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ARTICLE INFO ABSTRACT

Keywords: Background: Segmentation models for clinical data experience severe performance degradation when trained on
Federated learning a single client from one domain and distributed to other clients from different domain. Federated Learning (FL)
White blood cell

provides a solution by enabling multi-party collaborative learning without compromising the confidentiality of
clients’ private data.

Methods: In this paper, we propose a cross-domain FL method for Weakly Supervised Semantic Segmentation
(FL-W3S) of white blood cells in microscopic images. We perform model training on multiple clients with
different data distributions to obtain a global aggregated model using only image-level class labels for semantic
segmentation of white blood cells. A multi-class token transformer model learns the relationship between patch
tokens and class tokens during collaborative learning and generates class-specific localization maps for mask
predictions. To rectify the localization maps, we use patch-level pairwise affinity obtained from patch-to-patch
transformer attention.

Results: We evaluate performance of the proposed semantic segmentation method on two different datasets of
white blood cells from different domains. Our experimental results show that for two datasets, there is 2.56% and
1.39% increase in performance of the proposed method over existing state-of-the-art methods.

Conclusion: The combination of federated learning for collaborative model training while preserving data privacy,
alongside white blood cell segmentation techniques for precise cell identification, enhances diagnostic accuracy
and personalized treatment strategies in clinical applications, particularly in hematology and pathology. More
specifically, it involves isolating white blood cell from blood smear for further analysis such as automated blood
cell counting, morphological analysis, cell classification, disease diagnosis and monitoring.

Weakly supervised semantic segmentation
Transformer attention

1. Introduction rate segmentation results across a diverse range of medical imaging

tasks [5-9]. However, existing methods such as [10-15], significantly

The segmentation of white blood cells in stained peripheral blood
and bone marrow samples is a key step for the automated classifica-
tion of these cells and the Al-based diagnosis of hematologic malig-
nancies [1-4]. Manual segmentation has been adopted as a standard
procedure for WBCs, but this process is time-consuming, labor-intensive,
and requires some level of expertise. The use of semi- or fully au-
tomatic segmentation methods can considerably reduce the time and
labor needed, enhance consistency, and facilitate the analysis of large-
scale datasets. Thanks to the advancements in machine learning, deep
learning-based models have achieved excellent performance for accu-
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drop in their performance when trained on a single client (e.g., hospital
data) and distributed to other clients. Since in clinical practice, clients’
data often come from different domains (i.e., data distributions), the
lack of model generalizability across domains poses a substantial obsta-
cle to a wider application in practice.

Furthermore, getting manually annotated ground-truth segmenta-
tion masks is expensive, thus, weakly supervised or unsupervised deep
segmentation models [16,17] are attractive alternatives. The crucial
step involves generating pseudo segmentation ground truth labels based
on the provided weak labels [18]. Semi- or Weakly Supervised Seman-
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tic Segmentation (WSSS) only rely on image-level labels [18]. These
image-level labels solely convey the presence of a particular object class
without providing any details about the localization information within
the image. However, there is an important detail in Vision Transformer
(ViT) [19] features associated with semantic segmentation as disclosed
by a recent method, DINO [20]. Attention maps from a class token
produce semantic scene layouts. Thus, attention maps lead to an effec-
tive unsupervised segmentation. While in ViT attention, various heads
address distinct semantic regions within an image, it is still not clear
how a head can be associated with an accurate corresponding semantic
class. Thus, attention maps in ViT remain class-agnostic so far. Exploit-
ing class-attention maps using transformers is challenging due to tokens
from one class causing precise localization for multiple objects within a
single image.

Moreover, the trained segmentation models lack generalizability due
to domain-shift in data among different clients based on various fac-
tors such as image resolution, color, and class labels. In this case, the
traditional FL methods [21,18] cannot help a client learn a robust seg-
mentation model for the segmentation of white blood cells.

