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Drug resistance to a single agent is common in cancer-targeted therapies, and rational drug combinations 
are a promising approach to overcome this challenge. Many Food and Drug Administration-approved 
drugs can induce cellular senescence, which possesses unique vulnerabilities and molecular signatures. 
However, there is limited analysis on the effect of the combination of cellular-senescence-inducing drugs 
and targeted therapy drugs. Here, we conducted a comprehensive evaluation of cellular senescence using 7 
senescence-associated gene sets. We quantified the cellular senescence states of ~10,000 tumor samples 
from The Cancer Genome Atlas and examined their associations with targeted drug responses. Our analysis 
revealed that tumors with higher cellular senescence scores exhibited increased sensitivity to targeted 
drugs. As a proof of concept, we experimentally confirmed that etoposide-induced senescence sensitized 
lung cancer cells to 2 widely used targeted drugs, erlotinib and dasatinib. Furthermore, we identified 
multiple genes whose dependencies were associated with senescence status across ~1,000 cancer cell 
lines, suggesting that cellular senescence generates unique vulnerabilities for therapeutic exploitation. Our 
study provides a comprehensive overview of drug response related to cellular senescence and highlights 
the potential of combining senescence-inducing agents with targeted therapies to improve treatment 
outcomes in lung cancer, revealing novel applications of cellular senescence in targeted cancer therapies.

Introduction

   Targeted therapies disrupt specific signaling pathways that are 
critical for tumor growth [  1 ]. Compared to chemotherapy, tar-
geted therapies exhibit reduced toxicity and substantially 
improve treatment outcomes [  2 ]. However, most single-agent 
targeted therapies can lead to resistance in advanced disease. 
Rational drug combinations have emerged as a promising 
strategy to overcome resistance; however, the vast number of 
potential combinations exceeds the scope of feasible clinical 
testing [  3 ]. New combination strategies that can enhance the 
sensitivity of targeted therapies will have important implications 
for cancer treatment.

   Cancer can be regarded as a condition that escapes the cel-
lular fate of senescence [  4 ]. Therefore, an innovative therapeutic 
approach known as the “one–two punch” has gained traction 
as a research hotspot [  5 ]. This approach aims to first induce 
senescence in tumor cells, followed by senolytic treatment to 

target the anti-apoptotic pathways of senescent cells, thereby 
eliminating them [  6 ]. Although many the US Food and Drug 
Administration (FDA)-approved drugs can induce cellular 
senescence, there are few successful clinical applications due to 
a range of complex issues related to the senescence microenvi-
ronment and the toxicity of senolytic compounds. It is worth-
while to explore more effective combination strategies between 
senescence-inducing drugs and targeted therapies.

   A reliable evaluation of the senescence state in tumor sam-
ples is crucial for addressing the above issues. Single senescence 
markers, such as senescence-associated β-galactosidase activity 
or p16, are insufficient for accurately assessing the degree of 
senescence in tumor samples [  7 ,  8 ]. Several studies have identi-
fied and compiled numerous senescence-related genes, includ-
ing CellAge [  9 ], GenAge [  10 ], aging/senescence-induced gene 
set (ASIG) [  11 ], Aging Atlas [  12 ], the senescence-associated 
secretory phenotype (SASP) pathway (R-HSA-2559582), 
SenMayo [  13 ], and SenUp [  14 ], which collectively provide a 
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more comprehensive reflection of senescence states changes 
than single makers. These advancements allow for the evalua-
tion of the senescence status of tumor samples based solely on 
gene expression profiles, which are readily accessible in public 
databases such as The Cancer Genome Atlas (TCGA).

   In this study, we developed an enhanced strategy for evaluat-
ing cellular senescence scores (CSSs) based on 7 senescence-
associated gene sets. We characterized the senescence-related 
molecular landscape of ~10,000 tumor samples from TCGA 
and identified 1,986 senescence-related genes in these tumors. 
Next, we examined the relationship between these senescence-
related genes and the response of 251 anti-cancer drugs in can-
cer cell lines from the Genomics of Drug Sensitivity in Cancer 
(GDSC). Furthermore, we investigated the impact of senescence 
status on the response to 138 imputed drugs within TCGA. We 
validated that etoposide-induced senescence sensitized lung 
cancer cells to 2 targeted drugs, erlotinib and dasatinib. Finally, 
we explored the differential dependencies associated with 
senescence status across various cancer cell lines. Through these 
comprehensive analyses of cellular senescence status and drug 
response, we offered biological insights for the combination 
therapies involving senescence-inducing drugs and targeted 
drugs, uncovering novel applications of cellular senescence in 
cancer treatment.   

Results

Development of the CSS metric to estimate cellular 
senescence status
   To quantify cellular senescence status using widely available 
gene expression profiles in tumor samples, we first collected 
7 classic senescence-associated gene sets from various data-
bases, including CellAge [ 9 ], GenAge [ 10 ], ASIG [ 11 ], Aging 
Atlas [ 12 ], SASP pathway (R-HSA-2559582), SenMayo [ 13 ], 
and SenUp [ 14 ]. Additionally, we collected 10 independent 
transcriptome datasets with known senescence statuses for 
validation (Fig.  1 A). Subsequently, we employed 3 different algo-
rithms (single-sample gene set enrichment analysis [ssGSEA], 
﻿Z score, and gene set variation analysis [GSVA]) to calculate a 
score that reflects the relative abundance of senescent cells in 
each sample. Our results indicated that ssGSEA scores based 
on senescence-related genes from the SenUp gene set accurately 
distinguished samples with a high senescence status from those 
with a low status across all 10 datasets (Fig.  1 B to G and 
Fig. S1F). For instance, osteosarcoma samples irradiated with 
20 Gy and harvested either 90 min or 7 d later showed a 
significantly higher CSS than untreated samples (Fig.  1 H). 
Furthermore, ssGSEA scores derived from the SenUp gene set 
outperformed those from other databases, demonstrating 
greater accuracy compared to scores calculated by Z score 
and GSVA (Fig. S1A to E). Consequently, we designated ssGSEA 
scores based on senescence- related genes from the SenUp gene 
set as the CSS for downstream analyses. We also evaluated the 
recently reported cellular senescence (CS)-score, a quantifica-
tion metric for cellular senescence [  15 ], across these 10 data-
sets and found that it could distinguish senescence status in 9 
of the datasets (Fig.  1 B). Our CSS metric (area under the curve 
[AUC]: 0.92) slightly outperformed the CS-score method 
(AUC: 0.90) in classifying senescence-high and senescence-
low groups (Fig.  1 I and Fig. S1D). Moreover, CSS also sur-
passed traditional cell cycle and senescence markers, such as 
﻿CDK2, CDK4, CCNB1, and CDKN1A (Fig.  1 J).        

