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Genetic coupling of enhancer activity and
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Gene enhancers often form long-range contactswithpromoters, but it remains
unclear if the activity of enhancers and their chromosomal contacts are
mediated by the same DNA sequences and recruited factors. Here, we study
the effects of expression quantitative trait loci (eQTLs) on enhancer activity
and promoter contacts in primary monocytes isolated from 34 male indivi-
duals. Using eQTL-Capture Hi-C and a Bayesian approach considering both
intra- and inter-individual variation, we initially detect 19 eQTLs associated
with enhancer-eGene promoter contacts, most of which also associate with
enhancer accessibility and activity. Capitalising on these shared effects, we
devise a multi-modality Bayesian strategy, identifying 629 “trimodal QTLs”
jointly associated with enhancer accessibility, eGene promoter contact, and
gene expression. Causal mediation analysis and CRISPR interference reveal
causal relationships between these three modalities. Many detected QTLs
overlap disease susceptibility loci and influence the predicted binding of
myeloid transcription factors, including SPI1, GABPB and STAT3. Additionally,
a variant associated with PCK2 promoter contact directly disrupts a CTCF
binding motif and impacts promoter insulation from downstream enhancers.
Jointly, our findings suggest an inherent genetic coupling of enhancer activity
and connectivity in gene expression control relevant to human disease and
highlight the regulatory role of genetically determined chromatin boundaries.

Distal DNA regulatory elements such as transcriptional enhancers play
crucial roles in spatiotemporal gene expression control and are enri-
ched for genetic variants that associate with molecular and cellular
traits, such as the risk of common diseases (typically ascertained by
genome-wide association studies [GWAS])1,2 and the expression levels
of specific genes (‘expression quantitative trait loci’, eQTLs)3–7. The
binding of transcription factors (TFs) to these elements in response to
intrinsic or extrinsic cues promotes a cascade of events that include

the recruitment of chromatin remodelers and histone modifiers8,9.
Jointly, these events result in the establishment of active chromatin
signatures and the engagement of RNA polymerase at these loci.
Consequently, the active state of an enhancer is transferred to the
promoters of one or more target genes, leading to their increased
transcription10–12.

The transfer of activating signals from distal enhancers to pro-
moters typically (thoughnot always) dependson connections between
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these elements within the nucleus. These connections can be estab-
lished through direct 3D chromosomal contacts or potentially through
other mechanisms, such as phase separation12–15. Previous studies that
compared the dynamics of enhancer activation, enhancer-promoter
connections andgene expression across cell types and conditions have
found that these events are often correlated, although cases whereby
enhancer-promoter contacts precede enhancer activation and gene
induction are also common5,13,16–18. The precise molecular mechanisms
underpinning the observed relationships between these phenomena,
however, remain incompletely understood.

The canonical mechanism for generating contacts between distal
DNA loci relies on the architectural proteins cohesin and CTCF19,20.
Cohesin creates and continuously extrudes chromatin loops, while
CTCF binds to DNA in a sequence-specificmanner and constrains loop
extrusion. Jointly, these phenomena promote the formation of topo-
logically associated domains (TAD) that largely insulate enhancer-
promoter contacts21,22. However, the interaction between cohesin and
CTCF cannot fully explain the phenomenon of enhancer-promoter
communication, asmany enhancers and promoters localise away from
TAD boundaries, often lack canonical CTCF binding sites and do not
fully dissolve after cohesin or CTCF degradation23–26. In addition, var-
ious transcription factors involved in enhancer and gene activation
were shown to affect enhancer-promoter contacts without engaging
directly with these architectural proteins25,27–30. These observations
raise the possibility that the ability of enhancers to form long-range
promoter contacts (their ‘connectivity’) is inherently linked with
enhancer activation at the genetic level, rather thanbeing encoded and
facilitated separately.

To address this possibility, we focused on enhancers that harbour
eQTLvariants associatedwith distal gene expression inmonocytes—an
abundant and readily available innate immune cell type with a high
clinical significance, for which high-confidence eQTL meta-analysis
data are available31. We asked whether the known transcriptional
effects of these variants coincided with their shared or distinct impact
on enhancer activity and enhancer-promoter contacts. We performed
ATAC-seq and high-resolution Capture Hi-C targeted at eQTL-
harbouring regions in monocytes isolated from multiple healthy
donors and adapted Bayesianmethods to identify genetic associations
withmolecular phenotypes at increasedpower.Wedetected abundant
shared effects of enhancer variants on promoter contacts, local chro-
matin accessibility (as a proxy of activity) and target gene expression.
We then obtained molecular and in silico evidence for causal rela-
tionships between these modalities using causal mediation analysis
and CRISPR-mediated perturbation. Variants with shared effects on
enhancer accessibility, connectivity and gene expression localised
away from CTCF binding sites, often disrupted the predicted binding
of a diverse range of myeloid transcription factors and overlapped
disease susceptibility loci. In addition, we identified a distal eQTL
variant with opposing effects on promoter contact and gene expres-
sion and no detectable impact on chromatin accessibility. We show
that this variant disrupts the canonical CTCF binding motif and likely
acts by perturbing the insulation of its target gene promoter from
upstream distal enhancers. Jointly, our findings suggest an inherent
genetic coupling of enhancer activity and connectivity in gene
expression control with relevance to human disease and highlight the
regulatory role of genetically determined chromatin boundaries.

Results
A compendium of eQTL-anchored chromosomal contacts, open
chromatin and gene expression in human primary monocytes
isolated from multiple individuals
To profile eQTL-anchored chromatin contacts at high throughput and
resolution, we employed Capture Hi-C (CHi-C) using a frequently-
cutting DpnII restriction enzyme. We designed a custom capture sys-
tem targeting 1197 distal eQTLs in unstimulatedmonocytes (located at

least 10 kb away from their target gene promoters) that were detected
in a multi-cohort monocyte eQTL study in 1480 individuals31,32 (Fig. 1A
and Supplementary Data 1). Our capture system targeted the lead
eQTLs, as well as the variants in tight linkage disequilibrium (LD) with
them (r2 ≥0.9) that mapped within known regulatory regions (see
‘Methods’ for details). For each eQTL, we aimed to capture the pro-
moter(s) of the associated gene (‘eGene’) and those of distance-
matched ‘non-eGenes’, whose expression was not associated with the
eQTL. We successfully designed capture probes for 1074 eGenes and
4718 control genes, respectively (Fig. 1B; see ‘Methods’ for details). The
distances between the contact eQTLs and the respective eGene pro-
moters ranged from ~32.5 to ~283 kb, with a median of 72.3 kb. Fol-
lowing sequencing and quality control, the eQTL CHi-C experiment
generated a minimum of 9.5 million unique valid on-target reads per
donor (median 11.5 million, Supplementary Data 2). By combining the
CHi-C data from all 34 donors, we initially obtained a high-coverage
consensus dataset consisting of just over 470million on-target unique
reads. Using the CHiCAGO algorithm33,34, we identified 642,552 sig-
nificant (score ≥ 5) contacts at DpnII-fragment resolution and 398,464
contacts in bins of 5 kb in this consensus dataset.

To profile chromatin accessibility, we adapted ATAC-seq for
crosslinked inputmaterial (see ‘Methods’) and performed the assay on
the same formaldehyde-fixed samples asused forCHi-C. TheATAC-seq
datasets generated on crosslinked chromatin were of high quality and
had a high degree of overlap with two published datasets in primary
monocytes35,36 (Supplementary Fig. 1 and Supplementary Data 3).
Using a Hidden Markov Model-based pipeline for ATAC-seq37, we
detected 74,373 open chromatin peaks in the ATAC-seq consensus
data pooled across individuals. Finally, we profiled gene expression
usingRNA-seq andgenotyped each donor (see SupplementaryData 4).

Using appropriatemetrics separately for eachassay (CHi-C, ATAC-
seq and RNA-seq), we confirmed that overall, the generated data were
highly concordant across the cohort (Supplementary Fig. 2A–C). Next,
integrating the three assays, we found that, as expected, the regions
contacted by the captured fragments (containing either eQTL sites or
gene promoters) were enriched for open chromatin peaks, as well as
for active histone marks detected in other studies in monocytes38

(Supplementary Fig. 2D). We also observed a positive correlation
between the level of gene expression and the number of active regions
contacted by a gene’s promoter (Spearman’s rho = 0.22, p
value < 2.2 × 10−16), consistent with previous reports5,39 (Fig. 1C). Jointly,
these consensus data provide a high-coverage compendium of chro-
mosomal contacts, chromatin accessibility and gene expression in
human primary monocytes.

Distal eQTLs engage in chromosomal contacts with their
target genes
We next asked whether eQTLs preferentially shared topologically
associating domains (TADs) and formed chromosomal contacts
with their target eGenes compared with distance-matched control
genes. We called TADs using Hi-C data from two donors in the cohort
(Supplementary Data 5; see Supplementary Data 2 for donor infor-
mation). Overall, 95% of eQTLs and their respective eGene promoters
shared the same TAD, while a significantly lower proportion of eQTLs
shared the same TADwith the promoters of distance-matched control
genes (85%, exact Fisher test p value = 3.6 × 10−13; Fig. 1D). Moreover,
even within the same TAD, eQTL contacts with eGene
promoters tended to have higher CHiCAGO interaction scores than
those with control gene promoters (Wilcoxon paired test p
value < 2.2 × 10−16; Fig. 1E), consistent with previous findings5,40. At a-
CHiCAGO score cutoff of 5, around 70% of eQTLs
(816/1197) had significant chromosomal contacts with the respective
eGene promoter, detected either in at least one individual or in the
high-coverage consensus CHi-C dataset (see Fig. 1F–H for examples).
As a complementary approach for detecting functional enhancer-
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promoter contacts, we additionally used the threshold-free ‘Activity-
By-Contact’ (ABC) method41,42, which we recently adapted to CHi-C
data (CHi-C ABC)39. In this approach, the effects of an enhancer on a
target promoter areestimated as the product of local enhancer activity
and enhancer-promoter contact frequency. Using ATAC-seq data as a
proxy of enhancer activity, ABC predicted functional links between
14,413 putative enhancers and 4440 genes that were captured in the

CHi-C experiment (at an ABC score threshold of 0.012 selected as
described in the ‘Methods’; Supplementary Data 6). However, the ABC-
detected pairings only connected 175/1197 (14.6%) of our targeted
eQTLswith their respective eGenes, just 21 ofwhichwerenot identified
by CHiCAGO. The small number of eQTL-promoter contacts detected
by ABC is likely due to our focus ondistal eQTLs (median eQTL—eGene
TSS distance: 57 kb), while ABC preferentially identified short-range

Fig. 1 | A compendium of eQTL CHi-C contacts and accessibility in primary
monocytes. A Overview of the main data collection steps. Created in BioRender:
https://BioRender.com/v74s856. B Design of the eQTL CHi-C experiment. We
designed capture probes targeting DpnII fragments harbouring previously identi-
fied lead eQTLs in monocytes. We also included variants in tight LD with the lead
eQTLs in regulatory regions, eGene promoters and the promoters of distance-
matched ‘non-eGenes’, which were similar distances from the eQTLs as the eGenes
but not associated with their expression. Created in BioRender: https://BioRender.
com/z90t537. C Relationship between the number of interacting enhancers and
gene expression. Two-sided Spearman’s rank correlation was performed on
log2(number active enhancers) against log2(expression TPM) for 5729 genes in
34 samples. Boxplots show 25th, 50th and 75th percentiles, with upper and lower
whiskers to the largest or smallest value no further than 1.5 x the interquartile range
from the hinge. Graphic created in BioRender: https://BioRender.com/s35y475.
D Degree of TAD sharing between eQTLs and eGenes or eQTLs and non-eGenes.

E Inverse hyperbolic sine (asinh)-transformed median CHiCAGO scores for inter-
actions between eQTLs and eGenes or non-eGenes within the same TAD. The score
for the eGene is shown against themedian score for all captured control genes, per
eQTL, including cases where the score was zero. Examples of eQTLs intersecting
ATAC-seq peaks and interactingwith the eGenes: PTGER4 (F), SGK1 (G) and VIM (H).
ATAC data are presented as −log10(p value) for the consensus dataset (detected by
Genrich140). eGenes are highlighted in green. Contact profiles show the number of
reads for each other-end fragment contacting the fragment containing the eGene
promoter in the consensus dataset. The eQTL-eGene significant contacts were
called using the shown consensus CHi-C interactions (CHiCAGO statistical algo-
rithm on consensus data (score ≥ 5), at DpnII-fragment level). Interactions are
restricted to those involving the eQTL or a SNP in tight LDand the eGene promoter.
Baited regions are shown as a grey highlight. F–H were plotted using the Plot-
gardener R package125. Source data for C–E are available on OSF168.
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promoter contacts (median distance ~23 kb), consistent with previous
results obtained with this method in other systems39,41,42.

Taken together, these findings indicate that eQTLs commonly and
preferentially contact thepromoters of their target eGenes, suggesting
that chromosomal contacts may be involved in mediating the genetic
effects of these loci on eGene expression.

Association of expression QTLs with differential promoter
contacts
To detect the potential genetic effects of eQTLs on their chromosomal
contacts with the eGene promoters from our eQTL CHi-C data, we
adapted an allele-specific Bayesian QTL mapping methodology,
BaseQTL, that considers both within-individual and between-
individual allelic effects and explicitly models mappability bias and
was shown to have a lower error rate and increased power compared
with alternative methods43.

BaseQTL was originally developed for eQTL calling43. Here, we
extended the BaseQTLmodel for calling QTLs based on ATAC-seq and
CHi-C read counts (Fig. 2A), which included directly accounting for the
uncertainty of the QTL genotypes called by imputation (see ‘Meth-
ods’). Thedensity of CHi-C read counts across individuals allowedus to

query genetic associations at 1110 out of the 1197 targeted eQTL loci,
including 974 lead eQTLs and 8759 proxy variants in tight LD (r2 ≥0.9).

At a stringent credible interval (CI) threshold of 99%, we detected
19 significant variants in 9 independent loci associatedwith differential
contacts between 13 eQTL-containing DpnII fragments and the pro-
moters of 9 eGenes. We term these variants ‘contact eQTLs’ (Fig. 2B,
Supplementary Fig. 3 and Supplementary Data 7).

