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ABSTRACT

White adipose tissue (WAT) comprises a plethora of cell types beyond
adipocytes forming a regulatory network that ensures systemic energy
homeostasis. Intertissue communication is facilitated by metabolites
and signaling molecules that are spread by vasculature and nerves.
Previous works have indicated that WAT responds to environmental
cues by adapting the abundance of these ‘communication routes’;
however, the high intra-tissue heterogeneity questions the informative
value of bulk or single-cell analyses and underscores the necessity of
whole-mount imaging. The applicability of whole-mount WAT-imaging
is currently limited by two factors — (1) methanol-based tissue clearing
protocols restrict the usable antibody portfolio to methanol-resistant
antibodies and (2) the vast amounts of data resulting from 3D imaging
of whole-tissue samples require high computational expertise and
advanced equipment. Here, we present a protocol for whole-mount
WAT clearing, overcoming the constraints of antibody-methanol
sensitivity. Additionally, we introduce TiNeQuant (for ‘tissue network
quantifier’) a Fiji tool for automated 3D quantification of neuron or
vascular network density, which we have made freely available. Given
TiNeQuants versatility beyond WAT, it simplifies future efforts studying
neuronal or vascular alterations in numerous pathologies.

KEY WORDS: Whole-mount imaging, Adipose tissue clearing,
Spatial analysis, Image processing, Network density, Quantitative
microscopy

INTRODUCTION

White adipose tissue (WAT), the bodies major energy storage depot
is comprised primarily of triglyceride (TG)-storing adipocytes.
WAT is populated with a diverse array of immune cells, lymphatic
and blood vessels, and neurons (AlZaim et al., 2023; Escobedo and
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Oliver, 2017; Jiang et al., 2017; Massier et al., 2023; Robciuc
et al.,, 2016), whose functions are tightly interconnected with the
maintenance of WAT homeostasis. An increase in the mobilization of
stored TG to liberate energy substrates involves catecholamines
(epinephrine and norepinephrine) that bind to f-adrenergic receptors
(Schweiger et al., 2006; Vaughan et al., 1964; Zimmermann et al.,
2004). Epinephrine is primarily produced by the adrenal medulla and
secreted into the circulation. Alternatively, norepinephrine is released
from peripheral sympathetic neurons that spread through the
adipose tissue (Frithbeck et al., 2014; Martinez-Sanchez et al.,
2022). Besides this well-established regulatory circuit of neuron- or
vasculature-delivered catecholamines, the recently identified cellular
heterogeneity and immunometabolic signaling axes, suggest a
complex interplay between immune cells and adipocytes regulating
WAT metabolism (Henriques et al., 2020; Martinez-Sanchez et al.,
2022; Massier et al., 2023; Pirzgalska et al., 2017). To study WAT
metabolism, bulk protein and mRNA expression analyses, such as
western blotting analysis or bulk RNA sequencing are commonly
performed. However, these techniques do not allow the identification
of cell types accountable for observed metabolic effects. More
sophisticated approaches, like flow cytometry or single-cell RNA
sequencing, can preserve cellular information, however spatial
information is lost during the preparation of cell suspensions
(Huesing et al., 2021). Moreover, these methods are not suited for
studying neurons, as their cell body is located in sympathetic chain
ganglia outside WAT. Although immunohistochemistry delivers
spatial information of distinct cell types in their tissue context,
neurons and vasculature cannot be adequately captured within the
constraints of histological slices, owing to their elongated net-like
structure. These limitations underscore the necessity for whole-mount
preparation, immunolabeling and clearing to investigate the plasticity
of sympathetic neuron and vasculature density in WAT. In recent
years, substantial efforts and advancements have been made in the
field of tissue clearing and imaging of adipose tissue depots (Chi
et al., 2018a; Huesing et al., 2021; Jiang et al., 2017; Willows et al.,
2021). Even though sympathetic innervation has been studied for
many years, the plasticity of sympathetic neurons in WAT remains
a topic of debate. Whereas some studies argue for a substantial
adaptability in sympathetic neuron density, thereby regulating the
sympathetic stimulus during cold adaptation in WAT (Cao et al.,
2018), these findings have not been affirmed by other researchers
(Blaszkiewicz et al., 2019; Willows et al., 2021). Notably
differences in outcome can be based on antibody sensitivity and
specificity, imaging resolution and regional variability of sympathetic
innervation across the tissue. To properly address this aspect of WAT
biology, the sympathetic neuron or vasculature density in whole-
mount cleared WAT can be measured, either manually (Bonda et al.,
2020) or, as we show here, in an automated and high-throughput
approach. The large amount of acquired data and the susceptibility to
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(experimenter-based) biased image analysis highlights the need for an
accessible, robust and computationally inexpensive open-source
pipeline for unbiased 3D quantification of the vessel and neuron
network in WAT. Although significant efforts and advances have been
undertaken to address this need (Narotamo et al., 2024; Spangenberg
et al., 2023), current methods have demonstrated limited robustness
and adaptability due to statistics-based segmentation, or are highly
computationally expensive, making them difficult to apply to whole-
mount datasets. In the field of adipose tissue clearing, Adipo-clear is
considered the current gold standard, offering robust performance
(Chi et al., 2018a). However, we encountered significant challenges
with antibody compatibility, particularly due to the methanol utilized
in Adipo-Clear.

