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Transplanted organs are inevitably exposed to ischemia–reperfusion (IR)

injury, which is known to cause graft dysfunction. Functional and struc-

tural changes that follow IR tissue injury are mediated by neutrophils

through the production of oxygen-derived free radicals, as well as from

degranulation which entails the release of proteases and other pro-

inflammatory mediators. Neutrophil serine proteases (NSPs) are believed

to be the principal triggers of post-ischemic reperfusion damage. Extended

preservation times for the transplanted donor organ correlate with height-

ened occurrences of vascular damage and graft dysfunction. Preservation

with a1-antitrypsin, an endogenous inhibitor of NSPs, improves primary

graft function after lung or heart transplantation. Furthermore,

pre-operative pharmacological targeting of NSP activation in the recipient

using chemical inhibitors suppresses neutrophilic inflammation in trans-

planted organs. Hence, effective control of NSPs in the graft and recipient

is a promising strategy to prevent IR injury. In this review, we describe the

pathological functions of NSPs in IR injury and discuss their pharmacolog-

ical inhibition to prevent primary graft dysfunction in lung or heart

transplantation.

Introduction

Ischemia–reperfusion (IR) injury, an unavoidable path-

ological phenomenon that occurs during organ trans-

plantation, is defined as the paradoxical changes in

both structure and function that take place following

the re-establishment of blood flow after an episode of

ischemia in a given tissue [1] (Box 1). Multiple
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pathological processes contribute to IR injury, includ-

ing cell damage, oxidative stress, intracellular calcium

overload, energy metabolism disorder, endoplasmic

reticulum stress, extracellular matrix remodeling, as

well as the release by activated neutrophils of inflam-

matory cytokines and neutrophil serine proteases

(NSPs) [2–6]. NSPs, activated by cathepsin C (CatC)

during early neutrophil differentiation in the bone

marrow, are degradative enzymes that trigger

post-ischemic reperfusion injury.

Lung transplantation (LTx) is the treatment of

choice for numerous patients suffering from end-stage

pulmonary disease. Each year, more than 4600 lung

transplantations (LTx) are carried out globally, with

55% in North America and 36% in Europe [7]. LTx

remains the best option for improving the quality of

life in patients afflicted with chronic inflammatory lung

diseases such as chronic obstructive pulmonary disease

(COPD), cystic fibrosis (CF), noncystic fibrosis bron-

chiectasis (NCFB), a1-antitrypsin deficiency (AATD),

pulmonary arterial hypertension (PAH), and intersti-

tial lung disease. A significant challenge associated

with this thoracic surgical procedure is primary graft

dysfunction, which represents the major cause of early

post-transplantation morbidity and mortality [8]. This

dysfunction is caused by IR injury during reperfusion

of the ischemic lung transplant.

Heart failure affects a global population exceeding

64 million individuals, with approximately 5% of heart

failure patients reaching the end-stage [9,10].

Heart transplantation (HTx) is recognized as the opti-

mal treatment method for selected patients with

end-stage heart failure [11]. Despite its effectiveness, pri-

mary limitations include the scarcity of available heart

grafts and the adverse effects of long-term immunosup-

pressive therapy. Striking a balance between preventing

rejection and minimizing the associated risks linked to

prolonged immunosuppression (such as susceptibility to

infections, malignancies, and nonimmune toxicities like

diabetes, hypertension, and renal insufficiency) deserves

careful consideration [12]. Additionally, the occurrence

of IR injury during HTx is inevitable and closely linked

to post-operative complications, including graft dys-

function and diminished graft survival [13,14]. These

findings underscore the necessity for strategies aimed at

minimizing the impact of IR injury in transplantation.

In this review, we present an overview of NSPs,

their physiopathological properties, and their pharma-

cological inhibition in LTx or HTx. Our focus is on

graft preservation with a1-antitrypsin (AAT), the

major endogenous inhibitor of NSPs, and premedica-

tion of the recipient with a CatC inhibitor before

transplantation.