   Senescent cells accumulate in various tissues during aging, 
which can result in enhanced tissue senescent cell burden [  16 ]. 
We calculated the CSS of normal tissue samples in the Genome-
Tissue Expression Project (GTEx) across different age groups. 
The results exhibited a significant increase in CSS with age in 
most tissues (Fig. S1H). This trend was further supported by 
RNA sequencing (RNA-seq) data from lung samples, which 
also demonstrated a significant increase in CSS with age (Fig. 
 1 K). A significant positive correlation between CSS and age in 
human dermal fibroblast samples was also observed (Fig.  1 L 
and M). Additionally, 10 patients with Hutchinson–Gilford 
progeria syndrome, a premature aging disease, exhibited higher 
CSSs compared to age-matched normal samples (Fig. S1G). In 
normal thyroid tissues profiled by single-cell RNA sequencing 
(scRNA-seq), we found that the CSS was higher in the old 
group compared to that in the young group across most cell 
types (Fig.  1 N). Furthermore, tobacco smoking generates oxi-
dative stress that can cause DNA damage and lead to stress-
induced cellular senescence [  17 ,  18 ]. In squamous cell lung 
carcinoma, the CSS of current smokers were higher than that 
of ex-smokers, but this difference was not statistically signifi-
cant (Fig. S1I). This may be attributed to the fact that bulk 
RNA-seq of tumor samples reflects the gene expression of mul-
tiple cell types. To further investigate, we downloaded high-
throughput scRNA-seq data from primary bronchoalveolar 
lavage cells of current smokers and never smokers to compare 
CSS distributions across various cell types. We found that the 
CSS is higher in the smoking group compared to that in the 
nonsmoking group in most cell types (Fig. S1J). There results 
demonstrate that our CSS effectively evaluates senescence sta-
tus from gene expression profiles in both normal and tumor 
samples.   

Global landscape of cellular senescence status 
across multiple cancer types
   We subsequently analyzed the cellular senescence status of 
~10,000 tumor samples across 33 cancer types from the TCGA 
dataset. The CSS was highly consistent with the ssGSEA scores 
based on genes from SenMayo and ASIG (Fig.  2 A). By examin-
ing the relationship between senescence status and other vari-
ous molecular features, we found that the CSS exhibited a 
significant negative correlation with stemness score, telomerase 
activity, the expression of DNA replication-related gene families 
(e.g., MCM2 to MCM7), and several proliferation genes (e.g., 
﻿CCNB1) (Fig.  2 B and Fig. S2A and C). Additionally, the CSS 
showed a strong positive correlation with senescence markers 
such as CDKN1A and SASP factors (Fig.  2 B and Fig. S2B), 
indicating the robustness of the CSS in capturing cellular senes-
cence signals in TCGA patient samples.        

   We then compared the senescence status of primary tumor 
samples with that of matched normal tissues and found that 
primary tumor samples exhibited lower CSSs but greater vari-
ability than normal samples across cancer types (Fig.  2 C), con-
sistent with previous findings that escape from senescence 
promotes tumor growth [ 4 ]. Furthermore, we observed that 
different tumor tissues displayed varying senescence scores 
(Fig.  2 D). Tumor samples from pancreatic adenocarcinoma 
(PAAD), thyroid carcinoma (THCA), and glioblastoma mul-
tiforme (GBM) exhibited relatively higher CSSs, while samples 
from rectum adenocarcinoma (READ), colon adenocarcinoma 
(CODA), and esophageal carcinoma (ESCA) had lower CSSs. 
This phenomenon may be explained by the innate proliferative 
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Fig. 1. Development and evaluation of the cellular senescence score (CSS) metric. (A) Workflow for estimating senescence status from RNA sequencing (RNA-seq) data. The 
CSS is derived from the single-sample gene set enrichment analysis (ssGSEA) score, based on senescence-related genes from the SenUp gene set. SASP, senescence-
associated secretory phenotype; GSVA, gene set variation analysis; ASIG, aging/senescence-induced gene set. (B) The senescence status of 10 public RNA-seq datasets was 
evaluated using the ssGSEA score derived from 7 different gene sets, alongside the previously reported cellular senescence (CS)-score method. The Wilcoxon rank-sum test 
was employed to assess the differences between senescent and nonsenescent samples. (C to G) Comparison of senescence scores based on the SenUp gene set between 
the control group (blue) and the drug-induced senescence (DI-Sen) group (red) across 5 cancer cell line datasets. The Wilcoxon rank-sum test was employed to assess the 
differences. (H) Senescence scores of osteosarcoma samples irradiated with 20 Gy, harvested at either 90 min (IR_90Min, blue) or 7 d (IR_7Day, orange). (I) Receiver operating 
characteristic (ROC) curves illustrating the performance of the CSS across 10 datasets with clearly defined senescence status labels. AUC, area under the dose–response 
curve. (J) Classification accuracies of the CSS compared to those of classic cell proliferation markers across 10 validation datasets. (K) Boxplots showing the comparison of 
CSS between different age groups in lung samples. The difference was estimated by the Student t test. (L) The distribution of CSSs across different age groups in human 
dermal fibroblast samples. The significance was tested (Student t test) for each age group in comparison to the 1 to 20 age group. (M) Scatterplot showing the Pearson 
correlation between CSS and age in human dermal fibroblast samples. (N) Boxplots showing the comparison of CSS between young and old groups across various cell types 
in normal thyroid tissue. SMCs, smooth muscle cells; NK, natural killer. The difference was estimated by the Student t test. For all panels, * indicates P < 0.05, ** indicates 
P < 0.01, *** indicates P < 0.001, and ns indicates not significant.
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capacity of different tissues. Indeed, the stem cell division rates 
of different tissues showed a strong negative correlation with 
CSS (Fig.  2 E, Cor = −0.79, P value = 0.0036).