Here, we present two adipose tissue clearing protocols that
complement Adipo-clear. These protocols offer the advantage of
avoiding transcardiac perfusion, a specialized technique that
requires training, surgical procedures and is often subject to local
animal experimentation laws. Our protocols, adapted from Adipo-
Clear, iDISCO and 3DISCO (Chi et al., 2018a; Ertiirk et al., 2012;
Renier et al., 2014), facilitate broader application and experimental
accessibility and are suitable for the use with both methanol-
sensitive and methanol-insensitive antibodies. Additionally, we
present TiNeQuant (for ‘tissue network quantifier’), a Fiji tool to
quantify 3D neuron or vascular density in an unbiased, automated,
robust and user-friendly fashion, which is freely available at https:/
github.com/SchweigerLab/TiNeQuant . In our pipeline, we deploy
LABKIT (Arzt et al., 2022), an easy-to-use supervised learning
segmentation plugin featuring graphics processing unit (GPU)
acceleration via CLIJ (Haase et al., 2020). This allows the user to
train segmentation classifiers on their own datasets, allowing robust
image segmentation across diverse input datasets. We anticipate that
the integration of our protocols and this new bioinformatics tool will
advance the exploration of neuronal and vascular heterogeneity in
adipose tissue and improve statistical power of future quantitative
analyses.

RESULTS

Tissue clearing methods suiting immunolabeling with
methanol-resistant and methanol-sensitive antibodies

The commonly used methanol-based tissue clearing protocols limit
the antibody portfolio for tissue labeling to methanol-insensitive
antibodies. In this study, we assessed various clearing approaches
applicable to murine WAT. We employed a method based on Adipo-
clear (Chi et al., 2018a) and iDISCO (Renier et al., 2014) to image
samples using antibodies that are methanol resistant and a method
based on 3DISCO (Ertiirk et al., 2012) tissue clearing to image
antibodies that are sensitive to methanol and compared the results
with the established Adipo-clear protocol. The workflow for both
variants of the protocol is illustrated in Fig. 1A and thoroughly
described in the Materials and Methods section.