Neutrophil serine proteases

Neutrophils play a critical role in the innate immune

response to infection and in the regulation of inflam-

matory processes. A key component of the neutro-

philic activity is the secretion of the proteolytically

active NSPs, neutrophil elastase (NE), proteinase 3

(PR3), cathepsin G (CatG), and NSP-4. While the

physiological function of NSP-4 remains to be deter-

mined, other NSPs are known to play a role in

inflammation-related tissue damage and to thusly com-

plicate tissue repair following injury [15]. NSPs are ini-

tially produced as inactive glycosylated precursors, or

‘zymogens’ [15,16], to avoid unwanted intracellular

protein proteolysis in the promyelocyte stage of neu-

trophil differentiation within the bone marrow. They

are primarily activated through the action of the ubiq-

uitous cysteine dipeptidyl aminopeptidase, CatC (also

referred to as dipeptidyl peptidase 1 (DPP1)) [17,18],

which removes the N-terminal 2-residue propeptides of

NSP zymogens (Fig. 1). A recent study provided fur-

ther evidence to support the existence of an alterna-

tive, non-CatC-dependent activation of NSPs in

Box 1. Medical term definitions commonly used in

the field of organ transplantation.

• Ischemia is a condition in which blood flow (and

thus oxygen) is restricted or reduced in a part of

the body.
• Cold ischemia is defined as the period of graft

storage ex vivo under hypothermic conditions.
• Reperfusion is the restoration of blood flow to an

organ or tissue after it has been blocked.
• Ischemia-reperfusion injury, also known as reoxy-

genation injury, is the tissue damage caused when

blood supply returns to tissue (reperfusion) after

a period of ischemia or lack of oxygen (anoxia or

hypoxia).
• Primary graft dysfunction is a syndrome of acute

lung injury that occurs within the first 72 h after

lung transplantation.
• Orthotopic lung transplantation is a surgical proce-

dure where a healthy lung from a donor is trans-

planted into its normal anatomical position

within the recipient’s body.
• Heterotopic heart transplantation is a surgical pro-

cedure in which a heart is transplanted into a

location within the recipient’s body that differs

from its normal anatomical position.
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humans and mice, that involves a cysteine protease

called NSPs-AAP-1 (NSPs-alternative activating

protease-1) [19]. Under physiological conditions,

mature NSPs fulfill crucial functions in both intracellu-

lar and extracellular bacteria elimination and in modu-

lating inflammatory processes [20,21].

Physiologically, NSP-mediated proteolytic activity is

controlled by endogenous inhibitors. AAT, belonging

to the serpin superfamily, is one such NSP inhibitor

that is primarily synthesized in the liver by hepatocytes

and secreted into the bloodstream during an

acute-phase response. Under inflammatory or

infectious conditions, its serum concentrations can

surge up to four times within a matter of hours [22].

AAT’s function is to protect tissues from damage

caused by NSPs [15,23,24]. AAT is currently used clin-

ically to treat emphysema caused by AAT deficiency

[25], a genetically inherited condition in which

impaired AAT production increases the risk for lung

or liver disease. The lung symptoms of AAT deficiency

typically resemble those of emphysema and include

cough with sputum production, shortness of breath,

and wheezing. Signs of liver involvement in AAT defi-

ciency may include swelling of the legs or abdomen,

Fig. 1. Effect of neutrophil serine protease

activities on ischemia–reperfusion injury in

organ transplantation. Neutrophil serine

proteases (NSPs) are initially produced as

inactive ‘zymogens’ during the

promyelocyte stage of neutrophil

differentiation within the recipient’s bone

marrow. They are primarily activated

through the action of cathepsin C (CatC),

which removes the N-terminal 2-residue

propeptides of NSP zymogens. A CatC-

independent activation pathway involving a

cysteine protease termed NSPs-AAP-1

(NSPs-alternative activating protease-1) is

involved in the activation of < 10% of NSPs

[19]. Following lung or heart transplantation,

an excessive release of active NSPs

without adequate counterbalance and

regulation by endogenous protease

inhibitors contributes to ischemia–

reperfusion injury induced graft dysfunction.
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jaundice, vomiting of blood, or blood in the stools.

Likewise, there exists evidence of NSP involvement in

chronic inflammatory diseases, auto-immune disorders,

and cancer [15,16,26], that is, when excessive release of

active NSPs is not adequately counterbalanced by

endogenous inhibitors [15]. NSPs also actively contrib-

ute to IR injury in organ transplantation by processing

extracellular matrix components such as elastin, fibro-

nectin, proteoglycan, and collagen [27].

