efforts, small sample sizes remain a bot-
tleneck for genetic discovery in T2D complications, limiting the
understanding of their genetic architecture [12]. Given that sta-
tistical power in T2D complications studies can be hampered
by phenotypic heterogeneity, increasing sample size is a priority.
For example, only about 50% of CKD cases in T2D are due to
DKD, causing misclassification [124]. This can be mitigated by

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/34/6/469/7953888 by G
SF Zentralbibliothek user on 20 M

arch 2025



476 | Singh et al.

considering factors like diabetes duration, absence of DR, sudden
proteinuria worsening, or acute renal failure, which suggest non-
diabetic renal disease [125].

Moreover, most T2D complication GWAS focus on European
populations [12, 25, 31, 33]. Including diverse ancestries is crucial,
as shown by a recent multi-ancestry meta-analysis identifying
novel T2D-associated loci [126]. Increasing diversity should be
considered in all omics studies, as metabolic diversity among
ancestral groups is poorly understood and can be influenced by
genetic and environmental factors, also affecting disease preva-
lence, incidence, and mortality [127, 128]. In addition to collect-
ing data from diverse populations, emphasis should be placed
on acquiring longitudinal data to track disease-related changes
over time.

A major challenge in current GWAS is the lack of interpretabil-
ity for disease-associated variants, especially in non-coding
regions of the genome. Molecular quantitative trait loci (QTL),
which describe genetic regulation of molecular traits, can help
interpret these signals [129], especially in T2D complications
relevant bio-sample/tissues like the vitreous humor and tears
in DR or kidney tubules and glomeruli in DKD [130]. Following the
identification of molecular QTLs, methods like colocalization and
Mendelian randomization analyses can be utilized to understand
how molecular traits influence T2D progression to complications
[129, 131].

T2D complications often co-occur, independent of known
risk factors, indicating shared genetic architecture [132]. DKD
biomarkers like macroalbuminuria are associated with increased
DR severity [133]. Renal disease with proliferative DR better
predicts DKD than DR alone [134], and individuals with T2Dand
DN have a higher risk of DR and DKD [135]. Low eGFR and
high albuminuria in DKD are independent cardiovascular risk
factors in Europeans with T2D [136, 137]. Future studies should
aim to identify the biological processes that are upstream of
complication development and are shared among different
complication groups.

In conclusion, this review summarizes the current research on
T2D complications and highlights molecular features across vari-
ous omics levels. Future studies should expand in sample size and
diversity and pursue multi-omics data integration from relevant
tissues for a deeper biological understanding. These efforts will
likely accelerate drug discovery and improve the prediction of T2D
complications, which are increasing in prevalence.
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