   The p53/p21/DREAM (dimerization partner, RB-like, E2F, 
and multi-vulval class B) axis regulates numerous cell-cycle-
associated genes that are pivotal in cellular senescence [  19 ]. By 
examining the relationship between CSS and the p53/p21/
DREAM axis, we found that tumors proficient in TP53 or exhib-
iting higher CDKN1A (which encodes p21) expression, along 
with those containing components of the DREAM complex, 
had elevated senescence scores across many cancer types such 

as stomach adenocarcinoma (STAD), breast invasive carci-
noma (BRCA), lung adenocarcinoma (LUAD), and liver hepa-
tocellular carcinoma (LIHC) (Fig.  2 F and Fig. S2D and E). 
Notably, only 54 out of 525 genes in SenUp are classified as 
high- confidence p53 target genes (Fig. S2H) [  20 ]. We also 
evaluated the association of cellular senescence with other 
mutations in TCGA. The most significantly associated mutated 
driver gene was BRAF, observed across multiple cancer types, 
including THCA and skin cutaneous melanoma (SKCM) (Fig. 
S2F and G). This finding is consistent with previous research, 
which has demonstrated that sustained BRAF mutation, 
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predominantly V600E, in human melanocytes induces cel-
lular senescence [  21 ]. These results provide a comprehensive 
overview of the senescence status of tumors across different 
cancer types.   

Characterization of senescence-associated 
molecular signatures in cancer
   Next, we aimed to identify molecular signatures closely associ-
ated with senescence status in cancers. In total, 26 cancer types 
containing at least 100 tumor samples were included in the analy-
sis. Tumor samples were classified into CSS-high (CSS-H), CSS-
medium (CSS-M), and CSS-low (CSS-L) groups according to 
the distribution of score tertiles in each cancer type (Fig.  3 A). To 
minimize the potential clinical confounders (e.g., sex, race, tumor 
purity, pathologic stage, and histological type), we employed the 
widely used algorithm propensity score matching [  22 ,  23 ].        

   By comparing 3 different molecular signatures including 
20,501 messenger RNAs (mRNAs), 200 proteins, and 743 
microRNAs (miRNAs) between the CSS-H and CSS-L groups, 
we identified a number of molecular signatures significantly 
associated with the cellular senescence status of tumors across 
various cancer types (Fig.  3 B). The number of significantly 
altered molecular signatures varied greatly across different 
cancer types, exemplified by mRNA expression, which ranged 

from 403 genes in uterine corpus endometrial carcinoma 
(UCEC) to 6,577 genes in thymoma (THYM) (Fig.  3 B). Protein 
expression alterations ranged from 6 in UCEC to 98 in tes-
ticular germ cell tumors (TGCT), while miRNA expression 
changed varied from 27 in kidney renal clear cell carcinoma 
(KIRC) to 315 in THYM. Moreover, the genes significantly 
altered at the mRNA layer in each cancer were enriched in 
senescence-associated pathways (Fig.  3 C and Fig. S3A and B). 
Gene set enrichment analysis identified several key cellular 
senescence pathways, such as the interleukin 12 signaling path-
way and phosphoinositide 3-kinase (PI3K)–Akt signaling path-
way, which were significantly up-regulated in the CSS-H group. 
In contrast, several cell-growth-related pathways such as cell 
cycle and DNA replication were significantly suppressed in the 
CSS-H group, further supporting the effectiveness of our CSS 
in capturing cellular senescence signals in TCGA.

   We examined the correlations between cellular senescence 
status classification and patients’ overall survival times using 
the Cox proportional hazards model. Our analysis revealed 
significant heterogeneity in these correlations across different 
cancer types. Notably, patients with high senescence scores 
exhibited a significantly better prognosis in KIRC, sarcoma 
(SARC), and SKCM. In contrast, patients with high senes-
cence scores had a significantly worse prognosis in lower-grade 
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glioma (LGG) (Fig.  3 D and E). These findings support the context-
dependent onco-suppressive and protumorigenic effects of 
senescence in pathophysiology [  24 ,  25 ]. Overall, our results 
indicate that patients with varying senescence statuses possess 
distinct molecular signatures.   

Integrative analysis of senescence-associated 
molecular signatures on drug response in GDSC
   To comprehensively explore the potential effects of senescence-
associated signatures in cancer therapy, we focused on 1,986 
differentially expressed cellular-senescence-associated genes 
between CSS-L and CSS-H groups (see Methods). We calcu-
lated the correlation between the expression levels of these 
genes and the area under the dose–response curve (AUC) of 
251 anti-cancer drugs from the GDSC database across various 
cancer cell lines. These drugs can be broadly categorized into 
2 groups: 232 targeted agents (including senolytic agents) 
and 19 cytotoxic agents. The targeted drugs target multiple key 
biological pathways such as the cell cycle, epidermal growth 
factor receptor (EGFR) signaling, PI3K signaling, receptor 
tyrosine kinase signaling, and the p53 pathway. We identified 

229 senescence-associated genes significantly associated with 
the response of 128 drugs (including 122 targeted drugs) in at 
least 3 cancer types (|Cor| > 0.3, false-discovery-rate [FDR]-
corrected P value <0.05; Fig.  4 A). Notably, the majority of these 
229 senescence-associated genes were associated with drug 
sensitization (Fig.  4 B). For instance, LAIR1 was up- regulated 
in CSS-H tumors across 6 cancer types, and its expression was 
associated with the sensitization of 70 anti-cancer drugs (Fig. 
 4 C). Similarly, PIK3CG was up-regulated in CSS-H tumors in 
11 cancer types, and its expression was correlated with the sen-
sitization of 60 anti-cancer drugs (Fig.  4 C). Among these genes, 
only 7 were identified as p53 target genes.        