The thrombospondin 1 (THBS1) locus had the largest number of
contact eQTLs (seven, in tight LD with each other [r2 ≥0.9]). The
alternative alleles of these variants were associated with stronger
contacts with THBS1 promoters located ~250kb away from them
(Fig. 2C). We validated the effect of one of these variants, rs2033937,
on chromosomal contacts with THBS1 using allele-specific 4C-seq in a
subset of heterozygous samples (Supplementary Fig. 4A). In the
C7orf50 and NAAA loci, we also detected multiple contact eQTLs in
tight LD with each other, whilst only one contact eQTL was detected
within each of the remaining six loci (NFE2L3, PTPRE, SVIL, KCNK13,
PCK2 and TFPT) (NAAA locus illustrated in Fig. 2D). Notably, the TFPT
contact eQTL (rs10415777) was also in tight LD with an eQTL
(rs35154518) for another gene, OSCAR. The expression levels of TFPT
andOSCARwere correlated across the donors in our cohort (Pearson’s
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C–E Genomic visualisation of significant contact eQTLs in the THBS1, NAAA and
TFPT loci. The arches, whose heights correspond to the allelic fold change in
contact, show the tested contacts between the eQTL and promoter(s) of the eGene
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correlation r = 0.54, p value = 0.001), suggesting a shared genetic
control of these two genes. Moreover, rs10415777 showed the same
direction of effect for contacts with both TFPT and OSCAR (Fig. 2E).
Although the effect of rs10415777 onOSCAR did not pass our stringent
significance threshold, these observations raise the possibility that
rs10415777 may affect the promoter contacts of the regulatory region
encompassing this variant with the promoters of both genes.

We asked whether eQTLs were more likely to influence promoter
contacts compared with variants that contacted promoters in 3D, but
did not associate with gene expression. To test this, we considered a
set of 11,582 control (non-eQTL) variants with significant evidence of
promoter contact in our consensus CHi-C dataset (CHiCAGO score ≥5)
that are not known to be eQTLs in monocytes32 or across blood cells31

and assessed their association with the promoter contact strength
using BaseQTL (Supplementary Data 7C). Despite the 1.4-fold larger
number of non-eQTL variants compared with that of the eQTLs
included in the analysis, only two non-eQTLs, mapping to a single
genomic locus, showed association with contact strength (rs7905438
and rs7917620 contacting the promoter of RNU6-6P from a distance of
1 kb). We confirmed the significant enrichment of genetic effects on
promoter contact among eQTLs compared with promoter-interacting
non-eQTLs using a permutation test that compared the respective
posterior probabilities of association, accounting for read coverage
(one-sided p value < 1 × 10−4; see ‘Methods’).

Most contact eQTLs associate with local chromatin activity
To probe the relationship between the genetic effects of enhancer
connectivity and activity on gene expression, we additionally detected
QTLs associated with differential ATAC-seq signals in the same indi-
viduals (ATAC-QTLs; Fig. 3A and Supplementary Data 8), as well as
validated the effects of multi-cohort eQTLs using the RNA-seq data
from our cohort (Supplementary Fig. 4B, C and Supplementary Data 9;
see ‘Methods’ for details). Genome-wide, we detected 34,900 ATAC-
QTL variants for 6855 ATAC-seq peaks located within a 5 kb vicinity
from the peak. ATAC-QTLs directly overlapped 104/1197 (~9%) lead
eQTLs profiled in the eQTL-CHiC experiment and were in tight LD
(r2 ≥0.9) with an additional 119 lead eQTLs. ATAC-QTLs also directly
overlapped 10/19 contact eQTLs (14 accounting for LD). Notably, the
allelic effects of these variants on both contact strength and enhancer
accessibility were exclusively in the same direction (Fig. 3B). In all but
one locus, these effects were also in the same direction as gene
expression (Fig. 3C).

To further assess the genetic effects of contact eQTLs on enhan-
cer activity, we integrated QTL data for histone modifications in
human monocytes from the Blueprint WP10 Phase II release44. We
found that 53% (10/19) of the contact eQTLs overlapped QTLs for the
nearby active histone marks H3K27ac and H3K4me1 (located within
5 kb of the contact eQTL, accounting for LD [r2 ≥0.9]; Fig. 3C). The
direction of effect for the histone mark QTLs was always consistent
with that of contact, accessibility and eGene expression (Fig. 3C). For
instance, all contact eQTLs in the THBS1 locus were also QTLs for one
or more local features of activity (ATAC-seq, H3K27ac and H3K4me1),
and the signals for all these features were stronger in the alternative
allele (Fig. 3D). We observed a similar pattern of stronger enhancer
activity signals associated with the alternative allele of the single
contact eQTL in the SVIL locus (Fig. 3E). In addition to their effects on
local enhancer activity, we also found that some of the contact eQTLs
were associated with increased chromatin accessibility and active
histone marks at the promoters of their respective eGenes. For
example, contact eQTLs for NAAA and KCNK13 were associated with
H3K27ac levels both proximally to these variants and at the promoters
of these genes (Fig. 3E, F, respectively).

In conclusion, contact eQTLs typically, but not always, associate
with differential chromatin activity in cis, suggesting abundant shared
genetic effects on enhancer activity, connectivity and gene expression.

Joint detection of shared genetic effects on enhancer accessi-
bility, connectivity and gene expression
The approach described above identified genetic associations with
enhancer-promoter contact and showed overlap with genetic effects
on othermolecular phenotypes (‘modalities’), despite testing eachone
separately. Given this overlap and our relatively small sample size, we
sought to increase the power of association detection by jointly
modelling all three modalities (gene expression, chromatin accessi-
bility and eQTL-promoter contact). To detect such ‘trimodal QTL’
variants, we adapted a Bayesian QTL mapping framework, GUESS45,46,
developed to enhance the power todetect jointQTLsby leveraging the
information contained in multiple molecular traits. Specifically, we
defined 5564 windows containing 24,485 genotyped variants within
~5 kb proximity to the tested distal eQTL-eGene contacts and ATAC-
seq peaks (Fig. 4A). Within each window, we searched for models
consisting of one or a combination of genetic variants that jointly
explained the three modalities, accounting for potential confounders
(see ‘Methods’). At a 5% FDR47 in each window and following post-hoc
filtering (see ‘Methods’), we identified 919 partially overlapping win-
dows containing 629 significant trimodal QTLs (Supplementary
Data 10). In total, trimodal QTLs were associated with 705 eQTL-eGene
contacts, 299 open chromatin peaks and 217 eGenes (Fig. 4B). The
majority of windows showing significant associations (869/919, 95%)
involved a single trimodal QTL (‘single-QTLwindow’), but in some loci,
two or three trimodal QTLs best explained the observed genetic
effects on chromatin accessibility, contact and gene expression at a 5%
FDR (Fig. 4C). The detected associations were highly enriched for the
samedirection of genetic effect across all threemodalities,with 46%of
windows exhibiting such concordant effects, compared with the 25%
expected by chance for three independentmodalities (binomial test, p
value = 1.2 × 10−74). In addition, over 71% of trimodal QTLs had con-
cordant genetic effects between at least one testedATAC-seq peak and
eGene promoter contact (Supplementary Data 10). Notably, loci
showing concordant effects tended to have stronger effect magni-
tudes (Supplementary Fig. 5A, Wilcoxon test p value = 9.7 × 10−09).

The GUESS approach replicated the effects of 84% (16/19) of the
CHi-C BaseQTL contact eQTLs on the contacts with six respective
eGene promoters (THBS1, NAAA, SVIL and KCNK13, TFPT and C7orf50),
either via direct variant overlap (N = 7) or by overlap with other var-
iants within the considered GUESS window and in tight LD (r2 > 0.9)
with the lead trimodal QTL (N = 9). Overall, the estimated variant
effects for each of the three modalities (contact, accessibility and
expression) were highly correlated between the BaseQTL and GUESS
approaches, while the significance of the effects was higher for GUESS,
indicative of the increased power of this approach (Supplementary
Fig. 4). Two examples of trimodal QTLs and their joint effects on the
three modalities are shown at the Toll-like receptor 5 (TLR5) and
Abhydrolase domain-containing protein 2 (ABHD2) loci (Fig. 4D, E). In
eachof these two cases, the best variant selectedbyGUESSwas in tight
LD with the lead eQTL from the original monocyte study (r2 > 0.99).

In summary, by jointly analysing functionally related molecular
traits, we have identified a large set of monocyte QTLs with shared
effects on chromatin accessibility, enhancer-promoter communica-
tion and gene expression, which we release as a resource in Supple-
mentary Data 10.

Mediation analysis and CRISPR interference reveal causal rela-
tionships between enhancer activity, connectivity and gene
expression at trimodal QTLs
The shared associations of trimodal QTLs with enhancer activity
(proxied by accessibility), enhancer-promoter contacts and gene
expression can reflect either independent effects of the genotype on
each of the three modalities or a hierarchically causal relationship
where the genotype affects one modality, which in turn mediates
effects on the others.
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To explore causal relationships betweenmodalities, we employed
a statistical approach known as causal mediation. This approach
identifies whether an independent variable (in this case, genotype)
affects the outcome through an intermediate variable (mediator),
accounting for sensitivity to assumption violation, partial mediation
effects and potential confounders (Fig. 5A, see ‘Methods’ for details).
Weused this framework to test three non-mutually exclusivemodelsof
causal mediation at each trimodal QTL. In models I and II, chromatin

accessibility (proxied by ATAC-seq signal) was the mediator of geno-
type effect on (I) chromosomal contact with the eGene promoter
(proxied by CHi-C signal) (Fig. 5B) or (II) eGene expression (proxied by
RNA-seq signal) (Fig. 5C). In model III, chromosomal contact was the
mediator of the genotype effect on gene expression (Fig. 5D). For each
locus and model, we estimated the average causal mediation effect
(ACME) across individuals, the average direct (non-mediated) effect
(ADE) across individuals as well as the total effect (TE =ACME+ADE;
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Fig. 5A). Significant ACME and TE (ACME p value ≤0.05 and TE p
value ≤0.05) were indicative ofmediation. A lack of evidence for direct
effects (ADE p value > 0.05) in combination with significant ACME and
TE suggested that the mediator fully explained the relationship
between the genotype and the outcome (‘full mediation’). In contrast,
when both ADE and ACME were significant (p value ≤0.05), this indi-
cated that the mediator partially explained the relationship between
the genotype and the outcome (‘partial mediation’).

Approximately ~9% (79/919) of the partially-overlapping GUESS
QTL windows showed evidence for either partial or full causal
mediation effects in at least one of the three models, implicating 62
trimodal QTLs and 33 eGenes in total (Supplementary Fig. 6A and
Supplementary Data 11). For example, in the THBS1 locus, the
accessibility of the QTL region fully mediated the relationship
between the genotype and the region’s contact with the THBS1
promoter (Model I; TE p value < 1 × 10−16, ACME p value = 0.004 and
ADE p value = 0.30) (Fig. 5E, F; sensitivity shown in Supplementary
Fig. 6B). We confirmed this relationship experimentally by targeting
CRISPR interference (CRISPRi) in a monocytic cell line to the tri-
modal QTL region in the THBS1 locus. This perturbation resulted in
an approximately 25% reduction in the ATAC-seq signal at the tri-
modal QTL region (top left plot in Fig. 5G) that corresponded with a
~22% reduction at the promoter (top right plot in Fig. 5G), consistent
with the reduced activity of respective enhancers, induced by the
enhancer CRISPRi perturbation. Concurrently, the chromosomal
contacts of the QTL region shifted upstream of this region and away
from the THBS1 promoter (see 4C-seq locus plot in Fig. 5G and left-
hand graph in Fig. 5H), mirroring the effects observed between the
alleles of this QTL in primary monocytes (right-hand graph in
Fig. 5H). Furthermore, these effects resulted in an approximately
30% reduction in THBS1 expression (two-sided T-test, p value =
0.03; Fig. 5I and Supplementary Fig. 6C)

In addition, we identified a large number of cases (69 windows,
implicating 52 trimodal QTLs and 23 genes, Supplementary Data 11)
where chromatin accessibility partially or fully mediated the effect of
genotype on gene expression (Model II). As an example, chromatin
accessibility of an ATAC-seq peak at the QTL region fully mediated the
relationship between the genotype and the expression of the eGene
NFE2L3 (TE p value < 10−16, ACME p value = 0.024 and ADE p value =
0.16) (Fig. 5J, K; sensitivity plot shown in Supplementary Fig. 6D).
Finally, in a small number of cases (4 windows, implicating four tri-
modal QTLs and four genes, Supplementary Data 11) chromatin con-
tacts were found to partially or fully mediate the relationship between
the genotype and gene expression (model III). In the fully mediated
case, a ~20 kb chromatin contact between trimodal QTLs and SPSB1
mediated the QTL’s genetic effect on SPSB1 expression (TE p value =
0.012, ACME p value = 0.012 and ADE p value = 0.164) (Fig. 5L, M;
sensitivity plots shown in Supplementary Fig. 6E).

Jointly, these analyses highlight hierarchical causal relationships
between enhancer activity, enhancer-promoter contact and gene
expression that mediate the effects of sequence variation at trimo-
dal QTLs.

Genetic effects on enhancer-promoter contacts are likely
mediated by a diverse range of transcription factors
To determine the mechanisms underlying the phenotypic effects of
the identified QTLs, we searched for evidence of protein binding at
these loci. For this analysis, we combined contact eQTLs identified by
BaseQTL and trimodal QTLs identified by GUESS, obtaining 641 dis-
tinct variants, to which we will refer collectively as ‘contact
QTLs’ (cQTLs).

We first compiled evidence of protein binding from the ReMap48

catalogue, a database of chromatin immunoprecipitation (ChIP)-seq
peaks for 1171 TFs in 726 human cell types. We extracted and merged
the peaks found across monocyte cell types per TF (see ‘Methods’),
resulting in a monocyte-specific peak set of 14 TFs. To expand the TF
repertoire, we additionally generated context-aware binding predic-
tions for 710 TFs within our monocyte ATAC-seq data using TOBIAS
footprint analysis49 and the MaxATAC deep learning framework50,
making a total peak set for 716 TFs in monocytes. Compared with all
25,151 eQTL variants considered in our study, cQTLs were significantly
enriched for the ChIP-seq binding sites of 6 TFs, including key TFs
involved in monocyte differentiation and activation such as SPI1 (also
known as PU.1), CEBPB and STAT3, a metabolic regulator SREBP2, a
Mediator-associated cell-cycle protein CDK8 and the CREBBP tran-
scriptional coactivator (Fig. 6A, green triangles, and Supplementary
Data 12). Considering the ATAC-seq predicted peaks, an additional 37
TFs were enriched at cQTLs (Fig. 6A, purple dots, and Supplementary
Data 12), making a total of 43 enriched TFs. Of these, CEBPB and SPI1
were enriched at cQTLs based on both predicted and experimentally
determined binding sites. By running the enrichment analysis on the
whole ReMap ChIP-seq database, we also confirmed the cell type
specificity of TF binding at cQTLs, with nearly all enriched TFs occur-
ring in monocytes or other myeloid cell types (Supplementary Fig. 7A
and Supplementary Data 12).