To solve aforementioned problems, we propose FL-W3S for cross-
domain FL for weakly supervised semantic segmentation of white blood
cells. For WSSS, instead of one-class tokens, we leverage multi-class
tokens that are useful for various object classes to learn their represen-
tations, as inspired by Xu et al. [18]. A strong relation between a class
token and its corresponding label is developed that leads to an advan-
tage of class-to-patch attention, utilized as a localization map specific
to each class. Moreover, learning patch-to-patch attention is used for
patch-level pairwise affinity that rectifies class-specific attention map
tweaking the localization. The proposed FL-W3S uses Class Activation
Mapping (CAM) [22] strategy with patch tokens by acquiring the ability
to classify through representations based on class-token and patch-token
simultaneously. Thus, there is consistency in patch tokens and class
tokens improving the discriminative attribute concerning WBC localiza-
tion maps. Furthermore, we perform cross-domain FL training to obtain
a global aggregated model on a server from the parameters received
from local models.

Our main contributions are:

» We propose a novel method for cross-domain FL training for the
segmentation of white blood cells using only image-level ground
truth labels for weak supervision.

» We exploit a multi-class token transformer to learn the relationship
between patch tokens and class tokens in cross-domain FL setting.

+ We use patch-level pairwise affinity obtained from patch-to-patch
transformer attention to refine the localization maps in local and
global models. Extensive experiments validate the effectiveness of
our proposed method, rather it goes beyond state-of-the-art.

2. Methodology

We train the proposed model in a cross-domain FL environment for
weakly supervised semantic segmentation of single white blood cells,
explained in sections 2.1 and 2.2. There are two main components of
our method; one for the multi-class token transformer and the other for
cross-domain FL.

2.1. Multi-class token transformer

We exploit transformer attention for class-specific object localiza-
tion maps, where an input image [/ is transformed into P X P (non-
overlapping) patches that are converted into patch tokens T, € RNXE,
where E represents the embedding dimension and N = P2, the number
of patches as shown in Fig. 1. In traditional non-convolutional models,
a single-class token is used for transformer attention. However, in the
proposed method, we use multi-class tokens 7, € RE*E, concatenated
with patch tokens along position embedding to be used as input tokens
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T, € RC+MXE for the transformer encoder, where C represents the
number of classes. In transformer encoders, there are multiple consec-
utive encoding layers, each containing a Multi Head Attention (MHA)
and Multi-Layer Perceptron (MLP) to extract features, where LayerNorm
layers are implemented prior to MHA and MLP respectively.

We leverage conventional self-attention layer to capture the depen-
dencies among tokens by normalization and transformation of input
tokens to a triplet, Query Q € R(C+NXE Key K € RIC+N)XE and Value
V € RE+NXE ysing linear layers [19]. For the computation of attention
between key and query, we apply Scaled Dot Product Attention [23]. Fi-
nally, using attention values as weights, each output token is generated
as the result of a weighted sum of all tokens, formulated as:

. <QKT>
Attention (Q, K, V') = softmax 14 1)
VE

Thus, we can compute a token-to-token attention map A, =

T
softmax (QL>, where A,, € RICHMX(C+N)_ These global pairwise at-

VE

tention maps A, are used to extract class-to-patch attentions A, €
REXN as illustrated with pink circles in the matrix shown in Fig. 1,
and mathematically represented as A= Att[l : C,C+1:C+ N].In
matrix A.,, each row (i.e., vector) denotes attention score of a specific
class to all patches. These vectors are used to generate C class-related
localization maps. Each encoding layer of model produces class-related
localization maps, where earlier layers give low level and generic in-
formation, while late layers give high level class-discriminative repre-
sentations. In the proposed method, we explore the trade-off between
precision and recall of localization maps by merging class-to-patch at-
tention computed on final encoding layer L, mathematically expressed
as:

L

~ 1 ~

Acs = E Z Ais’ (2)
e

where /iis represents class-specific transformer attention learned from
¢'" encoding layer. Finally, min-max normalization is performed on
Ag . attentions to produce final class-specific localization maps A, €
RCEXPXP

Unlike traditional transformers using a single class token (i.e., ex-
tracted on final layer with MLP), we use average pooling and make sure
that class-discriminative information is learned for multiple class tokens,
T. € RE¥E, formulated as:

E
20=5 Y Ta), ®
q

where z € R¢ represents class prediction, a class ¢ € 1,2,3,...,C, and
T, (c, q) represents an element (i.e. the ¢'" feature of a class ¢ token) in
multi class attention T,. Finally, for a class c, soft margin loss between
class z(c) and its corresponding ground truth label is computed. This
enables each class token to learn class-specific information by a strong
class-aware supervision. Moreover, we combine the proposed frame-
work of a multi class token model with a CAM module [22,24,25]. If
the output of model is T, € RCC+N*XE  then TCCUXE and TPNU ¥E are output
class tokens and output patch tokens respectively. The reshaped 7, , are
passed through a convolution layer using output channels C, generating
a 2D feature map F, , € RP*PXC that is transformed to class predictions
using Global Average Pooling (GAP). We also use T, , to compute class
scores as given in (3). Thus, the total loss L, for a client i is calculated
from two soft margin losses: 1) A loss L,;,s_c1qss Calculated between
ground truth class label and the prediction from class tokens. 2) A loss
L 1ass—patcr, Detween ground truth class label and prediction from patch
tokens. It is formulated as follows.

Ei =L h + L:classfclass 4

class—patc
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Fig. 1. FL-W3S architecture: A multi-class token transformer model training on cross-domain FL scenario produces class-specific attention maps. Pair-wise affinity
obtained from patch-to-patch transformer attention is used to refine the object localization map. (For interpretation of the colors in the figure(s), the reader is referred

to the web version of this article.)

During inference, we extract CAM from final convolution layer by us-
ing min-max normalization on 7, , that is integrated with class-specific
attention maps A, to give an object localization map A,,; by applying
element-wise multiplication:

(5)

Here, o is the Hadamard product, and A4, represents a patch-token
based CAM.

Many existing methods [26-28] used pairwise affinity for the re-
finement of object localization maps that need additional layer or net-
work for the learning of an affinity map. The patch-level pairwise
affinity obtained from patch-to-patch transformer attention refines lo-
calization maps by leveraging global contextual relationships between
patches in an image. The attention mechanism generates an affinity
matrix that captures the strength of relationships between all patches,
enabling information propagation across related regions. This helps re-
fine fragmented or noisy initial localization maps by smoothing activa-
tions and enforcing spatial coherence. Unlike traditional methods with
limited receptive fields, the transformer-based approach models long-
range dependencies, allowing distant but semantically related patches
to influence each other. As a result, the refined localization maps are
more precise, noise-free, and semantically aligned with underlying ob-
jects or regions of interest. Instead, we use patch-to-patch attention,

App =A,C+1:C+N,C+1:C+ NJ (i.e. a matrix with blue cir-
c RPxPxPxP to

Ay =Acam © Acs-

cles in Fig. 1) and transform it into a 4D tensor as A -
generate a pairwise affinity map that does not require any additional su-
pervision or computation. The generated affinity is utilized to improve
class-specific attention. Thus, for a client i, we extract patch-to-patch
attention maps as a patch-level pairwise affinity from A, ;, given as fol-
lows.

obj»

P P
A )=, Y Ay (pg.lie)- Ay (cile), 6)
1 e

2.2. Cross-domain federated learning

Due to data diversity in clients, a global model in FL suffers per-
formance degradation while extracting knowledge from clients’ data.
FL model is converged after a particular global communication rounds,
as server and each client are updated after every global communica-
tion round. Although a pre-trained model does not perform well for all
clients, it can gain knowledge from most of the collaborative clients,
making it a generalized and robust model. Thus, the proposed method
acquires extensive global knowledge through cross-domain FL.

In FL, if there are H clients (e.g. hospitals), a global model ¢ is
trained on each client ; € H having local data d; during a local commu-
nication round r, and produces a loss L;. The objective function of each
client is given as

¢; =argmin L,(f(d;, P;), y), @

where local model ¢; is trained on local dataset d; with labels y;. Each
local model is updated after each local communication round, and an
average loss L;(d;, ¢) of aclient i € H is computed. After a given number
of local rounds, a global communication round is executed (see Fig. 1)
to perform a global update on the server computed as follows:

H
¢r+1 — qulr
i=1

Here, ¢" is a global model on the server, while ¢/ represents the model
of a client i € H for a communication round r. Thus, after a given num-
ber of local rounds, all clients send their model parameters to the server

()
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Table 1
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A summary of datasets used in the experiments of the proposed methodology.