To re-establish a balance between NSPs and their

endogenous inhibitors, CatC inhibitors have been

developed. The prolonged administration of the revers-

ible CatC inhibitors, IcatCXPZ-01 [28,29], brensocatib

[30], BI-9740 [31], BI-1291583 [32], and HSK31858 [33]

has been shown to result in sufficient inhibitor levels

in the bone marrow to counteract CatC and signifi-

cantly reduce downstream NSP activation, thereby

achieving anti-inflammatory, protective effects in ani-

mal models. In vivo findings suggest the advantage of

pharmacological CatC targeting, opening avenues for

potential drug repurposing strategies. Brensocatib [34],

BI-1291583 [35], and HSK31858 are being evaluated in

clinical trials in patients with chronic inflammatory

lung diseases (Table 1, Fig. 2). Positive topline results

from Phase 3 ASPEN study of brensocatib in patients

with bronchiectasis were recently announced. The

results validate CatC inhibition as new mechanism of

action with potential to address a range of

neutrophil-mediated diseases.

Protective effects of neutrophil serine
proteases inhibition against primary
graft dysfunction following lung
transplantation

Preservation of lung graft with a1-antitrypsin

Preserving organ viability outside of a living organism

can be achieved through methods such as storage at

either warm or cold temperatures, with or without per-

fusion. The risk of vascular damage and primary graft

dysfunction rises as the preservation times for trans-

planted donor lungs extend. The shortage of available

donor lungs and the risk of IR injury also limit LTx.

As a result, the preservation of donated lungs in

Table 1. Reversible chemical cathepsin C inhibitors under clinical

trials.

Brensocatib Phase 3 Noncystic fibrosis

bronchiectasis (pending

approval)

NCT04594369

Phase 2 Chronic rhinosinusitis

without nasal polyps

(CRSsNP)

NCT06013241

BI-1291583 Phase 2 Noncystic fibrosis

bronchiectasis

NCT05846230

Phase 1 Cystic fibrosis

bronchiectasis

NCT05865886

HSK31858 Phase 2 Noncystic fibrosis

bronchiectasis

NCT05601778

Fig. 2. Model structures of brensocatib (A) or HSK31858 (B) in complex with CatC. (Top) Brensocatib is a reversible and covalent inhibitor of

cathepsin C (CatC). Formation of a reversible thioimidate complex resulting in the reaction of the nitrile function with the active site cysteine

234 is shown. HSK is a reversible noncovalent inhibitor of CatC. (Bottom) Solvent-accessible surfaces of CatC complexed with inhibitors.

Electrostatic surface potentials are colored red and blue for negative and positive charges, respectively, and gray color represents neutral

residues. The carbon atoms of the inhibitors are shown in green. The oxygen, nitrogen, chlorine, and fluor atoms are colored in red, blue,

dark green, and light turquoise, respectively. The electrostatic surface was calculated using APBS, the adaptive Poisson–Boltzmann solver

[51], as implemented in the PYMOL (Delano Scientific, San Carlos, CA, USA) plugin. The continuum electrostatics calculations used for the

surface draw were calculated by using the PDB2PQR software [52]. Calculations were performed at pH 7.0. Structures were generated using

the program PYMOL.
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protein-free, dextran-containing electrolyte solutions

(e.g., Perfadex) is typically restricted to approximately

6 h. The use of normo- or hypothermic ex vivo perfu-

sion of lung allografts might significantly extend the

acceptable preservation time, but valid clinical data

are still missing, and the logistical and financial burden

is very high. To develop a novel lung preservation pro-

tocol suitable for clinical application in lung transplant

patients, G€otzfried et al. [36] evaluated the protective

effects of AAT-containing Perfadex on NSP-mediated

proteolytic damage. The authors employed a mouse

orthotopic LTx model, preserving the transplant in

Perfadex containing AAT (1 mg�mL�1) for an

extended cold ischemia period of 18 h. The objective

of this preclinical investigation was to examine if add-

ing AAT in the perfusion solution during cold ische-

mia could prevent vascular leakage and immediate

neutrophil-mediated inflammation after reperfusion.

Additionally, the authors determined whether the

anticipated improvement of graft function can be

attributed to the direct antiprotease activity of AAT.

