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ARTICLE INFO ABSTRACT
Keywords: Deep-learning-based classification of pollen grains has been a major driver towards automatic
Pollen recognition monitoring of airborne pollen. Yet, despite an abundance of available datasets, little effort has

Sample difficulty analysis

been spent to investigate which aspects pose the biggest challenges to the (often black-box-
Deep learning

resembling) pollen classification approaches. To shed some light on this issue, we conducted a
sample-level difficulty analysis based on the likelihood for one of the largest automatically-
generated datasets of pollen grains on microscopy images and investigated the reason for
which certain airborne samples and specific pollen taxa pose particular problems to deep learning
algorithms. It is here concluded that the main challenges lie in A) the (partly) co-occurring of
multiple pollen grains in a single image, B) the occlusion of specific markers through the 2D
capturing of microscopy images, and C) for some taxa, a general lack of salient, unique features.
Our code is publicly available under https://github.com/millinma/SDPollen

1. Introduction

Automatic monitoring of airborne pollen has brought up a plethora of challenges at the intersection of biological, medical and
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environmental sciences, engineering, and computer science. The idea of accurate systems detecting and classifying airborne pollen in
real-time holds exciting visions for the mitigation of allergies in the short- and mid-term, and the tracking of climate change effects, in
the long-term [4]. Moreover, such approaches and associated information can comprise an asset for agriculture, phytopathology, and
forestry. For instance, relationships with flower, seed and fruit production may be contributing towards timely forecasts of microbial
contaminations in economically valuable crops and plantations [4].

Attempts towards such systems involve devices - amongst others - that capture pollen from the atmosphere and create microscopy
images from them. A prominent example for this is the commercial device BAA500 (Bio Aerosol Analyzer 500, Hund GmbH, Wetzlar)
[25], on the data of which this contribution is based. The detailed processes of the creation and initial processing of the microscopy
images are further described in Refs. [11,24].

In a second step, the images are processed with computer vision algorithms, these days powered by deep learning, to detect and
classify individual pollen grains [32]. The development of such deep learning models relies on expert-labelled pollen datasets, which
has been a major effort of the research community in the past years. Beyond that, attempts towards reliable pollen detectors and
classifiers are building upon related computer vision approaches, with particular characteristics of microscopy images [19,23], and are
limited by common machine learning challenges, which reach far beyond computer vision, such as class imbalance [15], fairness, e.g.,
with respect to the applied location [36], and the sparsity of noise-free annotations [33], amongst others.

The most widespread analysis of model performance happens on a dataset level, which, however, does not paint a full picture of
how the model learns and makes decisions. In an effort to gain more fine-grained insights into the training dynamics of deep learning
algorithms, recent literature has put a heavy focus on sample-level analyses. This particularly manifests in the question of how difficult
individual samples are for machine learning algorithms and to understand the underlying reasons [2,21,22]. The original motivation
behind sample-level difficulty estimation was curriculum-based learning, i.e., the assumption that performance can be increased, if the
model first learns to recognise easy samples before steadily including more and more difficult samples into the training [38].
Nevertheless, this knowledge —even though fulfilling its initial intention by identifying corner cases or even mislabelled data points—
still shows room for improvement. In return, it helps in the explainability and confidence of decision processes and might empower
architecture design, e.g., by the use of priors. From the biological and environmental perspective, such information can enhance our
understanding of technology and particular limitations to the specific field of research and data. Beyond, a better understanding of how
different factors contribute to the perceived difficulty from a technological point of view can inspire us to consider different forms of
data representations, thus allowing a more straightforward and more robust application of technology.

Relevant approaches generally act on the training data and include statistical evaluations on held out subsets of the training
partition (c-score) [13] or the tracking of sample-based performance during training [35]. In this study, we focus our sample difficulty
estimation on the likelihood of the correct pollen class as described in Ref. [8], offering a low-complexity solution for difficulty esti-
mation based on the loss of the trained model. While most studies are conducted for benchmark datasets, such as ImageNet, ObjectNet,
or CIFAR10, we want to bring insights about a task with more real-world application: The Augsburgl5 dataset [31,32], one of the
largest labelled pollen datasets with a particular challenge posed by class imbalance. In this work, we thus aim to answer the following
questions.

e Does the application of likelihood of training data points offer a robust and insightful sample difficulty measure for the investigated
pollen dataset?

e What role does class imbalance play in the estimation of sample difficulty?

e Are there particular challenges posed by distinct pollen classes?

e What other effects are drivers of high difficulty for individual samples?