Dataset Classes  No. of Training Samples  No. of Validation Samples ~ No. of Test samples ~ Total Samples
Raabin [33] 5 687 229 229 1145
Matek19 [1] 15 771 257 257 1285
INT 20 [2] 13 900 300 300 1500
Raabin Matek19 INT_20
‘ .
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Fig. 2. Data distribution over training, validation and inference steps. In the training step, RGB images and class labels used. In the validation and inference steps,
RGB images and their ground truth masks are used. Raabin, Matek19 and INT_20 datasets are used for training, while INT_20 is not used during validation and

inference stage due to unavailable ground truth masks.

for aggregation step. Finally, the server aggregates the parameters and
broadcasts the updated model to each client for the next global commu-
nication round.

We use a common federated averaging method, FedAvg [29] as used
and discussed in [30-32], to perform the aggregation of model param-
eters obtained from local clients. Thus, the objective of global model is
to minimize the cost function expressed as

. < by
min{£(9, D) = ; 71, Litd- ). ©
where D represents the collective data from all domains on which the
global model ¢ is trained through local models, b; denotes the batch
size and L, represents individual loss of a local client i € H trained on
the local dataset d;.

3. Experiments
3.1. Datasets

In our experiments, we use Raabin [33] dataset with 5 classes,
Matek19 [1] dataset with 15 classes, and an internal dataset INT_20 [2]
with 13 classes, all containing RGB images of single white blood cells.
As summarized in Table 1, the Raabin dataset contains 1145 RGB im-
ages and their ground truth masks, a subset of Matek19 dataset contains
1285 RGB images with ground truth masks. Due to lack of ground truth
masks, we use a subset of INT_20 dataset containing only 1500 samples
for model training because the proposed model only needs class labels,
and does not require ground truth masks for training as shown in Fig. 2.

We define three clients in our experiments, where each non-
overlapping dataset belongs to a client participating in collaborative
training of FL-W3S model. We perform five-fold cross-validation for all
datasets by splitting each dataset into 60% train, 20% validation, and
20% testset. However, INT_20 dataset is used only for training due to
lack of ground truth masks. Thus, each client contains its local trainset

and validation to train local model. After a given number of global com-
munication rounds, the final global model is produced that is evaluated
individually using a non-overlapping testset (i.e., with corresponding
ground truth masks) from Raabin and Matek19 datasets respectively.

3.2. Evaluation metrics

As used in other similar existing methods [18,34], we use Inter-
section over Union (IoU) score measured with testset to evaluate the
segmentation performance of the model.

3.3. Implementation details

For each local client, we use DeiT-S [35,24] backbone model that is
pre-trained on ImageNet [36]. More specifically, to initialize multi-class
tokens, we use pre-trained DeiT-S class tokens in our approach. For the
model hyperparameters, we follow [18] to train the local model. All
input images are resized to 256 X 256 to make a standard size for all
multi-shape images, later cropped into 224 x 224 for the input to model.
Moreover, we use ResNet38 [37] based Deeplab VI by following prior
works [38,39,26,27] for the semantic segmentation. In our experiments,
there are 3 clients each having a local dataset d; and a local model ¢;
to be trained on that dataset during local communication rounds. For a
global communication round, the parameters of all local models are ag-
gregated on the server according to FedAvg [29] aggregation algorithm.
We set 45 as local and global communication rounds. The hyperparam-
eters used in the experiments are given in Table 2.

3.4. Performance comparison of the proposed method with existing
methods in terms of mean IoU (%)

For the generation of pseudo masks for semantic segmentation, we
employ PSA [27] on the object localization maps. We compute mean loU
(mloU) with standard deviation between predicted masks and ground
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Table 2
List of hyperparameters set in the ex-
periments.
Hyperparameter Value(s)
H (No. of clients) 3
C (No. of classes) 15
b; (batch-size) 64
r (local epoch) 45
global epoch 45
input size 224
P (patch size) 16
optimizer AdamW [40]
SGD momentum 0.9
weight decay 0.05
initial learning rate ~ Se —4

Table 3

Comparison of proposed approach with state-of-the-art methods based on
Raabin and Matek19 WBC datasets. The proposed method (FL-W3S) outper-
forms the existing methods.