Similar to what has previously been described for other tissues
(Renier et al.,, 2014), we observed that a bleaching step after
methanol-mediated dehydration considerably lowered
autofluorescence in WAT (Fig. SIA). Incorporating the bleaching
step into the methanol-free protocol, however, was not feasible
owing to the potential formation of highly explosive organic
peroxides by the reaction of tetrahydrofuran (THF) with hydrogen
peroxide. As anticipated, the methanol-sensitive antibody CD68
was only detected in WAT that was cleared using our THF protocol
and was not detected upon using methanol-based protocols (our
MeOH protocol and Adipo-clear) (Fig. 1B-D). We did not find
differences regarding quality of labeling (Fig. 1E-G) or clarity

(Fig. S1B) between the THF, MeOH and Adipo-clear protocols
using the methanol insensitive CD31 and tyrosine hydroxylase
(TH) antibodies. To test whether the clearing process affects WAT
morphology, we measured adipocyte diameters of WAT pre and
post clearing. All protocols applied increased the stiffness of WAT
(data not shown). Moreover, we found significant adipocyte
shrinkage using our MeOH (—2.8%) and the Adipo-clear protocol
(—=15.0%) but no difference in adipocyte size using our THF
protocol (Fig. 1H-J). Together, our newly established workflows
for WAT clearing perform without the need for transcardiac
perfusion and largely preserve adipocyte morphology, while
providing comparable tissue clarity and quality of labeling to
gold-standard protocols. Furthermore, our THF-based WAT
clearing protocol addresses methanol sensitivity issues, thus
expanding the range of antibodies that can be applied for
immunolabeling in combination with WAT clearing.

A new tool for the quantification of neuron and vasculature
density

Two-dimensional (2D) quantification of network density of WAT is
not sufficient, owing to signal overlap (Fig. S2A,B). However, the
large amount of data generated by 3D imaging of whole-tissue
samples is challenging for manual annotation and quantification.
Accordingly, there is a call for a robust, automated and
computationally inexpensive tool to quantify neuron or vascular
density from 3D images. We established an image processing
pipeline to quantify the density of sympathetic neurons and
vasculature. In Fig. 2, the workflow for the quantification of two-
channel image stacks depicting both blood vessels (CD31-positive
cells) and sympathetic neurons (TH-positive cells) is shown. We
also provide a version of this pipeline for cases where only single-
channel image data is quantified. In the following example, the six-
step process of TiNeQuant is applied as visualized in Fig. 2B. In
step 1, the user trains classifiers on their own training data by
marking foreground and background areas in LABKIT followed by
training and saving the classifier with the desired classification
settings. (For more information on how to train a classifier in
LABKIT and best practice examples, visit https:/imagej.net/
plugins/labkit/.) In step 2, the classifier is employed within the
pipeline for random forest-based image segmentation. In step 3,
based on the segmented image stacks, the pipeline calculates the
length of neurons and blood vessels in 3D space. Step 4 uses the
combined segmentation results of both the vasculature and the
neuron channel to calculate the lobe volume of the image stack (Fig.
S3C). For step 5, the quantification result is evaluated optically
using a merged image displaying a maximum intensity projection of
the input data, the calculated skeleton and the overlay of the two. In
step 6, the output data is used to calculate the neuron and/or vascular
density per lobe volume. The results, as well as the montages for
optical evaluation, as shown in Fig. 2B, are located in the specified
output folder.

By utilizing LABKIT for supervised learning-based image
segmentation, this pipeline is broadly applicable and can perform
robust image segmentation on diverse input datasets. An overview
of the input data options is illustrated in Fig. 3A. After choosing the
appropriate TiNeQuant script for the input data (Fig. 3A), it is
executed in the Fiji script editor. We included an optional
preprocessing step into the pipeline for particle exclusion. In this
process, the user defines the upper size limit as well as the circularity
of particles that should be excluded from the calculation. The dialog
box depicted in Fig. 3B allows the selection of preprocessing
options, and to input a choice for the input and output directory as
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Fig. 1. Tissue clearing protocols suitable for methanol-sensitive and
methanol-insensitive antibodies. (A) Flow chart illustrating our two
methods for immunolabeling and clearing WAT depending on whether the
antibody used is methanol sensitive or methanol resistant.