Overall, nearly a third of cQTLs (205/641, 31%) were predicted to
be bound in monocytes by at least one out of the 716 TFs included in
the analysis. We next examined the potential allelic impact of cQTL
variants on theseTF binding events. For this, we took advantage of two
deep learning frameworks, DeepSea51 and Enformer51,52. These models
were pre-trained on public genomic datasets, enabling us to infer the
effects of sequence variation on signals in these training data. We
focused on predicting ChIP-seq signals for sequence-specific TFs
bound at cQTLs, with data for 77/205 and 179/205 cQTL-bound TFs
available in the DeepSea and Enformer training sets, respectively
(Supplementary Data 13 and Supplementary Fig. 7B). To ascertain
perturbation effects, we compared the magnitude of DeepSea- and
Enformer-predicted perturbations at cQTLs with those detected for
randomly sampled variants across the genome, considering the top 1%
perturbation score rank for each TF and tool as the signal threshold
(see ‘Methods’). Overall, 87 cQTLs were predicted by at least one tool
to perturb the binding of at least one TF (Fig. 6B). The consistency of
DeepSea and Enformer predictions, however, varied depending on the
TF (Supplementary Fig. 7C). Therefore, to increase the robustness of
this analysis, we focused on consensus predictions from both tools,

Fig. 3 | Shared genetic effects onenhancer activity, enhancer-promoter contact
and gene expression. A Strategy for detecting ATACQTLs with BaseQTL. Created
in BioRender: https://BioRender.com/v31q004. B Shared allelic effects of QTLs on
accessibility and promoter contact at 99% credible interval. C Heatmap of cross-
trait effects for contact eQTLs. The positive effect allele (either REF or ALT) is
shown for CHi-C, and the direction of effects in other traits (whether log allelic fold
change or beta) is shown relative to this. We only show effects for features within
5 kb of the contact eQTL, andwe accounted for LD (r2 ≥0.9). The ATACQTL effects
were taken from BaseQTL results within our 34-donor cohort, whereas the
remainder of effects (gene expression, H3K27ac and H3K4me1) were curated from
outside of our cohort. The eQTL effects were taken from the original monocyte
study or from Blueprint. The histone modifications H3K27ac and H3K4me1 were

taken from Blueprint WP10 Phase 2. Epigenetic mechanisms within example con-
tact eQTL loci: (D) THBS1, (E) NAAA, F KCNK13. The red regions show upregulated
peaks of ATAC, H3K27ac and H3K4me1 associated with the contact eQTL (or SNPs
in LD, r2 ≥0.9); the peaks shown in these plots were not restricted to 5 kb from the
contact eQTL. ATAC-seq tracks show the pileups for merged homozygous refer-
ence (blue) or homozygous alternative (red)donors for one of the contact eQTLs as
anapproximationof the allele-specific signal across the locus. Blackarrows indicate
the ATAC-seq peaks and the fold changes associated with the alternative genotype
of each contact eQTL in the BaseQTL analysis (see also Supplementary Data 8).
D–Fwere plotted using the Plotgardener package125. Source data for (B) and (C) are
available on OSF168.
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resulting in 181 perturbed binding events of 50 TFs by 49 cQTLs
(Fig. 6B). Just under half of these cQTLs (24/49) were predicted to
perturb the binding of multiple TFs (Fig. 6B), which is consistent with
TF cooperativity at enhancers53–55. TFswhosebindingwasperturbedby
cQTLs included the myeloid regulators SPI1/PU.1, CEBPB, STAT3/5A,
IKZF1 (Ikaros), and NFIC, aswell as JUND/FOS that jointly form the AP-1
complex (Fig. 6C and Supplementary Data 13). Notably, only two
cQTLs were predicted to perturb CTCF binding: the rs7146599 contact

eQTL and the rs2353678 trimodal QTL, both of which are knownCTCF
binding QTLs detected in multi-individual ChIP analyses56,57.

The binding of three TFs (SPI1, CEBPB and STAT3) was predicted
to be perturbed bymore than ten cQTLs each. The cQTLs predicted to
perturb SPI1 binding were highly enriched for known SPI1 tfQTLs57

compared with the rest of cQTLs (5/19 vs. 29/622 at local FDR <0.05,
accounting for LD [r2 > 0.99]; Fisher test p value = 0.001). Overall, just
under two-thirds (31/49, 63.3%) of cQTLs predicted to perturb the
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Fig. 4 | Detection and examples of trimodal QTLs. A Strategy for detecting tri-
modal QTLs using GUESS. Regions within 5 kb of ATAC-seq peaks and CHi-C DpnII
bait fragments were identified, and all genotyped variants were queried within
these regions. Created in BioRender: https://BioRender.com/f51r706. B Overview
of the significant findings from the GUESS analysis. Created in BioRender: https://
BioRender.com/w52b348. C Number of trimodal QTLs at 5% FDR that best
explained the observed phenotypes in each window. D, E Examples of GUESS loci
where the best model (combination of genetic variants with the largest marginal
likelihood score) contained a single trimodal QTL (also significant at 5% FDR) that
was associated with chromosomal contact with the eGene (TLR5 and ABHD2,

respectively), chromatin accessibility (highlighted in green in ATAC-seq track) and
eGene expression. ATAC-signal is shown as −log10(p value) pileups determined by
Genrich140. Boxplots show thegenetic effects of thevariant oneachmodality (boxes
show 25th, 50th and 75th percentiles, with upper and lower whiskers to the largest
or smallest value no further than 1.5 x the interquartile range from the hinge). The
red lines represent the regression lines based on the posterior mean of the
regression coefficients of the GUESS model, and the blue lines represent the
Maximum Likelihood Estimation (MLE) with a 95% confidence interval. Panels (D)
and (E) were plotted using the Plotgardener R package125. Source data for C–E are
available on OSF168.
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bindingof at least oneTF affected thepredictedbindingof SPI1, CEBPB
and/or STAT3, either alone or in combinationwith other TFs. However,
only a minority of cQTLs directly disrupted the recognition motifs of
these factors, while others disrupted either the recognition motifs of
other TFs whose binding they were also predicted to perturb or no
known motifs (Fig. 6D, top and Supplementary Data 13). For example,
only one out of the 12 cQTLs predicted to perturb STAT3 binding
disrupted the canonical STAT3 motif, while another 5/12 cQTLs dis-
rupted the recognitionmotifs of other bound TFs, including CEBPB/D,

JUNB andKLF9 (Fig. 6D, bottom). Jointly, these results suggest that the
effects of cQTLs on TF binding can be cooperative or indirect,
potentially mediated by perturbations in the binding sites of either
known or not yet identified binding partners of these TFs.

cQTLs associate with healthy and pathological genetic traits
As a first indication of the effects of cQTLs on physiological traits and
disease, we examined the representation of these variants in the GWAS
catalog58. Overall, ~36.5%of cQTLs (234 out of 641, including 3 out of 19
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BaseQTL-detected contact eQTLs) overlapped the reported GWAS
variants for a total of 304 traits accounting for LD (r2 > 0.8; Supple-
mentary Data 14), with 56 cQTLs directly coinciding with these
reported GWAS variants (Fig. 7A). Annotation of the associated GWAS
traits based on EFO ontology59 revealed terms such as ‘haematological
measurement’ and ‘leucocyte count’ among the top trait categories
(Fig. 7B), implicating monocytes as a likely causal cell type.

As an example, 29 cQTLs overlappedwith genetic loci for the trait
‘white blood cell count’, implicating target eGenes such as nuclear
receptor corepressor 1 (NCOR1, located ~200 kb away from the

trimodal QTL rs9910148) proposed as a key immunometabolic
regulator60, the lysosomal gene LAMP1 associated with mononuclear
phagocyte activation61 (~34 kb away from the trimodal QTL
rs9604045), as well as EP300-interacting inhibitor of differentiation 2
(EID2, ~96 kb away from the trimodal QTL rs1865092). We next sought
to confirm the overlap of the causal cQTL and GWAS signals using
formal colocalisation analysis. Since GUESS summary statistics are
unsuitable for this approach, we leveraged the fact that all cQTLs
are known eQTLs by design. Querying theOpen Targets database62, we
confirmed the colocalisation of the published eQTL signals for these

Fig. 5 | Evidence for causal relationships at trimodal QTLs. A The causal med-
iation strategy. B–D Overview of the three types of models considered.
E, F Example of Model I with full mediation. Plot E summarises the Average Causal
Mediation Effect (ACME), Average Direct Effect (ADE) and Total Effect (TE) (dot—
mean effect, lines—95% bootstrap confidence intervals; non-significant if spanning
0; two-sided p values were computed using the non-parametric bootstrap proce-
dure in the R package mediation158). The ADE confidence interval spans zero,
indicating full mediation. Plot (F) shows the three modalities in the mediation
model: SNPs/haplotype, i.e. the genetic variants in the GUESS set X, the ATAC-seq
signal as a mediatorM and chromatin contact with the eGene promoter as the
outcome Y. G CRISPRi at the cQTLs in the THBS1 locus. Top left: Change in ATAC-
seq signal at the location of CRISPRi perturbation (grey lines show dCas9-KRAB
target regions). The black line shows the change in ATAC-seq inCRISPRi U-937 cells
with locus-targeting versus non-targeting gRNAs (rlog reads, mean of three

biological replicates), grey ribbon represents standard deviation and red line shows
top 5% change across a 2Mb window. Top right: CRISPRi-induced change in ATAC-
seq at the canonical THBS1 promoter. Bottom: CRISPRi-induced change in mean
4C-seq signal (N = 3 per condition). Vertical grey bars show the viewpoints at the
cQTLs and THBS1; the black arrow highlights 4C-seq signal at THBS1 promoter
(difference not statistically significant, FDR-adjusted p value = 0.66). H Left plot: a
global shift in contact directionality from the cQTL region within a 2Mb window.
Right plot: the shift observed in allele-specific 4C seq in primary monocytes (three
heterozygotes for cQTL rs2033937). I qPCR-detected fold change in THBS1
expression in CRISPRi cells versus control cells (N = 3). The p value is from a two-
sided, paired T-test on ΔCt values (Supplementary Fig. 6C). J–M Examples of full
mediation in Models II and III, respectively, similar to (E, F). F, G, K, M used the
Plotgardener R package125. Source data for E, G–J, L are available on OSF168.
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Fig. 6 | Effects of contact QTLs on TF binding. A Significantly enriched TFs at
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least one TF perturbation.CTFswhose bindingwaspredicted to beperturbed by at
least 10 cQTLs. D Top: numbers of cQTLs with predicted effects on the binding of
SPI1, CEBPB and STAT3 that disrupted the known sequence bindingmotif for either
the same (red) or other predicted perturbed TFs (grey). Bottom: TF motifs dis-
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variants with the white blood cell traits in monocytes (N = 10) or blood
cellsmorebroadly (N = 21) at all 22 cQTLsoverlappingGWASSNPswith
available GWAS summary statistics required for this analysis (see
‘Methods’ and Supplementary Data 14).

In addition to baseline blood cell phenotypes, we also observed
overlap with genetic signals for inflammatory traits. For example, the
LAMP1-associated rs9604045 and another trimodal QTL (rs7488791,
associated with the expression of a scavenger receptor SCARB1,

Fig. 7 | Trimodal QTLs overlap variants associated with healthy and patholo-
gical traits. A Pie chart showing the number of cQTLs intersecting GWAS loci
through LD (light blue) or the same variant (dark blue).BNumber of cQTLs in each
of the GWAS trait categories from the Experimental Factor Ontology (EFO).
C Example of a trimodal locus with evidence for causalmediation associated with a
human trait: mean platelet volume. The forest plot on the left shows the result of
themediation analysis, summarising the three effects (ACME, ADE and Total Effect;
(dot—mean effect, lines—95% bootstrap confidence intervals; non-significant if
spanning0; two-sidedp valueswere computed using the non-parametric bootstrap
procedure in the R package mediation158). Since the ADE confidence interval spans
0 in this case, this is an example of full mediation. On the right, the locus plot at
ABHD2 shows the intersection between the trimodal QTL locus and theGWAS locus
for mean platelet volume (yellow highlighted region). The letters in circles

represent the three modalities in the mediation model: SNPs/haplotype, i.e. the
genetic variants in the GUESS set (treatment, X), the ATAC-seq signal (mediator,M)
and chromatin contact with the eGene promoter (outcome, Y). ATAC-signal is
shown as −log10(p value) pileups determined by Genrich140. D Evidence from Open
Targets Genetics62 for eQTL signals for ABHD2 in monocytes colocalising with the
GWAS signal for mean platelet volume67. The H3 value shows the posterior prob-
ability of two different causal variants, and H4 is the posterior probability of one
causal variant, with the log2 ratio showing the posterior probability evidence for
versus against shared causal variants. The final column shows the LD, as a measure
of r2, between the lead eQTL variant and the trimodal QTL, rs12438271. The locus
plot in (C) was generated using the Plotgardener R package125. Source data for
A–C are available on OSF168.
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located ~33 kb away) were also GWAS variants for the levels of
C-reactive protein, a well-established biomarker of inflammation63.
Two trimodal QTLs (rs4389574 and rs4698412) were associated with
Parkinson’s disease and implicated bonemarrow stromal cell antigen 1
(BST1, 21–28 kb away), which has a known role in humoral inflamma-
tory response64. This is notable given the emerging role of the innate
immune system in this disorder65.

Finally, we focused on the abhydrolase domain containing 2,
acylglycerol lipase (ABHD2) locus, where the trimodal QTL rs12438271
overlapped signals for mean platelet volume, falling within the 95%
credible set in three studies66–68 (Fig. 7C). Interestingly, in this locus,
chromatin accessibility fully mediated the effect of genotype on
chromosomal contact (mediation Model I; TE p value < 10−16, ADE p
value = 0.052, ACME p value = 0.024) (Fig. 7C; sensitivity shown in
Supplementary Fig. 6F). There was strong evidence of colocalisation
between the GWAS signal and eQTL signal inmonocytes, according to
Open Targets62 (Fig. 7D), suggesting a mechanism of action of these
trait-associated variants on platelet function, over and above the
information provided by eQTL studies.