   In addition, both cytotoxic and targeted drugs were associ-
ated with numerous drug-sensitivity genes (Fig.  4 D). For instance, 
the drug response of lapatinib was negatively associated with 27 
genes that were up-regulated in CSS-H tumors. These drug-
associated genes participated in various biological processes 
such as cell motility, the immune system pathway, and signal 
transduction (Fig.  4 E). Genes associated with PIK-93, a PI3K 
signaling pathway inhibitor, were significantly enriched in the 
phagosome pathway, extracellular matrix–receptor interaction, 
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and the PI3K–Akt signaling pathway. Notably, the enrichment 
of genes linked to targeted drugs that affect the same pathways 
was closely clustered, as seen with EGFR signaling-targeted 
drugs gefitinib, afatinib, lapatinib, and erlotinib (Fig. S4). 
Collectively, our results demonstrate extensive associations 
between senescence-associated molecular signatures and the 
drug response of targeted therapies, highlighting the potential 
impact of cellular senescence status on clinical therapeutics.   

Functional effects of cellular senescence status on 
drug response in TCGA
   We next performed an integrative analysis to assess the associa-
tions between cellular senescence status and drug response in 
TCGA. In total, 21 cancer types containing at least 30 tumor 
samples with imputed drug response information were used 
for analysis [  26 ]. The imputed response data of 138 drugs 
(including 120 targeted drugs) of TCGA samples were obtained 
from a previous work that fitted a logical ridge regression model 
on the IC50 values of cancer cell lines [ 26 ]. Previous research 
on hypoxia and autophagy has yielded significant biological 
insights based on these imputed data [ 23 ,  27 ].

   We calculated the Spearman’s correlation between CSS and 
the imputed drug response in TCGA. Our results indicated that 
the number of drugs associated with senescence status ranged 
from 3 in BRCA to 77 in THYM (|Cor| > 0.2, FDR-corrected 
﻿P value <0.05; Fig.  5 A). Interestingly, tumor samples with high 
CSSs exhibited increased sensitivity to many targeted drugs 
(Fig.  5 A and Fig. S5A), aligning with trends observed in GDSC 
data (Fig.  4 A and B). As anticipated, tumor samples with high 
CSSs were more sensitive to senolytic drugs such as ABT-263 
[  28 ] (Fig. S5B). We also found that CSS-H tumor samples dem-
onstrated greater sensitivity to multiple inhibitors of the EGFR, 
PI3K, and ABL signaling pathways. This finding is consistent 
with previous study showing that EpiSen-high cells (identified 
as AXL-CLDN4+ cells; EpiSen: epithelial senescence) were more 
sensitive to EGFR and PI3K inhibitors in 2 head and neck squa-
mous cell carcinoma cell lines [  29 ]. Collectively, these results 
suggest that cellular senescence may enhance the sensitivity of 
tumor cells to specific clinical targeted therapies, providing a 
comprehensive overview of drug response related to cellular 
senescence status across various cancer types.           

Cellular senescence sensitizes drug response to 
targeted agents in vitro
   Lung cancer is the leading cause of cancer-related deaths world-
wide [  30 ] and is the most common diagnosed cancer type in 
both males and females in 2023 [  31 ]. Therefore, we further 
examined the drug response sensitized by a cellular senescence 
inducer in lung cancer. Given that the bulk gene expression 
profile of a tumor sample reflects a mixture of expression pro-
files from various cell types, we employed deconvolution meth-
ods, including our recently developed ENIGMA (dEcoNvolutIon 
based on reGularized Matrix completion) [  32 ] and widely used 
BayesPrism [  33 ], to estimate the cell-type-specific expression 
profile for each lung cancer sample, including LUAD and lung 
squamous cell carcinoma (LUSC). We found that malignant 
cells were the most abundance cell type in the tumor samples 
(Figs. S6A and S7A), and the senescence status of malignant 
cells showed a significant positive correlation with the senes-
cence status of tumor samples across lung cancer and other 
cancer types, including ovarian cancer (OV), THCA, and LIHC 
(Cor > 0.9, P value < 0.001; Fig.  5 B and Figs. S6B and C and 

S7B). This suggests that the CSS of tumors could reflect the 
senescence status of malignant cells in these cancer types.

   Cellular senescence can be induced by many drugs with 
lower concentrations, leading to apoptosis at high concentra-
tions [  34 ,  35 ]. We collected 66 transcriptomic studies on drug 
treatment effects according to a previous study [  36 ], including 
over 200 targeted therapy and chemotherapy drugs. Indeed, the 
majority of drug-treated samples exhibited higher CSSs com-
pared to untreated samples, particularly in those treated with 
etoposide (Fig.  5 C).

   In LUAD tumors, we found that senescence status exhibited 
the most significant correlation with the imputed erlotinib 
response based on both bulk tumor samples and deconvoluted 
malignant cells (Fig.  5 D and Fig. S6D and E). This finding was 
further validated using data from the Cancer Therapeutics 
Response Portal version 2 (CTRPv2) dataset (Fig. S6F). The A 
Large Matrix of Anti Neoplastic Agent Combinations (NCI-
ALMANAC) database contains the therapeutic activity results 
of over 5,000 pairs of FDA-approved drugs against a panel of 
NCI-60 (60 well-characterized human tumor cell lines) [  37 ]. 
In NCI-ALMANAC, the combination of erlotinib and etopo-
side demonstrated a greater growth-inhibitory effect than addi-
tive activity, as indicated by a positive ComboScore in 5 LUAD 
cell lines (Fig.  5 E). Additive activity is defined as the sum of 
the pharmacological effects of each drug in the combination 
[  38 ]. Etoposide, a topoisomerase II inhibitor, induces DNA stress 
and cellular senescence in cancer cell lines [  39 ,  40 ]. Indeed, 
WI-38 fibroblasts [  41 ] treated with 50 μM etoposide for 1, 2, 
and 7 d exhibited a higher CSS compared to untreated samples 
(Fig. S6G). Similarly, A549 lung cancer cells [  42 ] treated with 
2 μM etoposide also showed an increased CSS relative to that 
of untreated samples (Fig. S6H). Erlotinib, an EGFR-targeting 
tyrosine kinase inhibitor, was approved as a second-line treat-
ment for non-small-cell lung cancer in 2004 [  43 ]. In the NCI-
ALMANAC, A549 cells treated with the combination of erlotinib 
and either 0.5 or 5 μM etoposide for 2 d demonstrated improved 
therapeutic effects compared to those treated with erlotinib 
alone (Fig. S6I). We experimentally confirmed the activation of 
senescence in A549 and H1299 lung cancer cells following treat-
ment with 0.5 or 5 μM etoposide (Fig.  5 F and G and Figs. S6J 
and L to N). We conducted drug sensitivity assays for erlotinib 
in A549 and H1299 cells under conditions of etoposide-induced 
cellular senescence compared to control conditions. We found 
that both LUAD cell lines exhibited increased sensitivity to erlo-
tinib under etoposide-induced cellular senescence compared to 
control cells (Fig.  5 H and Fig. S6O). Moreover, we found that 
the combination of etoposide and erlotinib led to a significant 
decrease in the proliferative capacity and colony formation of 
A549 and H1299 cells (Fig.  5 I and Fig. S6K, 6P, and Q).