(B-D) Representative iWAT depots stained with the methanol-sensitive
anti-CD68 antibody processed with the THF protocol for methanol-sensitive
antibodies (B), the MeOH-protocol for methanol-resistant antibodies (C) or
Adipo-clear (D). Images were recorded using identical settings and imaging
depth. (E-G) Representative iWAT depots stained with anti-tyrosine
hydroxylase (cyan) and anti-CD31 (magenta) antibodies, processed with the
THF protocol (E), the MeOH protocol (F) or Adipo-clear (G). (H-J) Violin
plots with median (solid line) and quartiles (dashed lines) showing adipocyte
diameter before and after clearing with the THF protocol (H), the MeOH
protocol (1) or Adipo-clear (J). 300 adipocytes across five randomly selected
regions in three biological replicates per group were measured. A Shapiro—
Wilk test was performed to test for normal distribution, then a Mann—Whitney
U-test was performed to analyze the non-normally distributed data.

well as the LABKIT segmentation classifiers. The default settings for
particle exclusion demonstrated the optimal results in our datasets. In
the output directory, folders containing montages for optical
evaluation of the skeletonization result, segmented neuron stacks
and segmented vasculature stacks are generated. The quantification
results for neuron length, vessel length as well as the calculated lobe
volume of the image stacks are saved as a .csv file in the output
directory.

Testing and evaluation of TiNeQuant

To address whether neuron quantification using TiNeQuant is
superior to potentially applicable alternative methods, we compared
the accuracy to ground truth, processing time and maximum
dataset size of TiNeQuant with two recently published,
methods, VesselExpress (Spangenberg et al., 2023) and
3DVascNet (Narotamo et al., 2024). Additionally, as a simple
and computationally inexpensive possible alternative, we tested the
correlation between neuron length and the area of pixels above a
fixed threshold (8-bit gray value>170). We randomly selected ten
image stacks from two independent inguinal WAT (iWAT) whole-
mount scans. Each image stack, measuring 620x620 um, comprised
a sequence of 133 or 148 images, respectively. These image
stacks were divided into eight validation and two training stacks. We
manually labeled the validation stacks using the pencil tool
and calculated the 3D neuron length using the skeletonize3D
function in Fiji software. Then we employed TiNeQuant,
VesselExpress and 3DVascNet to the identical image stacks.
Whereas the segmentation step in VesselExpress mainly relies on
statistics-based thresholding and 3DVascNet uses a pretrained
classifier, TiNeQuant employed a classifier trained on the two
training stacks. We performed linear regression analysis on the
outcome by plotting manually measured neuron lengths against the
automatically calculated neuron lengths for each of the stacks.
This comparison yielded a good level of precision for TiNeQuant
(1?=0.8531) (Fig. 4A), VesselExpress (1?=0.7859) (Fig. 4B) and
3DVascNet (r>=0.8720) (Fig. 4C). The thresholded area turned out
to be a poor predictor of neuron length (1>=0.28) (Fig. 4D). The level
of accuracy was much improved in TiNeQuant (mean absolute
error=33.2 mm) in comparison with VesselExpress (mean absolute
error=60.2 mm) and 3DVascNet (mean absolute error=84.3 mm),
with evidence of bias in case of VesselExpress, as indicated by the
trendline not intersecting the origin. To further evaluate the accuracy of
the automated pipelines, six independent annotators from three
different labs performed manual quantification of a randomly
selected image stack with a sequence of 16 images measuring
620%620 um in size. The results of the manual quantification were

similar to TiNeQuant (absolute error to mean=2.1 mm), whereas
VesselExpress (absolute error to mean=11.0 mm) and 3DVascNet
(absolute error to mean=12.6 mm) demonstrated decreased accuracy
(Fig. 4E). Upon comparing the processing time for analyzing the test
dataset used in Fig. 4A-D, we found that TiNeQuant is the fastest
method, requiring an average of 27 s per image stack whereas
VesselExpress was 29% slower (35 s per image stack) and 3DVascNet
based analysis took 654 times longer (17,888 s per image stack)
(Fig. 4F). Accordingly, TiNeQuant excels in terms of accuracy and
processing time.