Jointly, these examples highlight the relevance of enhancer-
promoter contacts in mediating the effects of genetic variants asso-
ciated with healthy and pathological traits.

A contact eQTL affects PCK2 expression by modulating CTCF
binding and chromatin insulation
Contrary to the majority of BaseQTL-detected contact eQTLs that
showed a consistent direction of allelic effect on gene expression and
promoter contact, variants identified in the PCK2 and C7orf50 loci
showed the opposite direction of effects on these two properties
(Fig. 3C). Notably, neither of these variants associated with active
histonemarks, and the PCK2 contact eQTL variant, rs7146599, also did
not associate with chromatin accessibility. This QTL is a known CTCF
tfQTL56, was predictedbyboth Enformer andDeepSea toperturbCTCF
binding in vivo and affects the canonical CTCF bindingmotif (Fig. 8A).
To further validate the allelic effect of rs6477612 on CTCF binding, we
performed ChIP-seq for CTCF in monocytes from three individuals
whowere heterozygous for rs7146599. This confirmed the presence of
a CTCF peak at rs7146599, with the reference allele (G) binding 12-fold
more CTCF than the alternative (A) allele (Fig. 8B). Furthermore, we
confirmed by allele-specific 4C-seq in the same individuals that the
alternative allele of this cQTL was associated with a weaker contact
with the PCK2 gene than the reference allele (Fig. 8C).

In contrast to the decreased contact with PCK2 and predicted
decreased CTCF binding, the alternative allele of rs7146599 is asso-
ciated with increased PCK2 expression acrossmultiple eQTL studies in
monocytes32,44,69 and whole blood3,31,44,70,71 (Fig. 8D). While we did not
find a significant association between rs7146599 and PCK2 expression
in our cohort, we observed the same direction of effect (allelic fold
change = 1.05). We therefore asked whether the PCK2 promoter con-
tacted additional enhancers in the alternative genotype. To address
this, we compared the patterns of PCK2 promoter interacting regions
betweendonors thatwere homozygous for the referenceor alternative
allele of rs7146599. In the homozygous alternative genotype, we
observed increased interactions between the PCK2 promoter and
regions upstream of rs7146599 (CHiCAGO score ≥ 5, 5 kb resolution)
containing open chromatin and predicted enhancer elements in
monocytes (based on data from Ensembl regulatory build72) (Fig. 8E).
Notably, both rs7146599 and the PCK2 promoter share the same TAD
and do not intersect a TAD boundary, based on our monocyte Hi-C
data (Supplementary Data 5); thus the observed effects likely take
place at a sub-TAD level.

Jointly, these data suggest that rs7146599 perturbs the function of
a CTCF-dependent insulator element that shields PCK2 from upstream
enhancers (Fig. 8F).

Discussion
In this study, we used multimodal profiling of molecular phenotypes
across individuals to establish the effects of genetic variants at
enhancers on enhancer activity, connectivity and gene expression in
human primary monocytes. We observed widespread shared genetic
effects of known eQTL variants across these three modalities, indi-
cating a common underlying molecular mechanism that appears to be
independent of the specific transcription factors whose binding to
enhancers is disrupted by these variants. In addition, we also found an
example whereby a distal variant likely influences gene expression
through perturbing a CTCF-dependent chromatin insulator and the
resulting co-option of downstream enhancers.

Our choice of eQTLs as anchors for studying the relationship
between enhancer activity and connectivity was motivated by the fact
that enhancers can efficiently buffer the effects of genetic variation,
even when this variation results in detectable effects on transcription
factor binding and chromatin state73,74. Furthermore, genes are com-
monly controlled bymultiple enhancers with a considerable degree of
redundancy75,76. Consequently, disruptions in enhancer activity may
not lead to prominent alterations in target gene expression, especially
in stable conditions77,78. Therefore, we focused on variants that have
demonstrated effects on gene expression in unstimulated primary
monocytes to prioritise cases where the observed associations
between these variants and enhancer activity and connectivity are
more likely to be functionally meaningful. Consistent with this
expectation, many identified QTLs have known associations with
diverse genetic traits and diseases, including those directly implicating
monocytes.

Assessing the effects of genetic variants on chromosomal con-
tacts by multi-individual chromosome conformation capture analyses
presents inherent challenges, particularly in a high-throughput setting
and for longer-range contacts. The large numbers of sequencing reads
per donor required to resolve individual contacts and the complexity
of the experimental protocols hamper the statistical power of this
analysis in termsof both feasible sequencing coverage and cohort size,
limiting the sensitivity of Hi-C-based association studies79–81. We and
others have previously used Promoter Capture Hi-C in small-scale
analyses of allelic effects on enhancer-promoter contacts40,57. Here, we
targeted the Capture Hi-C system to short restriction fragments con-
taining eQTL variants in addition to their target eGene promoters,
which ensured that the sequencing reads directly encompassed the
variants of interest. This enabled us to conductwithin-individual allelic
analysis for heterozygous donors in addition to genotype-based QTL
detection across all individuals.Our approach is complementedby two
parallel independent studies that have employed Hi-C and HiChIP
across individuals, respectively, to determine the effects of genetic
variation on chromosomal contacts in T lymphocytes81,82.

Our study is based on a relatively small cohort of 34donors, which
is only slightly larger than that used in the HiCHiP-based study82. It was
challenging to expand this cohort due to the limited scalability and
high labour intensity of the Capture Hi-C assay. We therefore focused
on devising statistical methodologies that can detect robust genetic
associations in Capture Hi-C data with increased power. Adapting our
recently developed Bayesian QTL detection method BaseQTL to Cap-
tureHi-C analysis, wewere initially able to detect 19 variants associated
with eQTL-promoter contact, as well as amultitude of ATACQTLs. The
observation thatmost variants associated with promoter contact were
alsoATACQTLs, aswell as eQTLsbydesign,motivatedus topursue the
detection of shared genetic effects across all three of these modalities
at increased power. Our multi-modality Bayesian approach identified
629 putative trimodal QTLs, mirroring the well-known advantages of
multivariate analysis of variance (MANOVA) for detecting patterns
between multiple correlated dependent outcomes over the univariate
analysis (ANOVA) that tests one outcome at a time83. We observed a
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strong enrichment for concordant directions of effect across all three
modalities but also detected abundant shared associations showing
discordant effect directions, consistent with the findings of the recent
Hi-C-based association analysis81. While the effect sizes at such dis-
cordant associations were generally lower than at those showing full
concordance, this observation points to the complexity of regulatory
relationships between the chromatin state, chromosomal looping and
gene expression.

We followed up our observations of shared effects by causal
mediation analysis and CRISPR interference to demonstrate that
enhancer activity and/or accessibility can causally mediate enhancer
connectivity, and both can mediate gene expression at a subset of
trimodal QTLs. It is likely, however, that the true number of variants

exhibiting shared effects on these three modalities, as well as causal
relationships between them, is even larger.While increasing the cohort
size of multi-individual chromosome conformation analyses remains a
clear aspiration for future research, we hope that the statistical
approaches presented here will be useful for investigating the genetic
effects on other molecular phenotypes, particularly those that are
challenging to profile in large cohorts.

Our computational predictions using an ensemble of sequence-
based deep learning tools suggest that many trimodal QTLs affect the
binding of one ormore TFs, including themyeloid transcription factor
SPI1/PU.1 implicated in enhancer-promoter looping28,57,84. These results
point towards an inherent genetic coupling of enhancer activity and
connectivity that is mediated by CTCF-independent mechanisms and

Fig. 8 | A contact eQTL perturbs CTCF binding and chromatin insulation.
A Position of rs7146599 within the CTCF motif. B ChIP-seq reads for CTCF inter-
secting the reference allele (G, blue) or alternative allele (A, red) of rs7146599 in
heterozygous reads. Thepileup shows the total of paired-end reads (read 1 and read
2) intersecting the cQTL, pooled across three heterozygous individuals. C 4C-seq
validation of rs7146599-PCK2 allelic looping in three heterozygous individuals. The
4C-seq viewpoint is shownby the dashed line at rs7146599, and the rlognormalised
4C-seq reads (mean across three individuals) are shown for the reference allele (G,
blue) or the alternative allele (A, red). Larger dots indicate significantly different
interactions between alleles (4Cker statistical test p value < 0.05 after adjusting for
multiple comparisons). D eQTL effects of rs7146599 on PCK2 across multiple
cohorts. Betas with respect to the alternative allele (A) are shown in studies of
monocytes (the monocyte multi-cohort analysis used to design the eQTL CHi-C

experiment32, Momozawa et al.69 and Blueprint44) and whole blood (Lepik et al.71,
Jansen et al.70 and GTEx3). E Effect of genotype on contact profiles in the locus.
Individuals were split into monozygous reference (G allele, N = 11) or alternative (A
allele, N = 9) genotypes andmerged in CHiCAGO to produce an average number of
counts in bins of 5 kb. Contact profiles are shown from the viewpoint of the PCK2
promoter, with the location of the promoter and the contact QTL highlighted with
grey rectangles. The monocyte CTCF peaks shown in this figure were generated
using the ChIP-seq data shown in (B). ATAC-signal is shown as −log10(p value)
pileups determined by Genrich140. F Proposed mechanism schematic showing how
perturbed CTCF binding at rs7146599 could affect the insulation of the PCK2 pro-
moters from distal enhancers, denoted as E1, E2 and E3. Created in BioRender:
https://BioRender.com/c07a901. Source data for B–E are available on OSF168.
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may be largely independent of the identity of specific TFs recruited to
enhancers. Our results are consistent with the findings of a recent
independent analysis showing that variants affecting coordination
between cis-regulatory modules affect the binding of a diverse range
of lineage-specific TFs85.

Which molecular mechanisms could underpin the causal link
between enhancer activity and connectivity? Notably, in our analysis,
only two cQTLs (including one special case discussed below) per-
turbed the binding of the architectural protein CTCF. However, the
cohesin complex, and particularly its isoform containing the
STAG2 subunit, is known to be recruited to active enhancers, including
those that do not bind CTCF86,87. This recruitment could be directly
impacted by genetic aberrations in enhancer activity. Mechanisms of
cohesin recruitment to active chromatin are not fully understood but
may involve interaction with the H3K4me1 histone mark88 or with
acetylated histones89. However, a significant number of enhancer-
promoter contacts, particularly those in the shorter distance range, are
likely independent of both cohesin and CTCF23–26. It is possible that, in
these cases, enhancer-promoter proximity is facilitated by phenomena
such as liquid-liquid phase separation15,90–92 that can be directly
mediated by the recruited TFs93–95 and core cofactors, including the
Mediator complex94,96–99. Finally, transcription itself is known to play a
role in chromatin looping100,101, and while other mechanisms are likely
necessary for initiating enhancer-promoter contacts upon gene
induction, recent evidence suggests a role for RNAP II and transcrip-
tion in this process102,103.

Finally, we show that in the PCK2 locus, direct disruption of the
canonical CTCF sequence recognition motif by a genetic variant
leads to perturbed promoter contact and increased distal gene
expression without an apparent effect on chromatin activity in cis.
The influence of genetic perturbations of CTCF binding on 3D
chromosomal architecture is expected and has been reported
previously80,104. It is also known that disruption of enhancer-
promoter contacts, including through perturbations of archi-
tectural proteins, can drive down gene expression23–25. However, in
the specific case we have identified, genetic perturbation of a CTCF
binding site and ablation of its contact with PCK2 promoter instead
led to increased expression of PCK2. We propose that this effect can
be attributed to the potential co-option of enhancers located fur-
ther upstream of the PCK2 promoter, facilitated by the removal of a
CTCF-mediated chromatin boundary. This model is consistent with
the classic function of CTCF at insulator elements105,106 and with
instances of enhancer hijacking resulting from dissolved chromatin
boundaries in ectopic settings23,107–109 and in cancer2,89,110. In addi-
tion, CTCF has been recently shown to mediate the minority of
tissue-invariant promoter-enhancer contacts that persist indepen-
dently of enhancer activity111. Therefore, genetically determined
CTCF binding, either in cis or in trans to enhancers, may be a key
mechanism for uncoupling enhancer activity and promoter com-
munication. However, the apparent rarity of such direct effects on
architectural protein binding reinforces the notion that, at least in
the case of communication between active enhancers and pro-
moters, genetic effects on chromosomal contact are more com-
monly mediated by epigenetic phenomena.

In conclusion, our analysis reveals abundant shared effects of
common genetic variants on enhancer activity, connectivity and gene
expression in human primary cells and highlights the ability of genetic
variants to influence gene expression through direct modulation of
architectural protein binding. Taken together, our results provide
insights into the mechanisms of enhancer-driven gene control and
their genetic perturbation in disease.

Methods
Research performed in this study complies with all relevant ethical
regulations. Human monocytes were extracted from apheresis cones

discarded after platelet donation by NIHR National BioResource
volunteers after obtaining informed consent and ethical approval (12/
EE/0040, East of England-Hertfordshire Research Ethics committee).
Since sex is known to affect monocyte biology112–115, we sought to
recruit a single-sex cohort. The male sex was chosen based on platelet
donor availability at the recruitment centre. Sample-level information
is provided in Supplementary Data 15. Donor sex was confirmed by
genotyping.

Monocyte eQTL data
To informour CHi-C design, we used amulti-cohort eQTL analysis of
unstimulated monocyte data from a total of 1480 samples32. The
samples for this analysis comprised individuals from three cohorts:
(1) The Wellcome Trust Centre for Human Genetics (WTCHG),
University of Oxford, UK) (N = 432); (2) The CEDAR project, Uni-
versity de Liege, Belgium (N = 300) and (3) The Cardiogenics Con-
sortium eQTL project, University of Leicester and University of
Cambridge (N = 758)31. The data from this study was subsequently
incorporated into the eQTLGen Consortium as a validation of
monocyte trans-eQTLs31. Briefly, significant eQTLs (FDR < 0.01)
were detected using a linear mixed model (LIMIX116 version 0.8.5,
PEER version 1.0117) and only variants within the gene body or 1 Mb
windows flanking the 5’ and 3’ of the tested gene were considered.
Independent signals were identified using forward selection, which
recursively adds the strongest associated variant of the previous
association test as a covariate. Up to five iterations of forward
selection were performed, thereby identifying up to five indepen-
dently associated variants with the expression of each eGene32.