Remarkably, the addition of AAT to Perfadex led to a

nearly 40% increase in blood oxygenation within the

transplanted left lung. AAT-treated lungs exhibited

significantly lower protein and neutrophil levels in the

bronchoalveolar lavage fluid (BALF), along with

reduced neutrophil infiltration in the transplanted lung

following 4 h of reperfusion. Thus, the addition of

AAT into Perfadex reduces primary graft dysfunction

and early neutrophil responses after prolonged storage

for 18 h at 4 °C, followed by 4 h of reperfusion in the

recipients. In agreement with the study results, recipi-

ents lacking both NE and PR3 activities in neutrophils

also experience protection from early reperfusion

injury [36]. Conversely, lung allografts perfused with

an AAT mutant lacking inhibitory activity, do not

exhibit the same protective effects [36]. This work

strongly supports then notion that NSPs, the principal

targets of AAT, play a significant role as major trig-

gers of post-ischemic reperfusion damage in LTx [36].

Premedication of recipients with a cathepsin C

inhibitor before lung transplantation

Rehm et al. [37] evaluated the potential beneficial

effect of preventing NSP activation in the bone mar-

row through CatC inhibition. In a mouse orthotopic

LTx model, recipient animals were treated with

IcatCXPZ-01 for 10 days, prior to LTx. Left lung allo-

grafts were perfused with Perfadex and kept in Perfa-

dex at 4 °C for 18 h, constituting a period of cold

ischemia and recipient mice underwent orthotopic

transplantation of the left lung; analyses were

performed 4 h after reperfusion. Recipient mice that

received IcatCXPZ-01 displayed a disappearance of

active NSP proteins in the transplanted lung and a

reduction in NSP activities in bone marrow neutro-

phils. The administration of IcatCXPZ-01 also resulted

in a significant increase in the partial oxygen pressure

(pO2) of the left ventricle blood compared to the

group treated with the vehicle. Thus, prolonged

administration of IcatCXPZ-01 before surgery enhanced

the quality and function of the transplanted lung

immediately after surgery (Table 2). Furthermore, this

study presented supporting data for the protective

effect of IcatCXPZ-01 on post-operative lung function,

noting a significant decrease in the immediate inflam-

matory response following reperfusion. The BALF

analysis revealed a significant decrease in neutrophil

content in IcatCXPZ-01-treated recipient compared to

lungs from vehicle-treated mice, indicating the preser-

vation of the capillary barrier following IcatCXPZ-01

treatment [37] (Table 2). This work also showed that

NSPs play a significant role as major triggers of

post-ischemic reperfusion damage in LTx.

Protective effects of neutrophil serine
proteases inhibition against graft
dysfunction following heart
transplantation

Preservation of heart grafts with a1-antitrypsin

Currently, cold static storage still represents the stan-

dard technique for preserving donor hearts before trans-

plantation, although the use of ex vivo allograft

machine perfusion is rapidly increasing, especially in

North America [38]. However, novel preservation strat-

egies are required to attenuate graft dysfunction caused

by IR injury and subsequently improve clinical out-

comes. In our experimental model of heterotopic HTx,

we have demonstrated that adding human AAT to the

preservation solution Custodiol enhances the functional

recovery of grafts after cardioplegic arrest, ex vivo pro-

longed hypothermic storage, and in vivo blood reperfu-

sion [39]. Our data showed that neutrophil infiltration

into the myocardial tissues, as evidenced by

myeloperoxidase-positive cells, was decreased by AAT

in grafts subjected to prolonged cold ischemia. Further-

more, our computational analysis shows that heart

grafts from the AAT network display higher homogene-

ity, more positive gene correlations, and fewer negative

gene correlations than the grafts from the placebo net-

work [39]. Additionally, in an experimental pancreatic

islet transplantation model, AAT has been observed to

reduce inflammation and improve survival [40].
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Recently, Ding et al. [41] demonstrated that AAT alle-

viates endothelial dysfunction, prevents increased

caspase-3, -8, -9, and -12 levels, and decreases apoptotic

DNA breakage in vascular grafts obtained from

brain-dead rats, which were subjected to IR injury.

Premedication of graft recipient with a cathepsin

C inhibitor before heart transplantation

In a recent study, Liu et al. explored the effects of pro-

longed CatC inhibition using BI-9740 in a rat model

of heterotopic HTx [31]. Their objective was to exam-

ine the influence of NSP activities on IR injury. The

findings indicated that NSP proteolytic activities are

markedly decreased in BI-9740-treated rats compared

to those of the placebo group [31]. Accordingly, histo-

logical lesions observed in the hearts of the

placebo-treated group are reduced in BI-9740-treated

rats. Additionally, inhibition of NSPs diminishes neu-

trophil infiltration in the myocardium, alleviates

nitro-oxidative stress, and decreases DNA damage

after HTx in rats [31]. Consequently, this leads to an

enhancement in the function of the left ventricular

graft following heterotopic HTx [31]. This study pro-

vides experimental evidence that pharmacological inhi-

bition of CatC improves graft function following HTx

in rats.