Method Backbone Raabin (mIoU + SD) Matek19 (mlIoU + SD)
AuxSegNet [26] ResNet38 372409 44.12+0.09

SEAM [41] ResNet38 33.6+05 41+0.7

EPS [42] ResNet101 36.7+0.4 457+0.8

Luo et al. [43] VGG16 36.93 +0.39 41.9+0.4

CDA [44] ResNet38 37.18 +0.18 43.5+04

MCTformer [18] ResNet38 36.97 +0.79 448 +0.5

Wang et al. [28] VGG16 31.86+0.87 38.9+0.2

CONTA [45] ResNet38 33.78 +0.66 40.6 £0.5

FL-W3S (Ours) ResNet38 398+0.5 47+1.6

truth masks to compare and evaluate the performance of the proposed
method with existing methods. For the evaluation, we use a global
testset extracted from both Raabin and Matek19 datasets. The perfor-
mance of FL-W3S surpasses that of existing methods as given in Table 3.
Moreover, it is shown that there is a remarkable difference between
performance of the proposed method and existing methods. The better
performance of FL-W3S is mainly because of FL enhancing the model ro-
bustness and generalization. We achieved IoU scores of 39.8% and 47%
for a non-overlapping testset from Raabin and Matek19 datasets respec-
tively.

Input

AuxSegNet

Raabin

Matek19

MCTformer SAM
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We also compare the proposed method with a couple of competitive
existing methods by the visualization of predicted masks and ground
truth masks taken randomly from both Raabin and Matek19 datasets as
shown in Fig. 3. For visual comparison with state-of-the-art, we select ex-
isting methods with comparatively higher performance (i.e., in Table 3).
We also compare the proposed method with the SAM [5] only for the
visualization because SAM requires a prompt (i.e., bounding box) for
the segmentation, while other methods including FL-W3S perform seg-
mentation without any prompt. It is clear from visual comparison that
the proposed method predicts more refined masks with refined edges as
compared to the predicted masks of other methods.

To analyze the model convergence on Raabin dataset, we plot mean
IoU up to = 20 rounds (Fig. 4). Models converge after a certain number
of global communication rounds. Evidently, the mIoU for the proposed
FL-W3S is higher throughout all communication rounds.

Although FL has outperformed when used in multi-domain sce-
nario, data heterogeneity affects the model performance and consis-
tency in terms of generalizability. Moreover, model training on large
data from multiple locations causes communication overhead in col-
laborative learning. Similarly, as the number of clients is increased,
training time is exponentially increased by creating challenges for ef-
ficient model aggregation.

4. Conclusion

We propose a novel FL-W3S method for the segmentation of white
blood cells, in which we perform cross-domain FL training to obtain
a global aggregated weakly supervised semantic segmentation model
through federated averaging on a central server, and send the aggre-
gated global model back to each client for fine-tuning its personalized
local model. We performed experiments on three different white blood
cell datasets and evaluated the proposed model with existing methods
based on segmentation tasks. The experimental results show the superi-
ority of the proposed method over existing segmentation methods.

In the future, we plan to address data heterogeneity challenges by
incorporating advanced federated optimization techniques, such as Fed-
Prox and Scaffold, to enhance convergence and robustness. Additionally,
we aim to explore methods for reducing communication overhead, such
as model compression and quantization, to improve scalability. Extend-
ing the framework to diverse segmentation tasks, including 3D imaging
and multi-modal data, is another priority. Furthermore, we plan to in-

FL-W3S (ours) Ground Truth

Fig. 3. Visual comparison of the proposed model with existing methods. Two random input images and their ground truth masks for each dataset (i.e., Raabin and
Matek19) are selected for the comparison of the proposed method with existing competitive methods.
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Fig. 4. Model convergence for the comparison of proposed FL-W3S method with the existing methods in terms of mean IoU (%) vs FL communication rounds.

tegrate privacy-preserving mechanisms like differential privacy and in-
vestigate interpretability techniques to make the segmentation results
more explainable. Real-world deployment on edge devices and lifelong
learning capabilities will also be considered to ensure practical appli-
cability and continuous updates. These directions will strengthen the
robustness, scalability, and generalization of the proposed framework.

5. Summary table
What was already known on the topic:

» Most of the existing methods consider data splits from a single do-
main for segmentation model training. Traditionally, ground truth
masks are used for training and inference.

+ Transformer architecture is based on one-class tokens in most ex-
isting approaches.

What this study added to our knowledge:

» We perform segmentation task by model training in a multi-domain
environment for multiple clients in collaborative learning using
only images and class labels

» We exploit Transformer architecture for multi-class tokens in con-
trast to existing methods.
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