Human DpnII eQTL capture Hi-C design
We designed an eQTL capture Hi-C system, enabling us to assay
chromatin loops containing enhancer-borne eQTLs at the loop
anchors. We found all SNPs in tight LD (‘proxy SNPs’) with the lead
monocyte eQTLs from the analysis described above (R2 > = 0.9)
using PLINK118, with 1000 Genomes119 phase 3 (European samples) at
MAF 10%. We then located the transcription start sites of the cor-
responding eGenes (Ensembl Genes release 96) using the Biomart R
package and removed all proxy SNPs that were within 10 kb of a TSS
for the corresponding eGene. SNPs and TSS were assigned to DpnII
fragments, and we only retained eQTLs and proxy SNPs that were
within 100 bp of aDpnII cut site to increase our chances of detecting
these SNPs within our CHi-C reads. To enrich our design for SNPs
with likely regulatory function, we removed proxy SNPs that did not
intersect a known regulatory region (Ensembl Regulatory Build72

release 96) whilst keeping all remaining lead eQTLs in the design.
We also removed 31 regions that had very large LD blocks (>200 kb).
Next, focusing on gene promoters, we generated 50 kb ‘eGene
windows’ that were situated from 5 kb downstream of the eGene
promoter to 45 kb upstream, with respect to the position of the
eQTL LD block. We targeted all gene TSS within these 50 kb win-
dows. Likewise, we generated a 50 kb ‘mirror window’ to the
opposite side of the LD block and targeted all TSS within that region
(Fig. 1A). Thus, we targeted a set of distance-matched control genes
for each eQTL-eGene pairing.We designed 120 bp probes to capture
theDpnII fragments encompassing the SNPs and proxies (one probe
per fragment). In total, our capture system contained 18,178 probes
that targeted 1458 eQTLs and 2571 proxy SNPs (a mean of 3 SNPs per
eQTL) and 8533 genes. Furthermore, since we had captured eGene
promoters in our study, wewere able to include eQTLs and/or proxy
SNPs at ‘other ends’ of CHi-C contacts in our analysis. We also
directly captured 4718 distance-matched control genes for these
eQTL loci. Note that CHi-C data arising from this array design was
further filtered post-hoc prior to detection of contact QTLs, as
described below in ‘CHi-C data processing for contact QTL
detection’.
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Monocyte purification, crosslinking and lysis
Peripheral blood mononuclear cells were isolated by standard Ficoll
gradient centrifugation, and classical monocytes (CD14+, CD16−) were
isolated using EasySep™ HumanMonocyte Isolation Kit from Stemcell
Technologies according to the manufacturer’s instructions. For each
sample, 2 million monocytes were frozen in TRIzol and stored at
−80 °C for later RNA extraction. Meanwhile, between 16.4 and 64.8
million (median 25.3 million) monocytes were crosslinked in 2% for-
maldehyde for 10min, after which the reaction was quenched with
0.125M glycine, the supernatant removed and the crosslinked cell
pellet flash frozen and stored at −80 °C. Prior to processing for CHi-C,
ATAC-seq andDNAextraction (for genotyping), the crosslinked pellets
were thawed on ice and lysed for 30min in Hi-C lysis buffer (10mM
Tris-HCl, pH 8.0, 10mM NaCl, 0.2% IGEPAL CA-630 and 1X protease
inhibitors) at a density of approximately 3330 cells/µL. The nuclei were
then divided into aliquots of 50 K–3 million cells, centrifuged, the
supernatant removed, and the pellets snap-frozen on dry ice and
stored at −80 °C.

Capture Hi-C
Capture Hi-C libraries (1–2 technical replicates per donor) were gen-
erated on 300,000 to 1 million crosslinked nuclei as previously
described120,121. Following lysis, the nuclei were permeabilised and
digested with DpnII (NEB) overnight. The restriction overhangs were
filled in using a biotinylated dATP (Jena Bioscience), and ligation was
performed for 4 h at 16 °C (T4 DNA ligase; Life Technologies). The
crosslinks were reversed using proteinase K and overnight incubation
at 65 °C, followed by purification with SPRI beads (AMPure XP; Beck-
man Coulter). Short fragments up to 1000bp were produced via tag-
mentation, and the biotinylated restriction junctions were then pulled
down using MyOne C1 streptavidin beads (Life Technologies). PCR
amplification (5 cycles) was performed on the libraries directly bound
to the C-1 beads, and the libraries were purified using SPRI beads as
before. eQTL Capture was performed using the custom-designed
Agilent SureSelect system described above, following the manu-
facturer’s protocol. The libraries were sequenced using 150 bp paired-
end sequencing on an Illumina NovaSeq (Novogene UK), NextSeq 500
or HiSeq 2500 (read statistics are provided in Supplementary Data 2).

CHi-C data processing and detection of significant contacts
Where more than one sequencing run was performed for the same
technical replicate, the CHi-C reads were merged using cat before
processing further. Read processing, alignment and filtering were
performed using a modified version of the Hi-C User Pipeline
(HiCUP122) v0.7.4, HiCUP Combinations34 (https://github.com/
StevenWingett/HiCUP/tree/combinations), which first creates all pos-
sible combinations of ditags from the paired reads before mapping,
then performs standard filtering for common Hi-C artefacts. At this
point, alignment files for technical replicates (where present) were
merged per sample. To determine the correlation between samples,
we first filtered our bam files to on-target reads and converted them
to.homer files using the hicup2homer function included with HiCUP
and then created 10 kb interaction matrices using homer123 v4.10.4.
Then, pairwise stratum-adjusted correlation coefficients (SCC) were
generated using the R package HiCRep124 v1.10.0 (Supplementary
Fig. 2A). To generate the deeply sequenced consensus dataset, CHi-
CAGO input (.chinput) files were generated per replicate, using
bam2chicago.sh from chicagoTools33 v1.13. Then, read counts across
all.chinput files were summed in R and CHiCAGO was run at DpnII
resolution and at the level of 5 kb bins, as previously described33,34. We
performed tests for enrichment at other ends of regions interacting
with eQTLs and gene promoters at the resolution of 5 kb bins or DpnII
fragments, using the peakEnrichment4Features function in CHiCAGO
using the following datasets: histonemodifications inmonocytes from

ENCODE ChIP-seq data38 (ENCFF493TKQ, ENCFF933WTT,
ENCFF682RJQ, ENCFF570DGJ, ENCFF275IMY, ENCFF473HCC), classi-
cal monocyte segmentations downloaded from Ensembl Regulatory
Build (http://ftp.ebi.ac.uk/pub/databases/blueprint/releases/current_
release/homo_sapiens/secondary_analysis/Ensembl_Regulatory_Build/
hg38/projected_segmentations) and CTCF from monocytes in
Blueprint44. To obtain interactions within individuals, CHiCAGO was
also run on each biological replicate separately. To generate locus
plots using the CHi-C data and other modalities in this study, we used
the PlotGardener125 R package v1.2.10.

CHi-C ABC
The CHi-C ABC method that we presented recently39 is a modification
of the original Activity-by-Contact (ABC) technique41 for CHi-C data.
Briefly, for a given promoter-enhancer pair, ABC score is defined as a
product of Activity (accessibility and epigenetic marks) and Contact
frequency (in the case of CHiC-ABC, based onnormalised and imputed
CHi-C signals) normalised to the sum of ABC scores for all enhancers
within a five megabase window surrounding a gene’s promoter. Cus-
tom scripts for running CHi-C ABC are available at https://github.com/
pavarte/PCHIC-ABC-Prediction.

To select a threshold for ABC scores, we drew inspiration from a
method by Xu et al.126 based on optimising Pearson’s correlation
between gene-level ABC scores and the observed gene expression
levels (expressed as CPMs). Specifically, we computed gene-level ABC
scores by summing the products of enhancer activity and contact
frequencies, including in this calculation only those enhancers that
passed a specific ‘enhancer inclusion’ threshold on the standard
(enhancer-level) ABC scores. Iterating over a range of enhancer inclu-
sion thresholds, we then assessed Pearson’s correlation between gene-
level ABC scores and gene expression at each threshold for all genes.
As expected, this correlation initially increased with increasing
thresholds, as enhancers with baseline levels of activity and/or contact
were removed from the calculation and then started to decrease as
enhancers with appreciable impact on gene expression were increas-
ingly filtered out. The standard (enhancer-level) ABC score threshold
of 0.012 yielded a maximum correlation between gene-level ABC
scores and gene expression (r ~ 0.31) and was used for downstream
analyses. We additionally verified that the observed correlation was
highly significant by permuting gene labels in the ABC dataset (p
value < 0.001 over 1000 permutations).

Hi-C and TAD analysis
To generate TADs, Hi-C libraries from two donors (indicated in Sup-
plementary Data 2) underwent 150 bp PE sequencing on a NovaSeq
(Novogene UK). The reads were processed and filtered using HiCUP v
0.7.4, yielding ~117 and ~127.5 million clean, unique reads. TADs were
called using findTADsAndLoops.pl, and the TADs for both replicates
were thenmergedusingmerge2Dbed.pl, both from the homer toolkit123

v4.10.4. We used the foverlaps function in data.table R package to
intersect eQTLs (or SNPs in tight LD), along with their target eGene
promoters, with TADs. We designated eQTLs and genes ‘same TAD’ if
any part of the LD block for the eQTL and the gene promoter inter-
sected the same TAD. Alternatively, we designated them ‘different
TAD’ if both the eQTL LD block and the gene promoter intersected
different TADs, and no part of the LD block was in the same TAD as the
gene promoter. We disregarded loci where the eQTL and/or the gene
promoter fell outside of called TADs.

ATAC-seq
ATAC-seq libraries were generated following the omni-ATAC protocol,
with modifications for crosslinked chromatin as previously
described127,128. Between 25 thousand and 100 thousand crosslinked,
lysed nuclei (1–2 technical replicates per individual) were re-
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suspended in a tagmentation reaction mixture (10mM tris HCl [pH
8.4–9.0], 5mM MgCl2, 10% DMF, 0.005% digitonin and 0.05% tween
20 and up to 5 µL of homemade Tn5 enzyme) and incubated at 37 °C
for 2 h with 1000 rpm mixing. Reverse crosslinking was performed
using proteinase K overnight at 65 °C, and then samples were cleaned
using minElute spin columns (Qiagen). Libraries were amplified using
5–7 cycles of PCR using KAPA HiFi DNA polymerase and purified with
1.1X SPRI (Beckman Coulter). Nucleosome profiles were manually
inspected using a Tapestation with the D1000 Screen Tape system
(Agilent). Libraries underwent 150 bp PE sequencing on a NovaSeq
(Novogene UK) or HiSeq 2500 (read metrics given in Supplemen-
tary Data 3).

Adaptor contamination was removed from the reads using
NGmerge129 v0.3. Reads were aligned to the GRCh38 genome using
Bowtie2130 v2.2.9 using the settings: –very-sensitive and -X 2000. Next,
mitochondrial reads, multi-mapped reads and non-paired reads were
identified and removed using SAMtools131 v1.3.1. For calling peaks, the
bam files for technical replicates weremerged (where applicable), and
PCR duplicates were removed using Picard132 v2.6.0. Post-filtering, we
had a minimum of 24.9 million and a median of 34.7 million unique
reads per individual. Correlation between biological replicates was
determinedusing the plotCorrelation function fromdeepTools133 v3.3.1
(Supplementary Fig. 2B). For each sample, we confirmed the presence
of distinct fragment sizes corresponding to nucleosomes and con-
firmed the enrichment of nucleosome-free peaks at TSSs and mono-
nucleosome peaks surrounding TSSs using the R package soGGi134

v1.18.0 (Supplementary Fig. 1A–C). Fraction of reads in peaks (FRiP)
scores were determined by first calling peaks on individual replicates
using macs2135 v2.2.9.1 and then counting the numbers of reads within
peaks using featureCounts136. We combined all sample BAM files using
SAMtools131,137 merge to create a consensus dataset and ran the hidden
Markov Model HMMRATAC37 v1.2.10 to detect peaks of open chro-
matin. The intersection of these peaks with genomic features and the
signal profile across genes was determined using ChIPseeker138,139

(Supplementary Fig. 1E, F). In order to produce signal tracks for
visualisation, ATAC-seq samples (individual replicates or merged bam
files) were additionally processed by the Genrich peak caller140

v0.5_dev, which produces bedGraph files of p-values and read pileups.
To compare against other ATAC-seq datasets in human primary
monocytes, we downloaded raw fastq files from studies by Weichsel-
baum et al.35 (SRA Run selector: SRR9888114, SRR9888115,
SRR9888116, SRR9888117, SRR9888118, SRR9888119) and Calderon
et al.36 (SRA Run selector: SRR7650767, SRR7650849 and
SRR7650886). These files were processed from fastq to peaks as
described for the monocyte ATAC-seq in the present study. A com-
parison of ATAC-seq signals is shown in the THBS1 locus on chromo-
some 15 in Supplementary Fig. 1G. Intersecting peaks between the
three studies (HMMRATAC37 onmerged replicates in each study) were
counted using multiinter from BEDtools141 v2.30.0 (Supplemen-
tary Fig. 1H).

RNA-seq
RNA was extracted from TRIzol samples (2 million monocyte cells)
using chloroform in MaXtract High-Density 2mL tubes, followed by
dissociation with QIAShredder columns and purification using the
RNeasy kit with RNase-free DNase treatment (all Qiagen). RNA samples
were quantified with a Qubit RNA assay (Thermo Fisher Scientific), and
800ng RNA was submitted to Novogene UK for mRNA-seq library
preparation (poly A enrichment) and 150bp PE sequencing, obtaining
~20 million reads per sample (Supplementary Data 4). Read QC and
mapping were performed according to the Novogene bioinformatics
pipeline. Reads were mapped to the GRCh38 genome using STAR142

v2.6.1d, allowing for 2mismatches and assigned to Ensembl Release 94
genes. Pearson’s correlation of gene FPKM values was determined
between all pairwise samples (Supplementary Fig. 2C).