   In LUSC tumors, we identified 12 drugs that exhibited a 
strong negative correlation with CSS such as dasatinib (Fig. 
S7C and D). Dasatinib and quercetin represent a classic seno-
lytic combination that has been tested in several preclinical 
models such as those of the lungs, liver, and kidneys. However, 
dasatinib as a single agent has shown limited efficacy in elimi-
nating tumor cells [  44 ]. Our results indicated that the imputed 
dasatinib response and the IC50 values of dasatinib in the 
CTRPv2 database were significantly associated with the senes-
cence status of tumors (Fig. S7E and F). In the NCI-ALMANAC, 
the combination of dasatinib and etoposide yielded a positive 
ComboScore in 2 LUSC cell lines (Fig.  5 J), particularly in the 
H226 cell line (Fig. S7G). We experimentally confirmed that 
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Fig. 5. Effects of cellular senescence on targeted drug response in TCGA. (A) Spearman’s correlation between CSSs and drug responses in tumor samples across various cancer 
types (red indicates positive correlation, suggesting drug resistance; blue indicates negative correlation, suggesting drug sensitivity). The upper bar plot summarizes the number 
of cancer types with significant correlations for each drug, while the right bar summarizes the number of drugs with significant correlations for each cancer type. (B) Spearman’s 
correlation between the senescence status of malignant cells, as imputed by ENIGMA (dEcoNvolutIon based on reGularized Matrix completion), and the senescence status of 
tumor samples in lung adenocarcinoma (LUAD). (C) Volcano plot depicting differential CSS for each drug in the drug-treated group versus the control group. The X axis represents 
the difference of mean CSS between the drug-treated and untreated groups. The Y axis represents −log10 P value calculated using the Student t test for the mean CSS 
of the 2 groups. Red points indicate P value <0.05. (D) Scatterplot showing the correlation between the drug response of each drug and the senescence status of malignant 
cells imputed by ENIGMA in LUAD. Red points indicate drugs whose imputed response were negatively correlated with CCS among tumors. (E) The combination of erlotinib and 
etoposide in vitro yielded positive ComboScores across 5 LUAD cell lines, indicating enhanced activity compared to additive activity in vitro. (F) Quantification of senescence-
associated β-galactosidase activity (SA-β-Gal)-positive cells of the A549 cell line treated for 48 h with dimethyl sulfoxide (DMSO), 0.5 μM etoposide, or 5 μM etoposide (images 
shown in Fig. S6J). Data were obtained in biological triplicate and analyzed using a 2-sided Student t test. Bars represent mean ± SD. (G) Quantitative reverse transcription 
polymerase chain reaction (qRT-PCR) analysis of the expression levels of 3 senescence-related marker genes in A549 cells. (H) Dose–response curves showing the mean cell 
viability of erlotinib under etoposide-induced and noninduced conditions in the LUAD cell line A549. Cell viability was normalized to the level of cells treated with DMSO. Data were 
analyzed using a paired Wilcoxon rank-sum test. (I) Quantitative analysis of the cell proliferation rate was performed using the Cell Counting Kit-8 (CCK-8) assay at different time 
points following the treatment of A549 cells. Treatments are as follows: DMSO, 1 μM etoposide, 80 μM erlotinib, and 1 μM etoposide + 80 μM erlotinib (combination). Error bars 
represent mean ± SD. The difference was estimated using the Student t test. (J) The combination of dasatinib and etoposide in vitro yielded positive ComboScores across 2 lung 
squamous cell carcinoma (LUSC) cell lines. (K) Quantification of SA-β-Gal-positive cells for the H226 cell line treated for 48 h with DMSO, 0.5 μM etoposide, or 5 μM etoposide 
(images shown in Fig. S7H). (L) Dose–response curves showing the mean cell viability of dasatinib under etoposide-induced and noninduced conditions in the LUSC cell line 
H226. (M) Quantitative analysis of the cell proliferation rate was evaluated using the CCK-8 assay at different time points following the treatment of H226 cells. Treatments are as 
follows: DMSO, 1 μM etoposide, 0.2 μM dasatinib, and 1 μM etoposide + 0.2 μM dasatinib. Error bars represent mean ± SD. The difference was estimated using the Student t test.
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senescence was induced in H226 cells following treatment with 
0.5 or 5 μM etoposide (Fig.  5 K and Fig. S7H and I). Drug 
sensitivity assays showed that the LUSC cell line H226 exhib-
ited increased sensitivity to dasatinib under etoposide-induced 
cellular senescence conditions (Fig.  5 L). Furthermore, the 
combination of etoposide and dasatinib resulted in a significant 
decrease in the proliferative capacity and colony formation of 
H226 cells (Fig.  5 M and Fig. S7J). Together, our results suggest 
that combining senescence-inducing agents (such as etoposide) 
with targeted therapies may enhance therapeutic efficacy in 
lung cancer.   

