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Background: Segmentation models for clinical data experience severe performance degradation when trained on 
a single client from one domain and distributed to other clients from different domain. Federated Learning (FL) 
provides a solution by enabling multi-party collaborative learning without compromising the confidentiality of 
clients’ private data.

Methods: In this paper, we propose a cross-domain FL method for Weakly Supervised Semantic Segmentation 
(FL-W3S) of white blood cells in microscopic images. We perform model training on multiple clients with 
different data distributions to obtain a global aggregated model using only image-level class labels for semantic 
segmentation of white blood cells. A multi-class token transformer model learns the relationship between patch 
tokens and class tokens during collaborative learning and generates class-specific localization maps for mask 
predictions. To rectify the localization maps, we use patch-level pairwise affinity obtained from patch-to-patch 
transformer attention.

Results: We evaluate performance of the proposed semantic segmentation method on two different datasets of 
white blood cells from different domains. Our experimental results show that for two datasets, there is 2.56% and 
1.39% increase in performance of the proposed method over existing state-of-the-art methods.

Conclusion: The combination of federated learning for collaborative model training while preserving data privacy, 
alongside white blood cell segmentation techniques for precise cell identification, enhances diagnostic accuracy 
and personalized treatment strategies in clinical applications, particularly in hematology and pathology. More 
specifically, it involves isolating white blood cell from blood smear for further analysis such as automated blood 
cell counting, morphological analysis, cell classification, disease diagnosis and monitoring.

1. Introduction

The segmentation of white blood cells in stained peripheral blood 
and bone marrow samples is a key step for the automated classifica-

tion of these cells and the AI-based diagnosis of hematologic malig-

nancies [1–4]. Manual segmentation has been adopted as a standard 
procedure for WBCs, but this process is time-consuming, labor-intensive, 
and requires some level of expertise. The use of semi- or fully au-

tomatic segmentation methods can considerably reduce the time and 
labor needed, enhance consistency, and facilitate the analysis of large-

scale datasets. Thanks to the advancements in machine learning, deep 
learning-based models have achieved excellent performance for accu-
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rate segmentation results across a diverse range of medical imaging 
tasks [5–9]. However, existing methods such as [10–15], significantly 
drop in their performance when trained on a single client (e.g., hospital 
data) and distributed to other clients. Since in clinical practice, clients’ 
data often come from different domains (i.e., data distributions), the 
lack of model generalizability across domains poses a substantial obsta-

cle to a wider application in practice.

Furthermore, getting manually annotated ground-truth segmenta-

tion masks is expensive, thus, weakly supervised or unsupervised deep 
segmentation models [16,17] are attractive alternatives. The crucial 
step involves generating pseudo segmentation ground truth labels based 
on the provided weak labels [18]. Semi- or Weakly Supervised Seman-
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tic Segmentation (WSSS) only rely on image-level labels [18]. These 
image-level labels solely convey the presence of a particular object class 
without providing any details about the localization information within 
the image. However, there is an important detail in Vision Transformer 
(ViT) [19] features associated with semantic segmentation as disclosed 
by a recent method, DINO [20]. Attention maps from a class token 
produce semantic scene layouts. Thus, attention maps lead to an effec-

tive unsupervised segmentation. While in ViT attention, various heads 
address distinct semantic regions within an image, it is still not clear 
how a head can be associated with an accurate corresponding semantic 
class. Thus, attention maps in ViT remain class-agnostic so far. Exploit-

ing class-attention maps using transformers is challenging due to tokens 
from one class causing precise localization for multiple objects within a 
single image.

Moreover, the trained segmentation models lack generalizability due 
to domain-shift in data among different clients based on various fac-

tors such as image resolution, color, and class labels. In this case, the 
traditional FL methods [21,18] cannot help a client learn a robust seg-

mentation model for the segmentation of white blood cells.