Determining the relationship between gene expression and
enhancer-promoter contacts
To probe the relationship between gene expression and enhancer-
promoter contacts,wefirst calculated transcripts permillion (TPM) for
every gene in each individual. We determined significant CHi-C inter-
actions between gene promoters and open chromatin by intersecting
the peak matrix produced by CHiCAGO, which contained significant
interactions at 5 kb binned resolution in each individual (CHiCAGO
score ≥5), with the locations of captured gene promoters on one end
and open chromatin on the other end (called by HMMRATAC in the
consensus ATAC-seq dataset). We summed the number of active
interacting regions per gene promoter in each individual and deter-
mined Spearman’s rank correlation between log(no. of interacting
regions) and log(gene TPM).

Genotyping
DNA was extracted from 2 million crosslinked, lysed nuclei using the
QiaAmp FFPE kit (Qiagen), starting from the Proteinase K step. Geno-
typing was performed on the Infinium Global Screening Array (Illu-
mina) by The IoPPN Genomics & Biomarker Core Facility at King’s
College, London. Initial genotypingQCwas performed using Zcall, and
all samples passed the minimum call rate of 95%. Before imputation,
variants were filtered to 5%minor allele frequency (MAF) and 100% call
rate in our cohort. We removed SNPs deviating from Hardy-Weinberg
equilibrium at a threshold of 1E−05. The remaining 447,026 variants
underwent genome-wide imputation on the Michigan Imputation
Server143 v1.2.4 using the Haplotype Reference Consortium144 with the
following programmes: minimac4145 v1.0.2 and phasing with Eagle146

v2.4. Post-imputation, the variants were filtered for R2 ≥0.3 and 5%
MAF, resulting in a total of 5,380,837 SNPs in our cohort. We retained
the information on imputation probabilities and incorporated them
into the BaseQTL analysis.

Validation of meta-analysis eQTLs effects in our analysis cohort
To ascertain the concordance between the eQTL effects in the
multi-cohort eQTL study and our monocyte cohort, we detected
eQTLs in our RNA-seq data using two different approaches: (1)
Matrix eQTL147 and (2) BaseQTL43. For Matrix eQTL, total gene
counts were determined using FeatureCounts136 v1.5.0-p3 with
default settings in the Novogene analysis pipeline. We used the R
package DESeq2148 v1.26.0 to merge the counts from RNA-seq
technical replicates (S026T6 and S02699) and normalise across
samples using estimateSizeFactors. Matrix eQTL147 was run using
sample genotypes. For BaseQTL, raw RNA-seq reads were processed
using the full BaseQTL input Snakemake pipeline for RNA-seq data
(available from https://gitlab.com/evigorito/baseqtl_pipeline/-/
tree/master/input), which performs mapping using STAR142, gen-
erates allele-specific counts using phASER149 and determines the
baseline allelic imbalance (AI) of each variant, which is then incor-
porated in the BaseQTL analysis. BaseQTL exploits allele-specific
expression (ASE) to increase power. However, homozygous indivi-
duals erroneously genotyped as heterozygous using DNA would
overestimate the allelic imbalance observed from RNA-seq reads,
which may lead to false positive calls. To mitigate this source of
error, we employed two strategies. First, we genotyped exonic SNPs
from RNA-seq reds using BBmix150, so genotypes and allelic imbal-
ance were estimated from the same source. Second, BaseQTL for
calling eQTLs has been designed to use hard genotype calls. To
minimise the risk of false positive calls due to genotypemiscalls, we
only included candidate eQTLs with a genotype probability equal to
or greater than 0.99. BaseQTL was then run using default para-
meters, except that we allowed for the minimum number of het-
erozygous individuals to be 3 (defaults 5) to run the model and the
minimum number of heterozygous individuals with ASE informa-
tion to be 3 (defaults to 5) to model ASE. Finally, we intersected
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MatrixQTL or BaseQTL results with lead eQTLs from the multi-
cohort study and determined Spearman’s correlation of the effect
sizes (Supplementary Fig. 2).

CHi-C data processing for contact QTL detection
We applied post-hoc processing of our CHi-C data for contact QTL
detection. First, we discarded all eQTLs that had a proxy SNP in tight
LD that was proximal to the eGene promoter (<10 kb) in order to assay
only truly distal effects, accounting for LD. In addition, we filtered out
all eQTLs with potential effects on DpnII cut sites (either in the refer-
ence or alternative allele) that could cause allelic imbalance due to
either (1) the technical ability of DpnII to fragment the library or (2)
readmapping bias. In this filtering step, we also accounted for SNPs in
LD that intersected the sameDpnII fragment and combinations of SNPs
within 4 bp that could potentially create a cut site (GATC). Finally, we
estimated the affinity of our SureSelect capture probes for the DpnII
CHi-C fragments containing either the reference or alternative haplo-
types (all variants in R2 ≥0.9 with the lead eQTL) as the melting tem-
peratures of the corresponding hybrids using the Tm_GC function
from the R package TmCalculator v1.0.1, assuming Tris = 20 and
Mg = 308. Haplotype-specific differences in the affinity were 0.18% on
average and did not exceed 0.73% in all cases, and therefore we
assumed them to have a negligible effect on capture efficiency. After
filtering and processing, our total possible eQTL discovery set
encompassed 1197 eQTLs and 12,295 proxy SNPs, either by direct
capture or through capturing the eGene promoter (N = 1074 corre-
sponding eGenes).

BaseQTL detection of contact QTLs and ATAC QTLs
Prior to running BaseQTL on the CHi-C and ATAC-seq modalities, we
first ran the refBias section of the BaseQTL input workflow using the
scripts available from Gitlab (https://gitlab.com/evigorito/baseqtl_
pipeline/-/tree/master/input/refbias). For each modality, we used the
de-duplicated bam files and all genotyped variants passing the quality
thresholds described above.

We processed the CHi-C reads such that we could detect (1)
genetic effects on eQTL-eGene contacts and (2) genetic effects onnon-
eQTL-Gene contacts. For eQTL-eGene contacts, we processed the de-
duplicated and filtered CHi-C bam files such that we only retained
reads involving theDpnII fragment containing an eQTL (or a proxy SNP
in tight LD, r2 ≥0.9) and a 5 kb region encompassing the eGene pro-
moter. Where eGenes had more than one promoter, we compiled all
reads across promoters. We did not require evidence of significant
contact signals above the background. For non-eQTL variants, we
looked for variants within other-end DpnII fragments of interactions
involving captured gene promoters in our analysis (CHiCAGO score ≥ 5
in the consensus dataset). These variants were not associated with
expression in the multi-cohort eQTL analysis31,32, nor did they form
significant interactions with eQTLs captured in our study design, thus
therewas no evidence for a role in regulating gene expression. To filter
the bam files we first converted them to bedpe using the bamtobed
function from BEDtools141 v2.30.0. Then, we filtered the resultant
bedpe against a reference bedpe with the paired regions that we
wanted to test, using the pairtopair function from BEDtools. With the
resultant read IDs we were then able to filter the original CHi-C bam
files using SAMtools137,141.

We extended BaseQTL to detect QTLs from CHi-C and ATAC
reads. For thesemodalities, wemodel the uncertainty on the genotype
calls obtained by imputation. BaseQTL combines total reads mapping
interactions across individuals modelled by a negative binomial dis-
tribution f NB with readsmapping the alternative allele in heterozygous
individuals modelled by a beta binomial distribution f BB. The model
estimates the logarithm of the allelic fold change. We define the allelic
fold change βaFC as the ratio of the expected number of contacts in
individuals homozygous for the alternative allele divided by the

expected number of contacts in individuals homozygous for the
reference allele. In contrast to the original development case for
BaseQTL43, where we had to accommodate inferred haplotypes at the
feature (expression across the whole gene body) as well as the reg-
ulatory SNP, which caused us to restrict to using genotypes called with
high certainty, here the feature (contact or chromatin accessibility) is
measured simply by read depth, which allowedus tomakewider use of
uncertain genotypes called through imputation. Using the same
notation as Vigorito et al.43, we adapted the likelihood as follows:

L βaFC , γ,θ,ϕjc,n1,G,X
� � /

YN

i= 1
p Gi = 1
� �

f NB cijβaFC ,ϕ,X
� �

f BBðn1i;π, θ, ciÞ+
X

Gi =0, 2
pðGi =gÞf NBðcijβaFC ,ϕ,X Þ

h i
;

ð1Þ

π =
expðα0i +βaFCÞ

1 + expðα0i +βaFCÞ
f or Gi heterozygous, ð2Þ

π =
expðα0iÞ

1 + expðα0iÞ
f or Gi homozygous: ð3Þ

Where γ is a vector of the regression parameters for covariatesϕ is the
overdispersion parameter for the negative binomial distribution θ is
the overdispersion parameter for the beta-binomial distribution ci is
the total counts mapping the feature for individual i, n1i is the number
of counts mapping the alternative allele of the candidate QTL in
individual i, X is a matrix of covariates Gi is the genotype of the
candidate QTL for individual i pðGi = gÞ is the genotype probability for
each genotype class obtained from imputationα0i is used to adjust for
reference mapping bias, would be 0 in the absence of bias43.We used
the cis-eQTLGTEx-derived default prior151 on βaFC in BaseQTL, which is
a mixture of two Gaussian distributions (N(0, 0.001) and N(0, 0.121)),
except that for this application, we considered a 50/50 mixture to
reflect our expectation that 50% of the candidate QTLs have true
effects. While the detection of contact QTLs was restricted to genetic
variants intersecting the DpnII bait fragments included in the eQTL-
CHi-C design, detection of ATAC QTLs included all genotyped genetic
variants within 5 kb of ATAC-seq peaks (called using HMMRATAC37 on
the consensus ATAC-seq dataset across all 34 replicates). To obtain the
number of readsmapping the alternative allele of the candidateQTL in
heterozygous individuals, we used phASER149 v1.1.1 from the filtered
CHi-C bam files and ATAC-seq bam files, respectively. The same bam
files were used to aggregate reads overlapping each feature. The code
with the model for running BaseQTL on thesemodalities can be found
at https://gitlab.com/evigorito/baseqtl_atac_chic_eqtl. Total read
counts were adjusted by library size by providing it as a covariate.
We did not correct for additional potential confounders. For all the
modalities analysed by BaseQTL, significant associations were con-
sidered as those for which zero was excluded from the 99% credible
interval for βaFC . In addition, we discarded variants identified via an
allelic imbalance in heterozygotes that had evidence of substantial
baseline bias towards the reference genome (AI estimate < 0.4) and
variants for which the model failed to converge (Rhat ≥ 1.01).

Comparison of effects on promoter contact between eQTLs and
non-eQTLs
We compared the BaseQTL results for eQTL-eGene contacts with non-
eQTL-gene contacts in the followingmanner. First, we ensured that the
non-eQTL variants (or their proxies in tight LD, r2 > 0.9) were not
associated with differential DpnII activity, as described in the CHi-C
design above. Then, to rank candidate QTLs, we calculated the prob-
ability that the candidate SNP is a true eQTL. If we denote by ri 2 f0, 1g
the unknown truth for a SNPbeing (1) or not (0) aQTL,we can calculate
pi =Pðri = 1jdataÞ from our posterior samples by calculating the pro-
portionof times that0wasexcluded from the99% credible interval. To
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do this with a manageable number of samples, we used a normal
approximation to themarginal posterior distribution of theQTL effect.
We denote this quantity as approx. pp, and we use it to rank SNPs. We
computed Pðri =0jdataÞ = 1- Pðri = 1jdataÞ and then used a permutation
test to assess whether eQTL-eGene contacts have a lower mean of
approx.pp compared with non-eQTL-gene contacts. The null dis-
tribution of mean approx.pp was obtained by generating
10,000 samples of 800 non-eQTL gene contacts each and taking the
mean of the corresponding approx.pp for each sample. To control for
read coverage that confers different statistical power of association
detection, we sampled only those non-eQTL-gene contacts whose read
counts mapped to the same quantile of the read count distribution of
the corresponding eQTL-eGene contact.

4C-seq
4C-seq was performed as a validation of contact QTL effects on
chromatin contact at rs2033937 (THBS1) and rs7146599 (PCK2) and to
determine the effectof enhancer repression in theCRISPRi experiment
(THBS1 locus). For allele-specific 4C-seq, three individuals hetero-
zygous for the variant in question were selected from the pool of
monocyte donors. Around 5 million crosslinked nuclei, which were
remaining after the CHi-C experiment, were used per experiment. For
CRISPRi 4C-seq, we used 10 million U-937 cells expressing either (1)
sgRNA targeting cQTLs in the THBS1 locus or (2) sgRNA containing a
scrambled, non-targeting sequence (see CRISPRi methods section
below). For allele-specific identification of 4C-seq reads, the primary
and secondary restriction enzyme (RE) and primer were selected such
that the cQTL fell in the region between the primer and the primary
restriction cut site in the viewpoint fragment (see Table 1 for details).
This ensured that the cQTL always fell within the sequenced part of the
viewpoint fragment.

4C-seq libraries were generated using a method based on pub-
lished protocols152,153. Briefly, crosslinked cells were lysed in the same
manner as for CHi-C and the chromatin was digested with the first
restriction enzyme (200 U DpnII, for both loci) at 37 °C overnight. The
enzyme was heat inactivated (65 °C for 20min), and the nuclei were
spun down and then re-suspended in a ligation mixture containing 50
units of DNA ligase (Invitrogen 15224017). After overnight incubation
at 16 °C, crosslinks were reversed by the addition of Proteinase K
(Sigma 3115879001) and incubation at 65 °C overnight. Samples were
purified using SPRI beads (AMPure XP, Beckman Coulter), and up to
60μg of the template was digested using 1U per μg template of the
secondary restriction enzyme (AseI for THBS1, HpyCH4V for PCK2) at
37 °C overnight. The enzyme was heat-inactivated (65 °C for 20min),
and ligation was performed at a final DNA concentration of 5 ng/μL,
using 2U per μg of T4 DNA ligase, overnight at 16 °C. Purification was
performed the next day with Phenol Chloroform Isoamyl Alcohol
(P:C:I) using MaXtract High-Density tubes (Qiagen). Final purification
was performed using SPRI beads prior to library amplification, which
followed the 2-step protocol described in Krijger et al.153. For the first
PCR, four PCR reactions containing 200ng of template were set up for
each sample, and 16 cycles of PCR were performed using Expand Long

Template Polymerase Mix (Roche). The DNA was pooled and cleaned
using 0.8X SPRI to remove long primers. For the second PCR
(sequencing adaptor addition), up to 100ng of template was used per
reaction for 12 cycles of PCR. Final library cleanupwas done using 0.8X
SPRI, and the samples were sequenced using 150bp paired-end reads
on a NovaSeq platform (Novogene Europe).