Differential dependencies associated with 
senescence status in CCLE
   To explore senescence-associated differential dependencies 
and uncover vulnerabilities in senescent cells that may benefit 
targeted therapies, we performed an integrative analysis using 
data from the Cancer Cell Line Encyclopedia (CCLE), which 
includes large-scale CRISPR-based genetic manipulation and 
gene expression data from ~1,000 cancer cell lines [  45 ,  46 ]. We 
first quantified the CSS for those cell lines. The CSS of cell lines 
showed a significant negative correlation with the expression 
of MCM family genes [  47 ] and proliferation-associated genes 
(CDK2, CDK4, MKI67, and CCNE1). It showed a positive cor-
relation between CSS and the expression of senescence marker 
gene CDKN1A (Fig.  6 A).        

   Next, we classified the cancer cell lines into 3 groups with 
different senescence statuses based on CSS and searched for 
genes with differential dependencies between the CSS-L and 
CSS-H cell lines. We identified 17 genes that were selectively 
essential to the CSS-L groups (Fig.  6 B), exemplified by genes 
﻿ADSL, CDAN1, and GMPS. The expression levels of ADSL, 
﻿CDAN1, and GMPS were significantly higher in the CSS-L group 
compared to those in the CSS-H group (Fig.  6 C). Guanosine 
monophosphate synthase, encoded by gene GMPS, catalyzes the 
synthesis of guanine monophosphate and plays roles in cell pro-
liferation and DNA replication [  48 ]. Knockdown of GMPS has 
been shown to reduce cell proliferation and promote cellular 
senescence and apoptosis in cervical [  49 ] and liver cancer [  50 ], 
underscoring its importance in cancer biology.

   Interestingly, we also identified 30 genes with significantly 
increased dependency in CSS-H cell lines, exemplified by genes 
﻿KCMF1, KIF18A, MOB4, and RAC1. The expression levels of 
those genes were significantly higher in the CSS-H group com-
pared to that in the CSS-L group (Fig.  6 D). Previous studies have 
reported that knockdown of KIF18A resulted in decreased cell 
proliferation and increased apoptosis in LUAD cells [  51 ] and 
inhibited proliferation, migration, and invasion in esophageal 
cancer cells [  52 ]. Additionally, deletion of Rac1 led to reduced 
cell growth and increased apoptosis in primary mouse embry-
onic fibroblasts [  53 ]. Genes with increased dependency in 
CSS-H cell lines were enriched in pathways related to oxidative 
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Fig. 6. Differential dependencies associated with senescence status in the Cancer Cell Line Encyclopedia (CCLE). (A) Pearson correlation analysis between CSSs and various 
commonly used cell proliferation and senescence markers among cancer cell lines. The mini-chromosome replication maintenance (MCM) protein complex genes refer to the 
MCM2 to MCM7 gene family. (B) Volcano plot depicting differential gene dependency between CSS-L and CSS-H cell lines. The X axis represents the median gene effect score 
difference between the CSS-H and CSS-L groups. The Y axis represents the −log10 P value calculated using the Wilcoxon rank-sum test for the means of 2 groups’ gene effect 
scores. Red points indicate significantly different dependencies. (C) Boxplots displaying the dependency scores (left) and expression levels (right) of 3 genes (ADSL, CDAN1, 
and GMPS) that exhibit strong dependency in the CSS-L group. The threshold for dependency, as defined by dependency map, is indicated by the gray dashed line (−1). 
(D) Boxplots showing the dependency scores (left) and expression levels (right) of 4 genes (KCMF1, KIF18A, MOB4, and RAC1) that demonstrate increased dependency in the 
CSS-H group. (E) The number of genes showing differential dependency between CSS-L and CSS-H cell lines across different cancer types. H-dependency indicates increased 
dependency in CSS-H cell lines compared to that in CSS-L cell lines. (F) Volcano plot depicting differential gene dependency between the CSS-L and CSS-H cell lines in lung cancer.
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phosphorylation, cell cycle, DNA replication, and various dis-
ease processes (Fig. S8C).

   We also identified genes with differential dependency between 
senescence status groups for each cancer type separately, find-
ing that lung cancer had the largest number of selectively essen-
tial genes in CSS-H versus CSS-L cell lines (Fig.  6 E and F). These 
results reveal that the senescence status of cancer cells influ-
ences their dependency on specific genes, indicating that senes-
cence may impact the effectiveness of targeted therapies.    

Discussion
   Targeted therapies have reduced drug toxicity but have also led 
to increased drug resistance. Rational drug combinations rep-
resent a promising approach to enhance the treatment out-
comes. However, the vast array of potential drug combinations 
exceeds the feasible scope of clinical testing. In addition, many 
FDA-approved drugs with lower drug concentrations can 
induce cellular senescence. Exploring effective drug combina-
tions through the perspective of cellular senescence holds sub-
stantial clinical value. In this study, we defined a useful metric 
to quantify cellular senescence status. Utilizing this metric, we 
discovered that combining senescence-inducing drugs, such 
as etoposide, with anti-cancer targeted therapies can improve 
therapeutic efficacy.

   In this study, we provided a comprehensive overview of 
senescence-related molecular signatures, including mRNA, 
miRNA, and protein expression. These signatures were enriched 
in various senescence-related and cancer-related pathways, 
such as cell cycle and IL-17 signaling. We provided a pan-cancer 
overview of cellular senescence status and its underlying gene 
dependencies, which could have potential clinical applications. 
Additionally, we provided a comprehensive landscape of drug 
response associated with cellular senescence across different 
cancer types. More importantly, we found several drug com-
binations that may be effective in lung cancer from the per-
spective of cellular senescence.

   We initially explored the association between the expression 
of 1,986 senescence-related genes and drug response in the 
GDSC database. Our analysis revealed that the majority (88.2%) 
of these genes were associated with the sensitization of targeted 
therapy drugs, suggesting that cellular senescence may improve 
the effectiveness of targeted therapies in cancer treatment. 
Furthermore, we calculated the correlation between the CSS 
and the imputed drug response of 138 drugs to illustrate the 
overall impact of cellular senescence on anti-cancer targeted 
drug responses. Our results showed that most senescent tumor 
cells were associated with increased sensitivity to targeted therapy 
drugs, consistent with findings from the GDSC. As expected, 
tumor samples with high CSSs were more sensitive to senolytic 
drugs, such as ABT-263. Interestingly, these samples also exhib-
ited increased sensitivity to multiple inhibitors of EGFR, PI3K, 
and other signaling pathways.