To solve aforementioned problems, we propose FL-W3S for cross-

domain FL for weakly supervised semantic segmentation of white blood 
cells. For WSSS, instead of one-class tokens, we leverage multi-class 
tokens that are useful for various object classes to learn their represen-

tations, as inspired by Xu et al. [18]. A strong relation between a class 
token and its corresponding label is developed that leads to an advan-

tage of class-to-patch attention, utilized as a localization map specific 
to each class. Moreover, learning patch-to-patch attention is used for 
patch-level pairwise affinity that rectifies class-specific attention map 
tweaking the localization. The proposed FL-W3S uses Class Activation 
Mapping (CAM) [22] strategy with patch tokens by acquiring the ability 
to classify through representations based on class-token and patch-token 
simultaneously. Thus, there is consistency in patch tokens and class 
tokens improving the discriminative attribute concerning WBC localiza-

tion maps. Furthermore, we perform cross-domain FL training to obtain 
a global aggregated model on a server from the parameters received 
from local models.

Our main contributions are:

• We propose a novel method for cross-domain FL training for the 
segmentation of white blood cells using only image-level ground 
truth labels for weak supervision.

• We exploit a multi-class token transformer to learn the relationship 
between patch tokens and class tokens in cross-domain FL setting.

• We use patch-level pairwise affinity obtained from patch-to-patch 
transformer attention to refine the localization maps in local and 
global models. Extensive experiments validate the effectiveness of 
our proposed method, rather it goes beyond state-of-the-art.

2. Methodology

We train the proposed model in a cross-domain FL environment for 
weakly supervised semantic segmentation of single white blood cells, 
explained in sections 2.1 and 2.2. There are two main components of 
our method; one for the multi-class token transformer and the other for 
cross-domain FL.

2.1. Multi-class token transformer

We exploit transformer attention for class-specific object localiza-

tion maps, where an input image 𝐼 is transformed into 𝑃 × 𝑃 (non-

overlapping) patches that are converted into patch tokens 𝑇𝑝 ∈ ℝ𝑁×𝐸 , 
where 𝐸 represents the embedding dimension and 𝑁 = 𝑃 2, the number 
of patches as shown in Fig. 1. In traditional non-convolutional models, 
a single-class token is used for transformer attention. However, in the 
proposed method, we use multi-class tokens 𝑇𝑐 ∈ ℝ𝐶×𝐸 , concatenated 
with patch tokens along position embedding to be used as input tokens 

𝑇𝑖 ∈ ℝ(𝐶+𝑁)×𝐸 , for the transformer encoder, where 𝐶 represents the 
number of classes. In transformer encoders, there are multiple consec-

utive encoding layers, each containing a Multi Head Attention (MHA) 
and Multi-Layer Perceptron (MLP) to extract features, where LayerNorm 
layers are implemented prior to MHA and MLP respectively.

We leverage conventional self-attention layer to capture the depen-

dencies among tokens by normalization and transformation of input 
tokens to a triplet, Query 𝑄 ∈ℝ(𝐶+𝑁)×𝐸 , Key 𝐾 ∈ℝ(𝐶+𝑁)×𝐸 , and Value 
𝑉 ∈ℝ(𝐶+𝑁)×𝐸 using linear layers [19]. For the computation of attention 
between key and query, we apply Scaled Dot Product Attention [23]. Fi-

nally, using attention values as weights, each output token is generated 
as the result of a weighted sum of all tokens, formulated as:

Attention (𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇√

𝐸

)
𝑉 (1)

Thus, we can compute a token-to-token attention map 𝐴𝑡𝑡 = 

softmax

(
𝑄𝐾𝑇√

𝐸

)
, where 𝐴𝑡𝑡 ∈ ℝ(𝐶+𝑁)×(𝐶+𝑁). These global pairwise at-

tention maps 𝐴𝑡𝑡 are used to extract class-to-patch attentions 𝐴𝑐𝑝 ∈
ℝ𝐶×𝑁 as illustrated with pink circles in the matrix shown in Fig. 1, 
and mathematically represented as 𝐴𝑐𝑝 = 𝐴𝑡𝑡[1 ∶ 𝐶,𝐶 + 1 ∶ 𝐶 +𝑁]. In 
matrix 𝐴𝑐𝑝, each row (i.e., vector) denotes attention score of a specific 
class to all patches. These vectors are used to generate 𝐶 class-related 
localization maps. Each encoding layer of model produces class-related 
localization maps, where earlier layers give low level and generic in-

formation, while late layers give high level class-discriminative repre-

sentations. In the proposed method, we explore the trade-off between 
precision and recall of localization maps by merging class-to-patch at-

tention computed on final encoding layer 𝐿, mathematically expressed 
as:

�̃�𝑐𝑠 =
1 
𝐾

𝐿 ∑
𝑒 
�̃�𝑒
𝑐𝑠
, (2)

where �̃�𝑒
𝑐𝑠

represents class-specific transformer attention learned from 
𝑒𝑡ℎ encoding layer. Finally, min-max normalization is performed on 
�̃�𝑒
𝑐𝑠

attentions to produce final class-specific localization maps �̃�𝑐𝑠 ∈
ℝ𝐶×𝑃×𝑃 .