Role and inhibition of other
cathepsins in experimental models of
transplantation

Cathepsins are proteases that are categorized into mul-

tiple families. These include serine proteases (cathep-

sins A and G), aspartyl proteases (cathepsins D and

E), and the better-known cysteine proteases (cathepsins

B, C, F, H, K, L, O, S, V, W, and Z). Several experi-

mental transplantation models have investigated the

effects of CatB and CatS. An in vivo orthotopic LTx

mouse model was used to study the role of CatB in

the pathophysiology of bronchiolitis obliterans syn-

drome (BOS) [42], a severe and progressive lung

Table 2. Beneficial clinical outcomes in graft functions following transplantation in recipient animals treated with a cathepsin C inhibitor.

HTx, heart transplantation; LTx, lung transplantation; NSPs, neutrophil serine proteases.

Lung transplantation

Preclinical model Mouse orthotopic LTx model

8–10-week-old male C57BL/6J mice

Premedication IcatCXPZ-01

Vehicle 15% (2-hydroxypropyl)-b-cyclodextrin dissolved in 50 mM citrate, pH 5

Pre-operative cathepsin C inhibitor treatment Subcutaneous administration, 10 days, twice a day, 1.25 per kg body weight

Bone marrow inhibition of NSPs (%) Elastase: ~ 75%, Proteinase 3: ~ 75%; Cathepsin G: ~ 75%

Graft Left lung

Cold ischemia 18 h, 4 °C

Reperfusion 4 h, 37 °C

Donor lung function assessment 4 h after LTx

Beneficial clinical effects in graft functions Reduction of neutrophils in BALF

Preservation of the capillary barrier

Improved gas exchange function

Heart transplantation

Preclinical model Rat heterotopic HTx model

9–10-week-old male Lewis rat

Premedication BI-9740

Vehicle 0.5 Natrosol 250 HX Pharm vehicle

Pre-operative cathepsin C inhibitor treatment Oral administration, 12 days, 20 mg�kg�1 body weight

Bone marrow inhibition of NSPs (%) Elastase: 42 � 2%; Cathepsin G: 54 � 4%

Graft Heart

Cold ischemia 1 h, 4 °C

Reperfusion 1 h, 37 °C

Donor heart function assessment 1 h after HTx

Beneficial clinical effects in graft functions Reduction of infiltrated neutrophils

Reduction of irregularly arranged fiber and less edema

Significant shortening in graft re-beating time after reperfusion

Increased systolic function

Increased rate pressure product

Increased myocardial relaxation
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disease characterized by inflammation and fibrosis of

the bronchioles. BOS is often a complication following

LTx leading to obstruction and irreversible lung dam-

age. Preclinical results showed that CatB and collagens

were upregulated 14 days post-transplantation. Fur-

thermore, the study demonstrated that orthotopic

transplantation in CatB knockout (CatB�/�) mice sig-

nificantly mitigated the histopathological and physio-

logical features of graft rejection [42]. In

allogenetically transplanted mice, CatS activity in the

spleen was significantly increased 1 week after trans-

plantation compared to syngeneic controls [43]. CatS,

along with protease-activated receptor (PAR)-2, has

been identified as a potential molecular target in acute

renal allograft rejection [44]. Additionally, inhibition

of CatS using a pharmacological inhibitor or genetic

knockout of its target, PAR-2, alleviated chronic allo-

graft vasculopathy in a murine heterotopic aortic

transplantation model [45].

Clinical potential of cathepsin C
pharmacological inactivation

Patients on LTx and HTx waiting lists usually suffer

from severe end-stage pulmonary and heart diseases,

respectively. Specialized, cost-intensive care and medi-

cal supervision are required for these patients.

End-stage lung disease often deteriorates due to

chronic inflammatory processes, as observed in condi-

tions such as COPD, cystic fibrosis, NCFB, and

AATD. Implantable left ventricular assist devices

(LVADs) have benefited patients with advanced heart

failure where other treatments have been ineffective

or as a bridge to HTx. Additionally, patients with

heart failure experience several changes in the electri-

cal function of the heart that predispose them to

potentially lethal cardiac arrhythmias. There is

increasing evidence that associates inflammation with

both atrial and ventricular arrhythmias. The conven-

tional immunosuppression protocols employed in

recipients of lung or heart transplants, chiefly consist

of calcineurin inhibitors (cyclosporine, tacrolimus); an

adjunct immunosuppressant (e.g., azathioprine, evero-

limus, or mycophenolate mofetil); and corticosteroids.