2. Data

Our analysis is based on the pollen dataset, which we first introduced in Ref. [32] and further analysed in Refs. [14,31]. It consists
of automatically captured and pre-processed grayscale pollen images by a BAA500 device in Augsburg, Bavaria, Germany and manual
corrections to the automatically generated pollen taxa labels [26]. With more than 50 000 samples, it is still one of the largest pollen
datasets of its kind, recently being surpassed by Ref. [20]. We analysed the 15-class version of the dataset, which contains the 15 most
common pollen taxa in Bavaria, south Germany. One of the major challenges of the data is the high class imbalance, which corresponds
to the abundance of the pollen types in said region and is limited to their occurrence in the gathered data during one pollen season. The
number of samples per pollen type ranges from 181 (Tilia) to 11 667 (Corylus).

3. Methodology
3.1. Neural network architectures

We train the popular architecture ResNet50 [10] (~24 Mio. parameters), which was also employed on the Augsburgl5 dataset in
Ref. [31], as well as the more recently established EfficientNets [34] in its base version EfficientNet-BO (~4 Mio. parameters) and the
scaled version EfficientNet-B4 (=18 Mio. parameters); all models have an adjusted classification layer with 15 neurons for the 15-class
pollen classification problem. We considere two different types of initialisation for all models: random and pre-trained on the ImageNet
corpus [5]. The latter case is generally considered to improve performance for computer vision tasks and has previously shown so for
the considered pollen dataset [31].
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3.2. Difficulty score

We conduct our analysis of sample difficulty based on the likelihood of the correct class on the training data, which is described in
Ref. [8] in the context of curriculum learning, i. e., in a performance investigation of a training paradigm, which iteratively adds more
and more difficult data points to the training sets. The likelihood-based difficulty estimation provides us with a difficulty ranking of the
data based on the sample-wise values of the cross-entropy loss function.

For this approach, we utilise the model states of the previously described convolutional neural networks (CNN) after training them on
the Augsburgl5 training dataset. A score for the difficulty of each training data point is obtained by its loss value, i.e., a sample
providing a large loss value obtained from the well-trained model state represents a more challenging sample than one with a small loss
value. The samples are then ranked based on their difficulty score from the easiest to the most difficult sample. Note that we apply this
analysis only to the training data (on which our model states were trained), as was intended by the authors of the approach.

4. Experiments
4.1. Initial model training

The first step of our experiments is the training of model states for the Augsburgl5 dataset with each image being rescaled to 64 x 64
pixels and normalised. We train the models ResNet50, EfficientNet-BO, and EfficientNet-B4 with and without pre-training with the Adam
optimiser and a balanced cross-entropy loss (to mitigate the effects of class imbalance) for 100 epochs. We run the same experiments
for the learning rates 10> and 10~* and three random seeds, resulting in overall 36 experiments, and average the performance for each
combination of model architecture and initialisation type. We summarise results for unweighted average recall (UAR) and unweighted
average F1 score in Table 1. The best model performance is slightly lower, but comparable to that reported in Ref. [31]. Differences
most likely come down to our simpler training setup omitting techniques such as data augmentation or weight vector normalisation,
which would add additional complexity to our discussion. As expected, a performance gap can be reported between pre-trained models
and those with random initialisation, while the performance difference amongst pre-trained models is particularly small with the
pre-trained EfficientNet-B4 reaching the highest UAR and F1 score.

4.2. Difficulty score estimation

In the next step, the best model state of each training (wrt. validation UAR) is used to generate difficulty scores according to Section
3.2. However, we average the raw scores for each combination of model architecture and initialisation over learning rates and random
seeds before calculating the ranking. Note that at this point, we consider the cross-entropy without balancing weights, such that each
sample’s difficulty (cfg. likelihood) could be estimated without explicit consideration of its class.