Unlike traditional transformers using a single class token (i.e., ex-

tracted on final layer with MLP), we use average pooling and make sure 
that class-discriminative information is learned for multiple class tokens, 
𝑇𝑐 ∈ℝ𝐶×𝐸 , formulated as:

𝑧 (𝑐) = 1 
𝐸

𝐸∑
𝑞

𝑇𝑐 (𝑐, 𝑞) , (3)

where 𝑧 ∈ ℝ𝐶 represents class prediction, a class 𝑐 ∈ 1,2,3, ...,𝐶 , and 
𝑇𝑐 (𝑐, 𝑞) represents an element (i.e. the 𝑞𝑡ℎ feature of a class 𝑐 token) in 
multi class attention 𝑇𝑐 . Finally, for a class 𝑐, soft margin loss between 
class 𝑧 (𝑐) and its corresponding ground truth label is computed. This 
enables each class token to learn class-specific information by a strong 
class-aware supervision. Moreover, we combine the proposed frame-

work of a multi class token model with a CAM module [22,24,25]. If 
the output of model is 𝑇𝑜 ∈ℝ(𝐶+𝑁)×𝐸 , then 𝑇 𝐶×𝐸

𝑐_𝑜
and 𝑇𝑁×𝐸

𝑝_𝑜
are output 

class tokens and output patch tokens respectively. The reshaped 𝑇𝑝_𝑜 are 
passed through a convolution layer using output channels 𝐶 , generating 
a 2𝐷 feature map 𝑝_𝑜 ∈ℝ𝑃×𝑃×𝐶 that is transformed to class predictions 
using Global Average Pooling (GAP). We also use 𝑇𝑐_𝑜 to compute class 
scores as given in (3). Thus, the total loss 𝑖 for a client 𝑖 is calculated 
from two soft margin losses: 1) A loss 𝑐𝑙𝑎𝑠𝑠−𝑐𝑙𝑎𝑠𝑠 calculated between 
ground truth class label and the prediction from class tokens. 2) A loss 
𝑐𝑙𝑎𝑠𝑠−𝑝𝑎𝑡𝑐ℎ between ground truth class label and prediction from patch 
tokens. It is formulated as follows.

𝑖 =𝑐𝑙𝑎𝑠𝑠−𝑝𝑎𝑡𝑐ℎ +𝑐𝑙𝑎𝑠𝑠−𝑐𝑙𝑎𝑠𝑠 (4)
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Fig. 1. FL-W3S architecture: A multi-class token transformer model training on cross-domain FL scenario produces class-specific attention maps. Pair-wise affinity 
obtained from patch-to-patch transformer attention is used to refine the object localization map. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

During inference, we extract CAM from final convolution layer by us-

ing min-max normalization on 𝑝_𝑜 that is integrated with class-specific 
attention maps 𝐴𝑐𝑠 to give an object localization map 𝐴𝑜𝑏𝑗 by applying 
element-wise multiplication:

𝐴𝑜𝑏𝑗 =𝐴𝐶𝐴𝑀 ◦𝐴𝑐𝑠. (5)

Here, ◦ is the Hadamard product, and 𝐴𝐶𝐴𝑀 represents a patch-token 
based CAM.