These protocols have been shown to effectively

decrease the risk of early graft loss attributed to

acute rejection [46]. However, immunosuppressive

strategies are also accompanied by undesirable side

effects, not the least being an increased susceptibility

to infection [47].

CatC inhibitors, currently under assessment in

NCFB of CF patients, are well tolerated and deemed

ethically acceptable for long-term application. CatC

inhibition is also a potential therapeutic approach in

other neutrophil-mediated inflammatory lung diseases

such as COPD or AATD [15, 16, 34]. Importantly,

such patients are susceptible to develop

neutrophil-mediated end-stage pulmonary disease and

to be added to a transplant waiting list. Pre-operative

CatC inhibitor treatment is expected to suppress the

inflammatory response initiated by the local release of

NSPs from infiltrating neutrophils in the patient after

LTx (Fig. 3). In an in vivo setting represented by a

human model of heart failure, the presence of CatG

and cathepsin L-like proteases (cathepsins B, K, L, S)

was reported in cardiac biopsies from 22 patients

before LVAD implantation (pre-LVAD),

post-implantation (post-LVAD), and in patients with

heart failure undergoing medical therapy. The authors

suggested a parallel activation of molecules promoting

the detrimental effect of extracellular matrix degrada-

tion, such as CatG and CatS. These modifications

were associated with the inflammatory environment

occurring after the LVAD implantation [48]. If

patients with end-stage heart failure exhibit local

release of NSPs and the presence of cysteine cathep-

sins, new targeted therapeutics could be identified, or

drug repurposing could be considered. The heart of

these patients could be protected while awaiting HTx,

protected against IR injury during HTx, and protected

from cardiac arrhythmias. Both the 24-week Phase 2

trial [49] and the 52-week Phase 3 trial (ClinicalTrials.

gov Identifier: NCT04594369) with brensocatib in

patients with NCFB support the use of CatC inhibi-

tors in clinical practice. In this regard, it is important

to note that the multiple redundant mechanisms of

neutrophil antimicrobial responses are generally not

impaired by CatC inhibitor treatment [16,50]. Treating

high-risk patients, categorized as high priority on the

transplant waiting list, could therefore benefit from

this repurposing of available drugs.

Conclusions and perspectives

A major complication of organ transplantation is pri-

mary graft dysfunction, which represents the leading

cause of early post-transplantation morbidity and mor-

tality. Novel preservation and therapeutic strategies

are therefore required to prolong graft survival. In this

context, clear evidence implicating NSPs in IR injury

and primary graft dysfunction following organ trans-

plantation has been obtained in preclinical studies.

Supplementation of classical preservation solutions or

machine perfusion solutions with AAT and pre-

operative depletion of NSPs in circulating neutrophils

by premedication with a CatC inhibitor in recipients
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could prevent early post-operative complications and

the development of primary graft dysfunction. It

would be valuable to investigate the combination of

both treatments: oral pretreatment of recipients with a

CatC inhibitor prior to transplantation, followed by in

vitro supplementation of the preservation solution with

AAT during organ conservation in the ischemia period

of the transplantation procedure. AAT is currently

used clinically to treat emphysema caused by AAT

deficiency and CatC inhibitors, currently undergoing

evaluation in clinical trials, could be quickly translated

into clinical practice for patients suffering from severe

end-stage pulmonary or heart diseases and awaiting

organ transplantation.

Fig. 3. Graft protection in premedicated

recipients using a cathepsin C inhibitor.

Cathepsin C (CatC) inhibition represents a

potential therapeutic approach to treat

recipients awaiting lung or heart

transplantation. Pre-treatment with a CatC

inhibitor, reaching sufficient levels in the

bone marrow, inhibits CatC, and decreases

downstream activation of neutrophil serine

proteases (NSPs). Unstable NSP zymogens

are proteolytically degraded during neutrophil

differentiation in the bone marrow and

circulating neutrophils display low amounts

of active NSPs. Consequently, reduced blood

neutrophils infiltration and better control of

secreted NSPs alleviating ischemia–

reperfusion-induced graft dysfunction are

expected.
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