Read 1 of the paired-end reads was used for all 4C-seq analyses.
For allele-specific analyses, the raw reads were first split to each allele
of the variant in question using grep from SeqKit154, searching for the
primer sequence and the intervening genomic sequence containing
either allele of the variant, followed by the restriction cut site within
the first 100bp of the viewpoint fragment. 4C-seq reads were mapped
and filtered using the pipe4C tool from the de Laat lab153. Following
this, restriction digest files (rmap) weremade for each combination of
restriction enzymes using the Digester script from HiCUP122 v0.9.2.
These were used alongside the 4C BAM files as input to the cover-
ageBed function from BEDtools141 v2.31.1 to count the number of reads
in each BAM file corresponding to restriction fragments. The view-
point fragment and neighbouring fragments were removed, with the
remaining counts used as input to the 4Cker tool, a Hidden-Markov
Model-based pipeline for identifying interactions in 4C-seq data155.
Significant contacts within the vicinity of the viewpoint were detected
using the nearBaitAnalysis function (1Mb each side of the viewpoint)
with option k = 30. To identify differential interactions, we used the
differentialAnalysis function, modified to reflect the paired nature of
our samples (design = ~subject + condition). The right-left ratio in the
THBS1 locus was calculated from the 4Cker nearBaitAnalysis result,
dividing the sum of all counts 1Mb to the right of the viewpoint by the
sum of all fragments 1Mb to the left of the viewpoint per sample. For
plotting purposes, we converted read counts to rlog using the
DESeq2148 R package v1.42.0.

Detection of trimodal QTLs by the GUESS framework
Togenerate the regions forGUESS,windowsweredefined at regions in
close proximity to eQTL-containing enhancers targeted in the CHi-C
design andpeaks of open chromatin in the ATAC-seq data. Specifically,
we expanded 5 kboneither side fromtheCHi-CbaitedDpnII fragments
and from the ATAC-seq peaks and took the minimum intersection of
these two ranges. We considered all genotyped variants within these
windows for the GUESS analysis. To avoid the impact of DpnII cut site
perturbation in the CHi-C data, we removedwindows where any of the
considered variants affected or generated a DpnII cut site at the CHi-C
bait fragment. We additionally did not consider windows where any of
the variants fell within 10 kb of a promoter for the eGene.

To control for mapping bias to the reference genome, the raw
sequencing data for CHi-C, ATAC-seq and RNA-seq were first pro-
cessed using the WASP pipeline156. We then performed variance sta-
bilisation and normalisation on the total counts for CHi-C, ATAC-seq
and RNA-seq using the rlog approach implemented in the R package
DESeq2148. For each window, we then ran GUESS45,46 for 20,000 itera-
tions, of which 5000 were burn-in with three parallel chains to avoid
the algorithm being stuck in a local mode. A priori, and independently

Table 1 | Cells, enzymes and genomic viewpoints used for 4C-seq

Locus Type of
experiment

Cell type No.
cells

No.
reps

Viewpoint loca-
tion in hg38

Assessed cQTL
and location
in hg38

Primer and location in hg38 Restriction
enzyme 1

Restriction
enzyme 2

THBS1 Allele-
specific

Primary
monocytes

5M 3 hets chr15:39,315,236-
39,315,577

rs2033937
chr15:39,315,241

TGAGTGATTGCAAATGGAAA
chr15:39,315,242-39,315,261

DpnII AseI

PCK2 Allele-
specific

Primary
monocytes

5M 3 hets chr14:24,058,271-
24,058,531

rs7146599
chr14:24,058,463

ACCAGACTTTTCCACCAGAG
chr14:24,058,443-
24,058,462

DpnII HpyCH4V

THBS1 CRISPRi ver-
sus con-
trol cells

U-937 cells
expressing dCas9
and sgRNA

10M 3 test,
3
control

chr15:39,315,236-
39,315,577

NA TGAGTGATTGCAAATGGAAA
chr15:39,315,242-39,315,261

DpnII AseI
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of the number of genetic variants included in each window, the
expected number of trimodal QTLs was set equal to 1 as well as its
standard deviation, which implies a range between zero and four for
the number of significant trimodal QTLs. Prior to the analysis, the
genetic variants were standardised to place appropriate prior mass on
reasonable values of the non-zero regression coefficients. Moreover,
we subtracted themeanof the rlog transformed total counts, implicitly
specifying a non-informative prior on the intercept for eachmolecular
trait. We did not perform correction for known confounders since our
donors were age-group, sex and population-matched and did not
correct for latent factors given the lackof suitablemethodology for the
joint correction of multiple modalities. We also did not filter genetic
variants by LD since the GUESS algorithm is robust to extreme multi-
collinearity given that marginal likelihood is calculated using the
technique of QR matrix decomposition and parallel tempering allows
the inclusion of collinear predictors in different chains but not on the
same one. Swapping selected genetic variants between chains allows
the algorithm to explore the space of collinear predictors without
incurring rank deficiency. For each window analysed and the chain
with temperature equal to one, we recorded the best model visited,
i.e., the combination of genetic variants visited by the algorithm with
the largest marginal likelihood score, and the marginal posterior
probability of inclusion, i.e., the marginal association strength of each
genetic variant with all molecular traits. If the best model visited was
the null model, we declared no associations. Otherwise, we calculated
the FDR threshold for the marginal posterior probability of inclusion
as:

argmaxj
X

j
1�mPPIðjÞ

� �
≤ q, ð4Þ

where mPPIðjÞ is the jth-ordered marginal posterior probability of
inclusion sorted in non-decreasing order and q is the designed level of
False Discovery Rate, set at 0.0547. While the best model visited can
overlap with the model obtained by filtering the marginal posterior
probability of inclusion by the specified FDR level, in general, they do
not coincide. We also generated the posterior effects size and its
standard error averaging over all models visited in a post-processing
step, thus performing Bayesian Model Averaging157. Finally, in analogy
with classical statistics, we defined the posterior expectation of the z-
score as:

Eðzjk Yj Þ � Eðβjk Yj Þ

Eðσ2ðβjkÞ Yj Þ
n o1=2

, ð5Þ

where βjk is the effect size of the jth genetic variant on the kth mole-
cular trait in each window and σ2ðβjkÞ is the variance of the effect size
for the jth genetic variant on the kth molecular trait.

We further filtered the GUESS results after FDR selection as fol-
lows: firstly, we discarded variants that had evidence of baseline allelic
imbalance at the feature in question (AI estimate < 0.4), as determined
by the refBias pipeline of BaseQTL. Finally, we filtered out QTLs with
very small absolute effect sizes to ensure the replicability of the results
with BaseQTL. For this, we examined the external concordance of
variant effects on CHi-C, ATAC and RNA reads between GUESS and
BaseQTL (illustrated in Supplementary Fig. 5). We tuned the cutoff of
the beta value tomaximise this concordancewithout losing sensitivity,
resulting in the following beta cutoffs on significant trimodal QTLs:
CHiC beta ≥ 0.006, ATAC beta ≥ 0.001 and RNA beta ≥ 0.004.

To validate a subset of GUESS results with a different statistical
strategy, we performed multivariate analysis of variance (MANOVA)83

on the lead trimodal QTL identified by GUESS in eachwindow, treating
the other trimodal QTLs in the same window (if detected at 5% FDR) as
covariates (MANCOVA). We also assessed how many of the lead

trimodal QTLs could be validated using a univariate approach
(ANOVA/ANCOVA) (Supplementary Fig. 5C, D).

Causal mediation analysis
We used the R package mediation to perform causal mediation ana-
lysis in the potential outcome framework158. The causal mediation
analysis was set up as follows. Let Mi(x) represent the potential med-
iator value for individual donor i if the individual’s treatment status is
Xi = x. Let Yi(x)denote the potential outcomevalue for individual donor
i if Xi = x and individual i has a mediator value Mi =m. For a binary
treatment, the causal mediation effect for individual donor i is cap-
tured by the difference between the observed outcome and the
counterfactual outcome as if the individual’s treatment status remains
the same, but the mediator value equals the value under the other
treatment status:

δiðtÞ= Y i x,Mið1Þ
� �� Y i x,Mið0Þ

� �
, x = f0, 1g: ð6Þ

If x =0, Y ið0,Mið0ÞÞ is an observed outcome and Y ið0,Mið1ÞÞ is a
counterfactual outcome, and vice versa if x = 1. The average causal
treatment effect (ACME) for treatment t is defined as δðxÞ= EfδiðxÞg and
is computed separately for treatment (ACME(1)) and control condi-
tions (ACME(0)). The average direct effect (ADE) is defined as
ζ ðxÞ= EfY ið1,MiðxÞÞ � Y ið0,MiðxÞÞg, x = {0,1}. The total causal effect
(TE) of the treatment is defined as τ = δðxÞ+ ζ ð1� xÞ.

To compute the ACME, two regression equations are first speci-
fied and fitted, one for the mediator and one for the outcome. Speci-
fically:

Mi =α0 +α1Xi +α2Ci + εim, ð7Þ

Y i =β0 +β1Mi +β2Xi +β3Ci + εiy, ð8Þ

where Ci is a vector of observed confounders for individual i and εim
and εiy are independent error terms. Since in our analysis, the media-
tors and the outcomes are continuous, the ACME estimand is obtained
as the product of the effects:

ACMEð1Þ = α1β1, ð9Þ

ACMEð0Þ = α1β2: ð10Þ

In model MATAC→CHi-C, the mediator and outcome equations
are:

ATACi =α0 +α1PCi, j + εi,ATAC , ð11Þ

CHiCi =β0 +β1ATACi +β2PCi, j + εi,CHiC , ð12Þ

where PCi,j is the jth principal component for individual i.
The models MATAC→RNA and MCHi-C→RNA are analogues to the

MATAC→CHi-C.
For the model MCHi-C(ATAC)→RNA(ATAC), where ATAC is an

observed confounder of both chromatin interactions and gene
expression, the two equations are:

CHiCi =α0 +α1PCi, j +α2ATACi + εi,CHiC , ð13Þ

RNAi =β0 +β1CHiCi + β2PCi, j + β3ATACi + εi,RNA: ð14Þ
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Since in our models, the treatment is continuous (PCs), we cal-
culate ACME(PCj), j = 1,…,J, where J is the number of PCs that retain a
cumulative proportion of variance explained ≤ 0.99. We tested the
models separately on eachPCand selectedmodelswith ap valueof the
average causal mediation effect (pACME-value) <0.05. Confidence
intervals of ACME(PCj), ADE(PCj) and TE(PCj) and corresponding p
values are obtained by specifying the argument boot = TRUE for the
non-parametric bootstrap confidence intervals, boot.ci.type =BCA for
the bias-corrected and accelerated (BCa) confidence intervals. Finally,
we set sims = 1000 for the number of bootstrap samples.We checked if
the Total Effect has a significant p value (TE p value ≤0.05) and whe-
ther the p value of the Average Direct Effect (ADE p value) is significant
at the same level. If TE p value ≤0.05 and ACME p value ≤0.05, we
declared a significant Causal Mediation Effect. By looking at ADE p
value, we also distinguished between a fully mediated model (ADE p
value > 0.05) and a partially mediated one (ADE p value ≤0.05).

Causal mediation relies on stronger assumptions than traditional
causal inference and, in particular, the assumption of no unmeasured
confounding known as ‘sequential ignorability’159,160. In practice, A1)
there shouldn’t be any confounder (U1) between the outcome and the
treatment, A2) between the mediator and the treatment (U3) and A3)
between the outcome and the mediator (U2). In our set-up, since the
genotypes are assigned at conception (like in an RCT with random
treatment allocation), there is less risk of U1 and U3, but U2 is hard to
control. We use the function medsens() in themediation R package to
assess the sensitivity of the mediation model to assumption A3. The
sensitivity analysis relies on the idea that if there is a confounding
effect on both the outcome and themediator, the correlation between
εm and εy is large, and knowing this level of correlation, the mediation
effect can be calculatedwithout bias. In practice,medsens() returns the
level of correlation that is required to change the sign of the estimated
level ofmediation. The larger this level of correlation, the less sensitive
the estimated level of mediation to unmeasured confounders U2. We
report this value in Supplementary Data 11, where sensitivity values ≥
0.3 in absolute value are regarded as robust to unmeasured con-
founders U2. For instance, for the trimodal THBS1 locus with a sig-
nificant full mediation model MI (MATAC→CHi-C), the sensitivity of
ACME is 0.4 (Supplementary Fig. 6B), while for the trimodal NFE2L3
locus with the model MII (MATAC→RNA) the sensitivity of ACME is 0.3
(Supplementary Fig. 6D). For the trimodal locus SPSB1 with the sig-
nificant mediation model MCHi-C→RNA, the sensitivity of ACME is 0.4
(Supplementary Fig. 6E). For the ABHD2 locus with a significant full
mediation model MI (MATAC→CHi-C), the sensitivity of ACME is 0.3
(Supplementary Fig. 6F).

CRISPR interference in the THBS1 locus
U-937 cells were cultured in RPMI media, supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin-streptomycin. HEK293 cells were
cultured in DMEM, supplemented with 10% FBS and 1% penicillin-
streptomycin. The cells were maintained at 37 °C in a humidified
incubator with 5% CO2 and were passaged at 80% confluence. Cells
were regularly checked for mycoplasma infection.

To generate cell lines expressing dCas9 KRAB, the lentiviral pur-
omycin resistance vector pLV-dCas9-KRAB (Addgene plasmid #99372)
was used. For sgRNA expression, we further used the lentiviral
hygromycin resistance vector pLV-sgRNA (Addgene plasmid #62205).
We cloned the following sgRNA targeting cQTLs in the THBS1 locus
separately into plasmid #62205: TATGCTCTTCAGAACAAACC (tar-
geting chr15:39607469-39607488); AGCTGATGAATGCCCATACT
(targeting chr15:39607555-39607574) and AATTTAGGCCTCCTAA-
TATG (targeting chr15:39602387-39602406). We combined the three
plasmids containing each sgRNA in equimolar quantities, making a
pool of cQTL sgRNA plasmids. As a control, we cloned a sgRNA with a
scrambled, non-targeting sequence into plasmid #62205
(CTTAGTTACGCGTGGACGA).