Many existing methods [26–28] used pairwise affinity for the re-

finement of object localization maps that need additional layer or net-

work for the learning of an affinity map. The patch-level pairwise 
affinity obtained from patch-to-patch transformer attention refines lo-

calization maps by leveraging global contextual relationships between 
patches in an image. The attention mechanism generates an affinity 
matrix that captures the strength of relationships between all patches, 
enabling information propagation across related regions. This helps re-

fine fragmented or noisy initial localization maps by smoothing activa-

tions and enforcing spatial coherence. Unlike traditional methods with 
limited receptive fields, the transformer-based approach models long-

range dependencies, allowing distant but semantically related patches 
to influence each other. As a result, the refined localization maps are 
more precise, noise-free, and semantically aligned with underlying ob-

jects or regions of interest. Instead, we use patch-to-patch attention, 
𝐴𝑝𝑝 = 𝐴𝑡𝑡[𝐶 + 1 ∶ 𝐶 +𝑁,𝐶 + 1 ∶ 𝐶 +𝑁] (i.e. a matrix with blue cir-

cles in Fig. 1) and transform it into a 4𝐷 tensor as �̃�𝑝𝑝 ∈ℝ𝑃×𝑃×𝑃×𝑃 to 
generate a pairwise affinity map that does not require any additional su-

pervision or computation. The generated affinity is utilized to improve 
class-specific attention. Thus, for a client 𝑖, we extract patch-to-patch 
attention maps as a patch-level pairwise affinity from 𝐴𝑜𝑏𝑗 , given as fol-

lows.

𝐴𝑖 (𝑐, 𝑝, 𝑞) =
𝑃∑
𝑙

𝑃∑
𝑒 
�̃�𝑝𝑝 (𝑝, 𝑞, 𝑙, 𝑒) ⋅𝐴𝑜𝑏𝑗 (𝑐, 𝑙, 𝑒) , (6)

2.2. Cross-domain federated learning

Due to data diversity in clients, a global model in FL suffers per-

formance degradation while extracting knowledge from clients’ data. 
FL model is converged after a particular global communication rounds, 
as server and each client are updated after every global communica-

tion round. Although a pre-trained model does not perform well for all 
clients, it can gain knowledge from most of the collaborative clients, 
making it a generalized and robust model. Thus, the proposed method 
acquires extensive global knowledge through cross-domain FL.

In FL, if there are 𝐻 clients (e.g. hospitals), a global model 𝜙 is 
trained on each client 𝑖 ∈𝐻 having local data 𝑑𝑖 during a local commu-

nication round 𝑟, and produces a loss 𝑖. The objective function of each 
client is given as

𝜙𝑖 = argmin𝑖(𝑓 (𝑑𝑖,𝜙𝑖), 𝑦𝑖), (7)

where local model 𝜙𝑖 is trained on local dataset 𝑑𝑖 with labels 𝑦𝑖. Each 
local model is updated after each local communication round, and an 
average loss 𝑖(𝑑𝑖,𝜙) of a client 𝑖 ∈𝐻 is computed. After a given number 
of local rounds, a global communication round is executed (see Fig. 1) 
to perform a global update on the server computed as follows:

𝜙𝑟+1 =
𝐻∑
𝑖=1 

𝜙𝑟
𝑖
. (8)

Here, 𝜙𝑟 is a global model on the server, while 𝜙𝑟
𝑖

represents the model 
of a client 𝑖 ∈𝐻 for a communication round 𝑟. Thus, after a given num-

ber of local rounds, all clients send their model parameters to the server 
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Table 1
A summary of datasets used in the experiments of the proposed methodology.

Dataset Classes No. of Training Samples No. of Validation Samples No. of Test samples Total Samples 
Raabin [33] 5 687 229 229 1145
Matek19 [1] 15 771 257 257 1285
INT_20 [2] 13 900 300 300 1500

Fig. 2. Data distribution over training, validation and inference steps. In the training step, RGB images and class labels used. In the validation and inference steps, 
RGB images and their ground truth masks are used. Raabin, Matek19 and INT_20 datasets are used for training, while INT_20 is not used during validation and 
inference stage due to unavailable ground truth masks.

for aggregation step. Finally, the server aggregates the parameters and 
broadcasts the updated model to each client for the next global commu-

nication round.