4.3. Inter-model comparison

Fig. 1 shows the pairwise Spearman correlation (i.e., rank correlation) coefficient of sample difficulty for the different model-
initialisation combinations. It is apparent that there is a reasonably high correlation of more than 50 % across most pairs, indi-
cating that all models capture a common underlying interpretation of difficulty to a certain degree. Interestingly, correlation between
pairs with the same type of initialisation is particularly high, exceeding 55 % in all cases and 63 % for all pairs of models without pre-
training. This indicates that a similar knowledge basis leads to a similar sense of difficulty. It seems likely that through the pre-training,
models are able to overcome certain challenges — presumably a certain consistent type of features — that poses problems to the
randomly initialised models, thus being a reason for lower performance of the latter. It is important to note that a model pre-trained on
ImageNet, mostly including coloured, natural images, may not offer a particular sensitivity to the morphological features displayed in
the microscopy-images of pollen grains. Pre-training on a more curated dataset including similar microscopy images may result in once
again a different sense of difficulty and might be beneficial for pollen recognition performance. Nevertheless, the utility of ImageNet
pre-training has been proven across different computer vision tasks [17] including pollen grain recognition [7] and even in other
modalities such as audioscalograms [28] or audio-spectrograms [1], the reasons for which however are still not fully understood [9,
12].

Table 1

Performance of different combinations of architecture and initialisation: no suffix corresponds to
random initialisation, -pret corresponds to pre-training on ImageNet. Performance is averaged across
three random seeds and two learning rates. Bold font indicates the best performance.

Model UAR (u + 0) F1 (u £ o)

ResNet50 0.864 + 0.004 0.865 + 0.007
EfficientNet-BO 0.824 + 0.043 0.826 + 0.038
EfficientNet-B4 0.841 + 0.014 0.835 + 0.038
ResNet50-pret 0.895 + 0.011 0.900 + 0.008
EfficientNet-BO-pret 0.910 + 0.004 0.905 + 0.004
EfficientNet-B4-pret 0.913 + 0.004 0.908 + 0.006
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Fig. 1. Pair-wise correlation of difficulty ranks produced with different model architecture. Pre-trained (pret) models are considered separately from
models with random initialisation.

With the version of ResNet50 without pre-training showing the highest average pair-wise correlation overall, we further analyse its
difficulty ranking in the following.

4.4. Inter-class comparison

In order to analyse the class effects on the difficulty score, we create 20 difficulty score bins and assigned all samples (class-in-
dependent) to them with an equal amount of samples per bin. We then look at the difficulty bin distribution per class in a histogram
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Fig. 2. Relative, normalised distribution of sample difficulty scores for each individual class. Diagrams (a—o) are sorted from top-left to right-bottom
by the number of samples per class, from the most abundant (a) to the rarest class (0). Each bar diagram represents the difficulty distribution within
each class with respect to the difficulty ordering of the whole dataset. The values of each bar are calculated as the total number of samples for the
respective class being found in 5 % bins obtained from the difficulty ordering on the whole dataset. Finally, the bars are normalised with the total
number of samples in the respective class to obtain a relative difficulty distribution.
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representation and for better visibility in the imbalanced dataset, we normalise the absolute count of samples per class. Fig. 2 (a - 0)
thus shows the relative sample difficulty distribution per class, sorted by the number of samples per class. Interestingly, the difficulty
scores seem to be more uniformly distributed amongst classes with many samples and closer to a Gaussian distribution for classes with
fewer samples.

One possible explanation for this effect lies in the way the optimisation is performed through the balanced cross-entropy-loss,
which assigns stronger weights and, thus, higher importance to samples from under-represented classes. A balanced loss function is
a necessary choice for the training to prevent the network from ignoring an otherwise small contribution of the minority classes to the
overall training loss. It allows the training to leverage patterns learned in the overall large dataset with more than 50 000 samples to a
reasonable recognition rate for classes with less than 200 samples (to some extent even for classes with less than 30 samples), as
reported for the dataset at hand in Ref. [31]. As a consequence, though, the model parameter updates are heavily impacted when
confronted with a sample of the minority class. This makes it unlikely that any training sample from a minority class will remain with a
high loss after training. Consequentially, most samples from minority classes will not be found in the hardest samples of the full
dataset. On the other hand, the underrepresented classes might not benefit from the smooth learning process that might be obtained
through many parameter updates for the abundant classes. Therefore, the losses of easy samples of the minority classes might not
decrease as much as those of the majority classes. This results in fewer samples of the minority class being interpreted as very easy. The
observed differences in distribution are, thus, likely to be an artefact of the training paradigm and the difficulty measure rather than
being rooted in the pollen types themselves.