Lentivirus was produced for the pLV-dCas9-KRAB plasmid
(#99372) and the cloned sgRNA plasmids (#62205) using a third-
generation system. HEK293 cells were seeded to 10 million cells per
vector in 15 cm round plates in a 20mL volume of completemedia and
incubated overnight. The media was replaced with 20mL fresh media
with FBS but without penicillin-streptomycin. Then, 6μg of plasmid
DNA was combined with 1.5μg of REV packaging plasmid (Addgene #
12253), 3μg pRRE packaging plasmid (Addgene # 12253) and 1.5μg
VSV-G envelope (Addgene # 12259) in 2mL serum-free DMEM without
phenol red in a sterile 15mL tube. Afterfilter sterilising, we added 72μL
of 1mg/ml Polyethyleneimine linear MW 25K (PEI; Fisher Scientific
11460630) to the tube, vortexed and left at room temperature for
10–15min. The DNA/PEI mix was added to the cells in a dropwise
fashion using a Pasteur pipette. The cells were incubated overnight
before a media change. After a 48-h incubation, the media containing
lentivirus was harvested and filtered (0.45 μm filter) before use.

The first round of transduction generated U-937 cells expressing
dCas9-KRAB. Before transduction, 300,000 U-937 cells were seeded
into 3mLmedia in a six-well plate. The next day, cells were spun down
and resuspended in 2mL of media with FBS but no penicillin-
streptomycin. After 2 h, 24μL of polybrene was added (Hex-
adimethrine bromide, Sigma H9268-5G, prepared at 1mg/mL in 0.9%
NaCl), followed by 1mL of lentivirus. Cells were incubated overnight
before changing the media (RPMI media + 10% FBS and 1% penicillin-
streptomycin). After a further 48h, the cells underwent selection with
puromycin (250μg/mL) for several days until cells that had not inte-
grated the plasmid had died and transduced cell viability returned to
high levels. Subsequently, the cells were transduced with the sgRNA
lentivirus (either the pool of cQTL-targeting sgRNA or the scrambled
control sgRNA) in the samemanner as for dCas9 KRAB. The cells were
then selected with hygromycin (1μg/mL) until viability returned to
high levels. Three independent rounds of sgRNA transductions were
performed to generate biological triplicates.

Total RNA was extracted from the transduced U-937 cells using
the RNeasy Mini Kit (Qiagen). cDNA synthesis was performed with the
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems).
Quantitative PCR was conducted using SYBR Green Master Mix
(Thermo Fisher Scientific) on a QuantStudio 6 Flex Real-Time PCR
System (Applied Biosystems). THBS1 expression levels were normal-
ised to the geometric mean of three housekeeping genes: ATP, TOP1
and GAPDH. Relative expression levels were calculated using the ΔΔCt
method.

For 4C-seq, 10 million transduced U-937 cells were fixed with 1%
formaldehyde. Chromatin was processed as previously described (see
the 4C-seq section above), with the viewpoint centred on rs2033937.
For ATAC-seq, transduced cells were processed according to the
protocol described above (see the ATAC-seq section). Both 4C-seq and
ATAC-seq experiments were also performed in biological triplicate.

CTCF chromatin immunoprecipitation-sequencing (ChIP-seq)
CTCF ChIP-seq was performed on crosslinked material from three of
the genotyped primary humanmonocyte samples also used for CHi-C,
ATAC-seq and RNA-seq, following the Chipmentation methodology
(SOP version 1.14) of the Bock lab161. These samples were selected to be
heterozygous for the cQTL rs7146599 (PCK2 locus). Briefly, we soni-
cated the chromatin from 2 million cells for each sample in 400μL
sonication buffer using 10 cycles of 30 s on and 30 s off on the Diag-
enode Bioruptor Pico. We then performed immunoprecipitation (IP)
on 100μL of sonicated material, corresponding to around 500K cells,
overnight with either 1μL of non-specific IgG antibody (Fisher Scien-
tific 10610274) or 4μL CTCF antibody (Merk 07-729) and 25μL of
blocked protein A beads (Fisher Scientific 10334693).We retained 5μL
of sonicated material as an input control sample. The next day, the IP
samples were washed using a series of buffers according to the SOP
(RIPA-LS, RIPA-HS, RIPA-LiCl and 10mMTris-HCl, pH 8). Tagmentation
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was done on the IP samples using 1μL of homemade Tn5 for 10min at
37 °C, followedby furtherwashes (RIPA-LS andTEbuffer), according to
the protocol. For the input samples, 2.5 ng of material was tagmented
in a total 5μL reaction using 1μL of 1/10 Tn5 for 5min at 55 °C. De-
crosslinking was performed for all IP and input samples overnight in
48μL ChIP elution buffer and 2μL proteinase K (Sigma 3115879001) at
65 °C. The next day, theDNAwas cleaned using 1X SPRI beads (AMPure
XP, Beckman Coulter). For sequencing, libraries were amplified using
12 cycles of PCR and cleaned using 1.1X SPRI beads, followed by 150 bp
paired-end sequencing on a NovaSeq platform (Novogene Europe).

We used the ChIP-AP pipeline162 v5.4 for fully integrated ChIP-seq
QC andpeak calling, using the input chromatin samples as controls. To
count the number of allele-specific reads at rs7146599, the trimmed
but non-deduplicated reads were processed using the WASP pipeline
to removemapping biases156, with final de-duplication performed after
removing the reads that mapped in a different location upon allele
flipping. PhASER149 was used to count allele-specific reads at hetero-
zygous variants. We used a Python script to split bam files based on
haplotype (https://github.com/luntergroup/bamsplit), followed by
merging across samples with SAMtools131,137 v1.9 and generating bigwig
files using bamCoverage from deepTools133 v3.3.1 to enable visualisa-
tion of CTCF binding at rs7146599 in the PCK2 locus.

Downstream computational analysis of cQTLs
For the following analyses, we combined the contact eQTLs from
BaseQTL and the trimodal QTLs from GUESS, making a total of
641 cQTLs.

Identification of TF binding at cQTLs via ChIP-seq peaks and
ATAC-seq binding predictions
Non-redundant peaks for all cell types and factors in the ReMap 2022
catalogue48 were downloaded in GRCh38 from https://remap.univ-
amu.fr/download_page. We supplemented the ReMap dataset with
CTCF ChIP-seq peaks generated on three primary monocyte samples
from the present study (see ChIP-seq methods above). To build a
dataset of experimentally determined TF binding in monocytes, we
filtered the ReMap ChIP-seq dataset, with the inclusion of our CTCF
ChIP-seq data, to the following monocyte cell types: ‘monocyte’,
‘CD14’, ‘THP-1’, ‘U-937’ and ‘HL-60’. We then merged all peaks per TF
using merge from BEDtools141 v2.30.0.

We used two methodologies to predict TF binding from the
ATAC-seq data generated in the present study: TOBIAS49 and
MaxATAC50. We ran the TOBIAS Snakemake pipeline (available at
https://github.com/loosolab/TOBIAS_snakemake) on cleaned
ATAC-seq bam files for all 34 ATAC-seq replicates and detected the
binding of all TFs with motifs in the Jaspar 2020 dataset163 at ATAC-
seq footprints. For MaxATAC, we first generated bigwig files per
replicate using the prepare function with clean ATAC-seq bam files
as input. Then, we used average to make an averaged bigwig across
all replicates, followed by predict, against all 127 pre-trained TF
models available from the MaxATAC authors. We then combined
the predicted ‘bound’ TF locations with the TOBIAS footprints
using merge from BEDtools141 v2.30.0 to generate a final dataset of
‘ATAC-seq predicted’ TF binding sites.

We combined the ChIP-seq peaks, and ATAC-seq predicted
peaks into one table but kept the two sources separate (i.e. speci-
fying if the peak set came from ChIP-seq or ATAC-seq). We then
determined monocyte TF enrichment at 256 bp windows around
cQTLs (QTL ± 128 bp) using the Remapenrich R package (https://
github.com/remap-cisreg/ReMapEnrich) v0.99.0. We used a back-
ground Universe consisting of all the variant locations submitted
to the GUESS and BaseQTL analyses in GRCh38 (filtered for DpnII
effects and distal from eGene promoter; also ±128 bp), with
100 shuffles. We considered significant enrichment at −log10
adjusted p value (Q significance) > 5 and the number of overlapping

QTLs ≥ 5. Intersections between cQTLs (±128 bp) and TF binding
sites were further explored for evidence of TF perturbation by the
cQTL (see the following section).

To determine TF enrichment at cQTLs across all cell types, we
used the whole Remap 2022 catalogue48 (1171 TFs and 726 cell types)
without first selecting cell types of interest. The ReMapEnrich R
package (https://github.com/remap-cisreg/ReMapEnrich) v0.99.0 was
used to determine enrichment using the same settings as for the
monocyte dataset.

Prediction of TF binding perturbation at QTLs by deep
learning tools
To obtain allele-specific predictions of TF binding from the
Enformer52, we used the publicly available precomputed Enformer
results for all SNPs with MAF > 0.5% (https://console.cloud.
google.com/storage/browser/dm-enformer/variant-scores/1000-
genomes/enformer). DeepSea51 predictions were queried using
the online interface (https://hb.flatironinstitute.org/deepsea/).
We restricted the analysis to the 179 TFs in the Enformer training
set and 77 TFs in the DeepSea training set, for which we could
obtain independent evidence of binding to the cQTLs and ATAC-
QTLs of interest from at least one of the following sources: (1)
ChIP-seq data in monocytes, (2) predictions from ATAC-seq
footprint analysis by TOBIAS49, (3) MaxATAC50 predictions, as
described above.

We followed ref. 51 to express the predictions of variant effect on
TF binding predicted by each model in terms of the TF binding per-
turbation score, defined as:

Perturbation Scoreðmodel, TFÞ= max SADmodel,TF , i*SARmodel,TF , i

� �

ð15Þ

across all ChIP datasets i for a given TF available in the training set
for either model (DeepSea or Enformer), and for each dataset:

SADmodel, i,TF = alt allele scoremodel, i,TF � ref allele scoremodel, i,TF ,

ð16Þ

SARmodel, i,TF = log2 ðalt allele scoremodel, i,TF + 1Þ � log2 ðref allele scoremodel, i,TF + 1Þ,
ð17Þ

where SAD and SAR are SNP activity difference and ratio, respectively.
To estimate the background range for each TF, we generated

Enformer and DeepSea TF perturbation scores for a random set of
~275,000 SNPs sampled from across the genome. Variants whose
perturbation scores for a given TF exceeded the top 1% percentile of
the background range for both DeepSea and Enformer were con-
sidered TF-perturbing.

Disruption of TF binding motifs by cQTLs
TF binding motif disruption by cQTLs was detected using the motif-
breakR package164 in R using the motif data sources ‘HOCOMOCOv11-
core-A’, ‘HOCOMOCOv11-core-B’, ‘HOCOMOCOv11-core-C’ from the R
package MotifDb. Motif matches were detected at a p value threshold
of 1e−4 using the ‘ic’ method against a flat genomic background. The
predicted ‘strong’ variant effects on the TF binding motif (corre-
sponding to the absolute difference in position weight matrix match
scores of at least 0.7) were used in downstream analysis.

GWAS integration
For each cQTL, we identified proxy variants at unphased r2 ≥0.8 using
PLINK v2118 with a 1000 Genomes Phase 3 reference panel119. We then
obtained a direct overlap of cQTLs and their proxy variants with var-
iants listed in the GWAS Catalog165 (downloaded on 16th June 2023).

Article https://doi.org/10.1038/s41467-025-55900-3

Nature Communications |          (2025) 16:970 21

https://github.com/luntergroup/bamsplit
https://remap.univ-amu.fr/download_page
https://remap.univ-amu.fr/download_page
https://github.com/loosolab/TOBIAS_snakemake
https://github.com/remap-cisreg/ReMapEnrich
https://github.com/remap-cisreg/ReMapEnrich
https://github.com/remap-cisreg/ReMapEnrich
https://console.cloud.google.com/storage/browser/dm-enformer/variant-scores/1000-genomes/enformer
https://console.cloud.google.com/storage/browser/dm-enformer/variant-scores/1000-genomes/enformer
https://console.cloud.google.com/storage/browser/dm-enformer/variant-scores/1000-genomes/enformer
https://hb.flatironinstitute.org/deepsea/
www.nature.com/naturecommunications


Since adapting GUESS association statistics for formal GWAS coloca-
lisation analysis is non-trivial, we instead sought evidence of colocali-
sation between GWAS and public eQTL data in monocytes or whole
blood that implicated our cQTL variants as eQTLs for the same eGenes
(credible interval > 95%). This analysis required GWAS summary sta-
tistics, which were publicly available for several white blood cell count
GWAS, but not the other traits used as examples in our study. We
queried precomputed coloc166 results for these datasets, eGenes and
variants using the Open Targets Genetics platform167.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data for figure panels and large Supplementary Data (such as
eQTLCHi-Cdesign, CHi-C significant interactions, ATAC-seq peaks and
TF footprinting) are available on theOpen Science Framework (OSF) at
https://osf.io/szntj/ (https://doi.org/10.17605/OSF.IO/SZNTJ)167. Raw
sequencing data from human monocytes generated in this study are
available in the European Genome-Phenome Archive (EGA) under
managed access, in accordance with the donor terms of consent. The
data can be found under Dataset ID EGAD50000001116. To request
access to these data, please contact the Data Access Committee at
eQTL-CHiC-DAC-WC@groups.imperial.ac.uk. An application form will
be provided within seven working days of the request. Submitted
forms signed by the requestor(s) and an authorised institutional
representative will be reviewedwithin one calendarmonth, and access
to data download through EGA will be granted, provided all access
conditions are met. 4C-seq and ATAC-seq data from U-937 cells are
deposited in GEO for unrestricted access, accession numbers
GSE281908 and GSE281909. Source data are provided with this paper.

Code availability
The code used to generate the results in this study is available at the
following repositories: https://github.com/FunctionalGeneControl/
contactQTLs (eQTL CHi-C design and data processing; stable release
is available on Zenodo (https://doi.org/10.5281/zenodo.14446477)168),
https://github.com/pavarte/PCHIC-ABC-Prediction (CHi-C ABC analy-
sis), https://github.com/lb664/R2GUESS (GUESS framework), and
https://gitlab.com/evigorito/baseqtl_atac_chic_eqtl (BaseQTL exten-
ded to CHi-C and ATAC-seq modalities).
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