We use a common federated averaging method, FedAvg [29] as used 
and discussed in [30–32], to perform the aggregation of model param-

eters obtained from local clients. Thus, the objective of global model is 
to minimize the cost function expressed as

min
𝜙∈𝑅 {(𝜙,𝐷) =

𝐻∑
𝑖=1 

𝑏𝑖

𝐻𝑖

𝑖(𝑑𝑖,𝜙𝑖)}, (9)

where 𝐷 represents the collective data from all domains on which the 
global model 𝜙 is trained through local models, 𝑏𝑖 denotes the batch 
size and 𝑖 represents individual loss of a local client 𝑖 ∈𝐻 trained on 
the local dataset 𝑑𝑖.

3. Experiments

3.1. Datasets

In our experiments, we use Raabin [33] dataset with 5 classes, 
Matek19 [1] dataset with 15 classes, and an internal dataset INT_20 [2] 
with 13 classes, all containing RGB images of single white blood cells. 
As summarized in Table 1, the Raabin dataset contains 1145 RGB im-

ages and their ground truth masks, a subset of Matek19 dataset contains 
1285 RGB images with ground truth masks. Due to lack of ground truth 
masks, we use a subset of INT_20 dataset containing only 1500 samples 
for model training because the proposed model only needs class labels, 
and does not require ground truth masks for training as shown in Fig. 2.

We define three clients in our experiments, where each non-

overlapping dataset belongs to a client participating in collaborative 
training of FL-W3S model. We perform five-fold cross-validation for all 
datasets by splitting each dataset into 60% train, 20% validation, and 
20% testset. However, INT_20 dataset is used only for training due to 
lack of ground truth masks. Thus, each client contains its local trainset 

and validation to train local model. After a given number of global com-

munication rounds, the final global model is produced that is evaluated 
individually using a non-overlapping testset (i.e., with corresponding 
ground truth masks) from Raabin and Matek19 datasets respectively.

3.2. Evaluation metrics

As used in other similar existing methods [18,34], we use Inter-

section over Union (IoU) score measured with testset to evaluate the 
segmentation performance of the model.

3.3. Implementation details

For each local client, we use DeiT-S [35,24] backbone model that is 
pre-trained on ImageNet [36]. More specifically, to initialize multi-class 
tokens, we use pre-trained DeiT-S class tokens in our approach. For the 
model hyperparameters, we follow [18] to train the local model. All 
input images are resized to 256 × 256 to make a standard size for all 
multi-shape images, later cropped into 224×224 for the input to model. 
Moreover, we use ResNet38 [37] based Deeplab VI by following prior 
works [38,39,26,27] for the semantic segmentation. In our experiments, 
there are 3 clients each having a local dataset 𝑑𝑖 and a local model 𝜙𝑖

to be trained on that dataset during local communication rounds. For a 
global communication round, the parameters of all local models are ag-

gregated on the server according to FedAvg [29] aggregation algorithm. 
We set 45 as local and global communication rounds. The hyperparam-

eters used in the experiments are given in Table 2.

3.4. Performance comparison of the proposed method with existing 
methods in terms of mean IoU (%)

For the generation of pseudo masks for semantic segmentation, we 
employ PSA [27] on the object localization maps. We compute mean IoU 
(mIoU) with standard deviation between predicted masks and ground 
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Table 2
List of hyperparameters set in the ex-

periments.

Hyperparameter Value(s) 
𝐻 (No. of clients) 3
𝐶 (No. of classes) 15
𝑏𝑖 (batch-size) 64
𝑟 (local epoch) 45
global epoch 45
input size 224
𝑃 (patch size) 16
optimizer AdamW [40] 
SGD momentum 0.9
weight decay 0.05
initial learning rate 5𝑒− 4

Table 3
Comparison of proposed approach with state-of-the-art methods based on 
Raabin and Matek19 WBC datasets. The proposed method (FL-W3S) outper-

forms the existing methods.

Method Backbone Raabin (mIoU ± SD) Matek19 (mIoU ± SD) 
AuxSegNet [26] ResNet38 37.2 ± 0.9 44.12 ± 0.09
SEAM [41] ResNet38 33.6 ± 0.5 41 ± 0.7
EPS [42] ResNet101 36.7 ± 0.4 45.7 ± 0.8
Luo et al. [43] VGG16 36.93 ± 0.39 41.9 ± 0.4
CDA [44] ResNet38 37.18 ± 0.18 43.5 ± 0.4
MCTformer [18] ResNet38 36.97 ± 0.79 44.8 ± 0.5
Wang et al. [28] VGG16 31.86 ± 0.87 38.9 ± 0.2
CONTA [45] ResNet38 33.78 ± 0.66 40.6 ± 0.5
FL-W3S (Ours) ResNet38 𝟑𝟗.𝟖± 𝟎.𝟓 𝟒𝟕± 𝟏.𝟔