A more quantitative perspective on average class difficulty can be taken via Fig. 3, which shows the average difficulty ranks, i.e.,
the average bar height in Fig. 2, over the number of samples per class on a logarithmic scale. The regression line shows only a minimal
trend with negative slope, indicating that effects of class imbalance are largely nullified, presumably through the balanced cross-
entropy training. Therefore, we also get a clear picture that the taxa Quercus, Betula, Poaceae and Alnus have particularly difficult
samples, while the taxa Fagus, Tilia, and, above all, Urticaceae have particularly easy samples. This indicates the existence of specific
characteristics of the respective pollen taxa impacting their recognition difficulty in the context of the considered setup of 2D mi-
croscopy imaging and convolutional neural network classifiers. These results are also backed up by the confusion matrices for
Augsburgl5 in Refs. [31,32], in which the “hard” classes show low and the “easy” samples show high recognition rates, even though a
trend of better performance for classes with a large number of samples is evident in these studies. It is important to note that the study
of Schafer et al. [31] is not able to nullify the effects of class imbalance on recognition performance despite more sophisticated
mitigation strategies, such as focal loss [29] and weight vector normalisation [16]. Nevertheless, a closer investigation of how different
techniques for class-imbalanced datasets, such as the ones mentioned above, or other examples like synthetic minority over-sampling
technique (SMOTE) [3] or under-sampling, impact the models’ interpretations of difficulty.

4.5. Exemplary sample analysis

A closer look at the supposedly easiest and hardest samples from each class in Fig. 4 reveals several interesting insights: Tilia pollen
shows a very low identification difficulty, despite the lowest occurrence in the dataset, as the morphology of the pollen grain is unique,
being larger in size than the commonest ones, colporate and isopolar, cup-shaped and with very characteristic and deep colpi. Like-
wise, Fagus pollen is even larger, with long, narrow colpi and large, round protruding pori. Both Tilia and Fagus are difficult to
misclassify by a well-trained aerobiologist expert. On the other hand, pollen from Alnus, Betula, Poaceae and Quercus are more difficult
to classify manually. The first two taxa look alike, with similar size and type and shape of pori, with the main differentiation being that
Alnus pollen has 5-7 pori in contrast to Betula that has only 3. In real-life, not all pori (or any morphological characteristics whatsoever)
are visible, which makes the confusion of these two taxa quite high. Interestingly, they are not easily confused with the other
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Fig. 3. Average difficulty rank for each class with respect to the number of total samples. The average difficulty rank for each class is computed as
the average sum over the position of all corresponding samples in the overall difficulty ranking of all samples.
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b) Alnus c) Carpinus d) Taxus e) Poaceae  f) Urticaceae g) Betula h) Populus
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i) Plantago m) Fraxinus n) Ulmus

Fig. 4. Overview of each pollen type according to their respective hardest and easiest image. Pollen taxa (a—o) are sorted top-left to bottom-right
based on the number of samples per pollen taxa. For each pollen taxa, we display two vertically arranged pollen samples with the top one being the
hardest and the bottom one the easiest sample from the dataset as determined with the ResNet50 architecture without pre-training.

representatives of the family, Carpinus and Corylus, because of different shape (aspidate for the former) and pori morphology (deeper in
both taxa). Fraxinus and Quercus are also harder to classify, with the former literally having no unique features, but 3 colpi, average
size, no exine special features, which ranks it as maybe the hardest to recognise pollen type, even for expert aerobiologists.

Fraxinus, is to be confused with other representatives of the family, like Olea, Phillyrea, Syringa and Ligustrum, with some distinct
features, but those being the most subtle in the case of Fraxinus. Poaceae, finally, is the pollen type with the most plant representatives
and even though it has one distinct round porus, there a high variability in all other features because of hundreds of different species
existing per location.