   Senescent cells exhibit vulnerabilities and unique molecular 
signatures that may render them more susceptible to targeted 
therapies. Using the CTRPv2 dataset, the NCI-ALMANAC data-
base, and in vitro experiments, we confirmed that etoposide-
induced senescence sensitizes lung cancer cells to 2 target drugs: 
erlotinib and dasatinib (Fig.  5  and Figs. S6 and S7). These results 
indicate that the combination of senescence-inducing drugs and 
targeted therapies can lead to better therapy effect in lung cancer. 
However, it is important to note that this is a proof-of-concept 

study, involving 1 senescence inducer (etoposide) and 2 targeted 
drugs (erlotinib and dasatinib). With the comprehensive analy-
sis and diverse drug data provided by this study, more attempts 
could be carried out by the research community to render more 
drug combinations for clinical application.

   Several other challenges remain in our study that require 
further investigation. Firstly, our analysis relied on bulk RNA-
seq tumor samples, and large-scale single-cell tumor databases 
do not provide drug response values. We employed deconvolu-
tion methods, ENIGMA and BayesPrism, to indirectly estimate 
the cell-type-specific expression profile for each tumor sample 
and investigated the correlation between the drug response and 
the CSS of malignant cells. With the development of single-cell 
profiling technology, future studies should account for tumor 
heterogeneity in anti-cancer drug therapies. Secondly, while 
etoposide is a widely used drug for inducing senescence, it may 
also trigger normal cellular senescence at lower doses. Most 
anti-cancer drugs can induce cellular senescence at lower con-
centrations; future research should focus on selecting drugs 
that specifically induce senescence in malignant cells. Finally, 
we experimentally demonstrated the phenomenon that senes-
cent cells are more sensitive to certain drugs in lung cancer and 
used vulnerability to explain it, but the complex mechanisms 
underlying it remain underexplored in this work. Future inves-
tigations should delve into the genetic and biological pathways 
that enhance the sensitivity of senescent cells to targeted drugs 
through transcriptomic analysis and additional experiments. 
In summary, our study emphasizes the importance of consider-
ing cellular senescence in future targeted therapies and provides 
new rational drug combination strategies in targeted therapies.   

Methods

Evaluating cellular senescence status from 
transcriptomic data
   We collected 7 widely used senescence-related gene sets (CellAge, 
GenAge, ASIG, Aging Atlas, SASP pathway, SenMayo, and 
SenUp) to estimate CSS. Among these, the SenUp gene set contains 
526 consistently overexpressed genes identified through a meta-
analysis of 20 replicative senescence micro array datasets from the 
Gene Expression Omnibus (GEO) [ 14 ]. Additionally, this study 
also identified 734 consistently underexpressed genes, which we 
refer to as the SenDown gene set. Other gene sets were manually 
compiled from the literature. The CS-score is a recently reported 
metric that quantifies cell senescence levels, defined as the differ-
ence between the scores of the SenUp and SenDown gene sets.

   To validate the performance of these 7 gene sets and CS-score 
using three different algorithms (ssGSEA, Z score, and GSVA), 
we downloaded 10 datasets with known senescence labels 
from GEO, including GSE158743 (osteosarcoma), GSE152699 
(melanoma), the Cancer SENESCopedia database (breast can-
cer, colon cancer, liver cancer, and lung cancer), GSE113957, 
GSE141595, GSE190998, and GSE72815. We used log2(TPM + 
1) transformed expression data for the following analyses: The 
R package GSVA was employed to implement the ssGSEA, 
﻿Z score, and GSVA scoring methodologies, with the “method” 
parameter set to “ssgsea”, “zscore”, and “gsva”, respectively, while 
all other parameters remained at their default settings. The senes-
cence scores derived from the SenUp gene set were consistent 
with the senescence status across the 10 datasets. Therefore, we 
refer to the ssGSEA scores based on the senescence-related genes 
from the SenUp gene set as the CSS.
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   Furthermore, we calculated the CSS of normal samples 
from the GTEx database and cells from GEO (GSE165192 and 
GSE182416), to validate the accumulation of senescent cells 
during human aging. The gene expression profiles and age data 
of GTEx normal samples were obtained from GTEx Portal 
(V8;  https://www.gtexportal.org/home/downloads/adult-gtex ). 
To investigate the impact of smoking on senescence status, we 
calculated the CSS of tumor samples in TCGA and downloaded 
patient clinical information, including gender, race, and smoking 
status, from the Genomic Data Commons data portal. Patients 
who were not smoking at the time of the interview were classified 
as nonsmokers, while others were categorized as smokers. We 
then compared the distribution of CSSs across different cancer 
types while controlling for gender and race (White). The gene 
expression profiles and smoking status of squamous cell lung 
carcinoma samples were obtained from GSE12428. Additionally, 
the scRNA-seq data and smoking status of bronchoalveolar 
lavage samples were collected from a previous study [  54 ], which 
include 4 never smokers and 5 current smokers.   

Classification and multi-omics signature analysis 
across different cancer types in TCGA
   Multi-omics data, including mRNA expression, protein expres-
sion, miRNA expression, somatic mutations, and clinical data 
(race, gender, pathologic stage, histological type, and overall sur-
vival times) from 33 tumor types, were downloaded from the Xena 
platform ( https://xenabrowser.net/ ). Tumor purity data were 
downloaded from the TIMER portal ( http://cistrome.org/TIMER/
download.html ) and the Zenodo repository ( https://zenodo.org/
record/253193 ) and subsequently integrated. The senescence 
scores for tumor samples from TCGA were calculated based on 
the SenUp gene set using the ssGSEA method.