truth masks to compare and evaluate the performance of the proposed 
method with existing methods. For the evaluation, we use a global 
testset extracted from both Raabin and Matek19 datasets. The perfor-

mance of FL-W3S surpasses that of existing methods as given in Table 3. 
Moreover, it is shown that there is a remarkable difference between 
performance of the proposed method and existing methods. The better 
performance of FL-W3S is mainly because of FL enhancing the model ro-

bustness and generalization. We achieved IoU scores of 39.8% and 47%
for a non-overlapping testset from Raabin and Matek19 datasets respec-

tively.

We also compare the proposed method with a couple of competitive 
existing methods by the visualization of predicted masks and ground 
truth masks taken randomly from both Raabin and Matek19 datasets as 
shown in Fig. 3. For visual comparison with state-of-the-art, we select ex-

isting methods with comparatively higher performance (i.e., in Table 3). 
We also compare the proposed method with the SAM [5] only for the 
visualization because SAM requires a prompt (i.e., bounding box) for 
the segmentation, while other methods including FL-W3S perform seg-

mentation without any prompt. It is clear from visual comparison that 
the proposed method predicts more refined masks with refined edges as 
compared to the predicted masks of other methods.

To analyze the model convergence on Raabin dataset, we plot mean 
IoU up to ≈ 20 rounds (Fig. 4). Models converge after a certain number 
of global communication rounds. Evidently, the mIoU for the proposed 
FL-W3S is higher throughout all communication rounds.

Although FL has outperformed when used in multi-domain sce-

nario, data heterogeneity affects the model performance and consis-

tency in terms of generalizability. Moreover, model training on large 
data from multiple locations causes communication overhead in col-

laborative learning. Similarly, as the number of clients is increased, 
training time is exponentially increased by creating challenges for ef-

ficient model aggregation.

4. Conclusion

We propose a novel FL-W3S method for the segmentation of white 
blood cells, in which we perform cross-domain FL training to obtain 
a global aggregated weakly supervised semantic segmentation model 
through federated averaging on a central server, and send the aggre-

gated global model back to each client for fine-tuning its personalized 
local model. We performed experiments on three different white blood 
cell datasets and evaluated the proposed model with existing methods 
based on segmentation tasks. The experimental results show the superi-

ority of the proposed method over existing segmentation methods.

In the future, we plan to address data heterogeneity challenges by 
incorporating advanced federated optimization techniques, such as Fed-

Prox and Scaffold, to enhance convergence and robustness. Additionally, 
we aim to explore methods for reducing communication overhead, such 
as model compression and quantization, to improve scalability. Extend-

ing the framework to diverse segmentation tasks, including 3D imaging 
and multi-modal data, is another priority. Furthermore, we plan to in-

Fig. 3. Visual comparison of the proposed model with existing methods. Two random input images and their ground truth masks for each dataset (i.e., Raabin and 
Matek19) are selected for the comparison of the proposed method with existing competitive methods.
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Fig. 4. Model convergence for the comparison of proposed FL-W3S method with the existing methods in terms of mean IoU (%) vs FL communication rounds. 

tegrate privacy-preserving mechanisms like differential privacy and in-

vestigate interpretability techniques to make the segmentation results 
more explainable. Real-world deployment on edge devices and lifelong 
learning capabilities will also be considered to ensure practical appli-

cability and continuous updates. These directions will strengthen the 
robustness, scalability, and generalization of the proposed framework.

5. Summary table

What was already known on the topic:

• Most of the existing methods consider data splits from a single do-

main for segmentation model training. Traditionally, ground truth 
masks are used for training and inference.

• Transformer architecture is based on one-class tokens in most ex-

isting approaches.

What this study added to our knowledge:

• We perform segmentation task by model training in a multi-domain 
environment for multiple clients in collaborative learning using 
only images and class labels

• We exploit Transformer architecture for multi-class tokens in con-

trast to existing methods.
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