In conclusion, from a taxon-independent perspective, the largest confounding factor seems to be the coexistence of additional
pollen parts, which mostly appear on the edges. An encouraging mitigation strategy for this might be data augmentation through
cutmix [39]. However, in contrast to common implementations, application should be limited to the edges while preserving the grain
boundaries and without label adjustments. Beyond, it is a crucial problem that some visual features of the 3D pollen grains can be
occluded in the 2D images. It seems thus desirable to force the model to be less dependent on these particular features, for instance
through the means of priors or other augmentation strategies. For instance, one promising strategy to mitigate these effects is data
augmentation that particularly modifies the visibility and occlusion of relevant morphological features by deriving 2D projections from
3D models of pollen grains and their corresponding morphological features. Further, models could be designed to explicitly recognise
and model morphological features from the 2D images. The decision process can then be guided by considering the occlusion of some
features, further benefiting model interpretability.

4.6. Discussion and limitations

Even though the trends appearing in Fig. 1 are similar across the different models, details are dependent on the chosen model states
and further carry some bias through the choice of likelihood-based difficulty measure. Approach-dependent notions of difficulty will be
hard to overcome as a certain level of subjectiveness of difficulty has to be expected due to the different ways in which different
machine learning algorithms, and for reference, humans, approach a given problem. This aspect is further emphasised through the
abundance of difficulty estimations available in literature [18,37], including methods based on ensembles or on the learning history of
a model. Nevetherless, across different automated approaches for difficulty estimation, a reasonable overlap, at least across deep
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learning architectures of a similar type, can be observed, for instance, in the case of fully connected versus convolutional neural
networks in Ref. [38]. Similarly, some forms of human annotation-based difficulty estimates have shown a reasonable level of
agreement with some of the automated difficulty estimates [21]. Still, an in-depth investigation into the similarity across human-based
and machine-based difficulty estimation is still missing in literature. Beyond, we analyse only a specific type of data from one device
being collected essentially as 2D microscopy images in context of a specific capturing mechanism. The ability to generalise our
discovered insights to other devices thus needs to be further analysed. Nevertheless, we are optimistic that some findings are trans-
ferable to other problems as in particular the usage of optical capturing devices in combination with deep learning models and more
specifically convolutional neural networks have been established as a common practice in recent years [27]. In this setting, some
encountered challenges should be common, and they intuitively pose challenges to the deep learning algorithms, like, for instance, the
partial co-occurrence of other pollen grains. Beyond, other studies show similarity in certain pollen taxa being more difficult to
recognise for machine learning systems under different data collection methods. For instance, in Ref. [30] data is captured based on
multi-angle scattering images and fluorescence spectra of pollen grains. Despite the different recording approach, Quercus and Betula
show particularly low recognition rates, while Fagus and Taxus show high recognition rates, all of which is in-line with our reported
difficulty analysis. Furthermore, in Ref. [6] pollen grain information is captured via scattered light from a laser source, which is in the
following used for pollen classification with the more traditional machine learning methods support vector machine (SVM), k-near-
est-neighbour (KNN) and multi-layer-perceptron (MLP). Within the quite different choice of pollen taxa, Quercus, Fraxinus, Betula, and
Alnus show sub-par recognition rates, all of which we also conclude to have an above-average difficulty. Interestingly however, Corylus
appears with the lowest recognition rate in the study, which provides a rather average difficulty according to our results. Despite the
differences in technologies, there seem to be some trends in the difficulty of pollen taxa for automated machine learning-based pollen
recognition that generalise beyond our study. Finally, we have to mention limitations in the representativeness of the investigated
samples in Fig. 4(a—0). Even though they were selected based on the highest and lowest difficulty score per class, there is only some
insight to be obtained from the analysis of a single sample per class.

5. Conclusion

This work explored sample-level difficulty for an imbalanced microscopy pollen classification dataset. Our results indicate that the
difficulty score is consistent across different architectures with higher discrepancies between different initialisations and that effects of
class imbalance on sample difficulty are not apparent with a balanced cross-entropy training. However, consistent with previous work,
we find that some classes are particularly easy or hard to recognise for deep learning model; taxa from the Betulaceae and Poaceae
families, along with Quercus species seem to be the hardest to identify overall. In future work, we hope to leverage insights from the
sample difficulty into practice for more robust and justified training strategies and, in general, to make a broader case for dataset
analyses via sample difficulty in machine learning for bio-imaging. Beyond, an investigation into biology-inspired difficulty estimators,
particularly suited to the recognition of pollen grains, offers a promising venue for future research.
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