   We then classified these tumor samples based on the distri-
bution of tertiles within each cancer type, designating the low-
est and highest tertiles as CSS-L and CSS-H groups, respectively. 
Cancer types with at least 100 samples were included for com-
parison of molecular alterations. Cancer types containing at 
least 20 samples with overall survival times in the CSS-L and 
CSS-H groups were utilized for survival analysis. To address 
potential confounding factors such as gender, tumor stage, and 
histological type, we employed the matching weights method 
of the propensity score matching algorithm to balance the 
CSS-L and CSS-H groups, ensuring that the standardized dif-
ference was less than 0.1. The FDR-corrected P value for each 
cancer type was calculated using the Benjamini and Hochberg 
method. Significance for mRNA, protein, and miRNA molecu-
lar alterations was determined based on the following criteria: 
mRNA: |FC| > 2, FDR-corrected P value <0.05; protein: |dif-
ference| > 0.2, FDR-corrected P value <0.05; miRNA: |FC| > 
1.5, FDR-corrected P value <0.05.

   The R package clusterprofiler was utilized to perform Kyoto 
Encyclopedia of Genes and Genomes (KEGG)/Gene Ontology 
enrichment analysis with parameters minGSSize = 3 and 
maxGSSize = 500. Additionally, fgsea was employed to imple-
ment gene set enrichment analysis based on the KEGG pathway 
dataset downloaded from the R package KEGGREST, with 
parameters minSize = 3, maxSize = 500, and nperm = 10,000.   

Analysis of drug response
   We focused on 1,986 genes with significantly altered mRNA 
and protein levels in at least 4 cancer types or with significantly 
altered mRNA or protein levels in at least 6 cancer types. The 

mRNA expression matrix and the AUC for 251 anti-cancer 
drugs from the GDSC across cancer cell lines were down-
loaded from GDSC1000 resources. We calculated the correc-
tion between the expression of senescence-associated genes 
and the drug AUC using Spearman’s correlation, with statisti-
cal significance defined as |Cor| > 0.3 and FDR-corrected 
﻿P value <0.05.

   To further assess the relationship between drug response 
and senescence status in TCGA, we downloaded the imputed 
drug response of TCGA samples from a previous research that 
fitted a logical ridge regression model to the IC50 values of a 
subset of cell lines from the GDSC cohort [ 26 ]. We analyzed 
the Spearman’s correlation between CSS and the imputed drug 
response of 138 drugs, with |Cor| > 0.2 and FDR-corrected 
﻿P value <0.05 as thresholds for statistical significance.

   As in previous studies, a negative correlation relationship 
was defined as drug-sensitive, while a positive correlation rela-
tionship indicated as drug-resistant [ 23 ]. For up-regulated 
genes in CSS-H tumors, a negative correlation relationship was 
defined as drug-sensitive and a positive correlation relationship 
as drug-resistant. Conversely, for down-regulated genes in CSS-H 
tumors, a positive correlation relationship was defined as drug-
sensitive, and a negative correlation relationship indicated drug 
resistance.   

Cell culture
   The human LUAD cell line A549, H1299, and human LUSC 
cell line H226 were cultured in Roswell Park Memorial Institute 
1640 medium (Gibco) supplemented with 10% fetal bovine 
serum (Gemini) and 1% penicillin and streptomycin (penicil-
lin–streptomycin solution, 100×, Beyotime) at 37 °C in 5% CO2 
(v/v). To induce cellular senescence, A549, H1299, and H226 
cells were treated with etoposide (Aladdin, E121713) at con-
centrations of 0.5 and 5 μM for 48 h.   

Cell proliferation assay
   We purchased erlotinib-HCl (E129310) and dasatinib (D125110) 
from Aladdin. The effects of these drugs on cell proliferation 
were assessed using Cell Counting Kit-8 according to the ven-
dor’s instructions (Dojindo). We plated 3,000 cells in each assay 
of 96-well plates. After 24 h, cells were treated with a range of 
drug concentrations prepared by serial dilution, along with 1 μM 
etoposide or dimethyl sulfoxide (5 replicates per condition). The 
plates were incubated at 37 °C and 5% CO2 (v/v) for different 
time periods. After the treatment, 20 μl of the Cell Counting 
Kit-8 reagent was added to the culture wells and incubated 
for an additional 2 h. The absorbance at 450 nm was recorded 
with Spark (TECAN). Relative viability was normalized to the 
untreated 5 replicates.   

Colony formation assay
   To evaluate the colony formation ability of the lung cancer cell 
lines in response to various drug treatments, cells were cultured 
in 6-well plates at a density of 4,000 (A549 and H226) or 3,000 
cells per well (H1299). Following this, the cells were cultured 
in the presence of different concentrations of drug combina-
tions for 4 d. The culture medium was aspirated, and the cells 
were fixed using 4% paraformaldehyde and then stained with 
0.2% crystal violet (Sangon Biotech) for 15 min. The wells were 
then washed with phosphate-buffered saline, and images were 
captured.   
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Cell line dependencies
   We obtained expression data and CRISPR gene effect scores 
from the DepMap portal ( https://depmap.org/portal/down-
load/all/ ; DepMap Public 22Q2). The senescence scores of can-
cer cell lines from the CCLE were calculated using the SenUp 
gene set with the ssGSEA method. We classified these cancer 
cell lines into 3 groups based on tertile distribution, designating 
the bottom tertile as the CSS-L group and the top tertile as the 
CSS-H group. Genes exhibiting significantly increased depen-
dency in the CSS-H group were selected based on the following 
criteria: (a) The gene effect score in the CSS-H group is <−1. 
(b) The gene effect score in the CSS-L group is >−1. (c) The 
FDR-corrected P value is <0.05. Only cancer types with at least 
30 samples were included in the analysis of cancer cell line-
special essential genes.   

Statistics and reproducibility
   The difference between 2 groups were assessed using the 
Wilcoxon rank-sum test, with P value <0.05 or FDR-corrected 
﻿P value <0.05 being considered significant. * indicates P < 
0.05, ** indicates P < 0.01, *** indicates P < 0.001, and ns 
indicates not significant. The associations between 2 vectors 
were analyzed using Spearman’s correlation, employing the 
rcorr() function in R.    
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