Analyzing neuronal and vascular density in WAT of mice
housed at different ambient temperatures

It is still a matter of debate whether or not metabolic changes due to
differences in ambient temperature are mediated by varying
neuronal density in WAT (Blaszkiewicz et al., 2019; Cao et al.,
2018; Willows etal., 2021). We addressed this question by using our
novel pipeline, and compared neuron and vascular network density
in WAT of mice that were housed at thermoneutral (30°C) or cold
conditions (4°C) for 7 days. We killed mice, excised iWAT depots
and performed whole-tissue imaging of anti-TH- and anti-CD31-
stained iWAT according to our protocol (Fig. 1A) for methanol-
resistant antibodies (Fig. 5A shows a representative 4°C depot).
Using our established pipeline for image processing and
quantification, we created heatmaps depicting sympathetic neuron
density in its spatial context (Fig. 5B shows a representative 4°C
depot). We further used TiNeQuant to analyze neuron and vascular
density of the whole iWAT depots and compared cold exposure
to thermoneutral housing conditions. We found no significant
difference in sympathetic neuron density (P=0.8698) but a 36%
increase in vascular density (P<0.0001) in mice housed in cold
compared to mice housed in thermoneutral conditions (Fig. 5C,D).
These results demonstrate the applicability of our new method in
addressing a biological question.

All together, we present a novel approach that allows the
visualization and analysis of the 3D architecture of adipose tissue
using methanol-resistant and methanol-sensitive antibodies. With
TiNeQuant, we present a robust and user-friendly open-source
software tool for the quantification of 3D networks.

DISCUSSION

The current efforts and accomplishments in spatial transcriptomics
have revealed a distinct adipose tissue microarchitecture and
demonstrated a spatially dependent interplay between different cell
types residing in the tissue (Bdckdahl et al., 2021). However,
the restriction to two dimensions in spatial transcriptomics and
immunohistochemistry ~limit morphologic analyses and the
visualization and quantification of elongated structures such as blood
vessels, lymphatic vessels and neurons. As sympathetic innervation
and vascularization of WAT is crucial for metabolic health, studying
the 3D network of these cell types is of high interest for the scientific
field but currently restricted to image analysis experts.

The adipose tissue clearing approach presented here allows the
visualization and analysis of the 3D architecture of adipose tissue
using methanol-resistant and methanol-sensitive antibodies without
the need for transcardiac perfusion. This enables the exploration of
the spatial localization and interaction of different cell types within
adipose tissue. Additionally, we developed TiNeQuant, a robust and
user-friendly software tool for the quantification of 3D networks,
based on the open-source platform Fiji.

We tested our adipose tissue clearing approach in comparison
to the current gold standard, Adipo-clear. Whereas methanol-based
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protocols, including Adipo-clear proved ineffective with
methanol-sensitive  antibodies, we observed no discernible
difference in terms of overall clarity of the tissue and labeling
quality using methanol-insensitive antibodies. Importantly, our
adipose tissue clearing approach minimized adipocyte shrinkage.
Although transcardiac perfusion appears to be essential for clearing

blood- and muscle-rich tissues to remove chromophores like heme
(Richardson et al., 2021), we found that this step is not generally
necessary for adipose tissue. However, certain antibodies might
interfere with erythrocytes or erythrocyte remnants and cause
unspecific fluorescence signal. In these very specific cases,
transcardiac perfusion might be warranted.
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(B) Representation of the dialog box. GPU usage, settings for image preprocessing, and the choice of input and output directory as well as the self-trained

classifiers can be selected.

Previous automated approaches for 2D quantification (Willows et al.,
2021), and the current standard for 3D network quantification,
VesselExpress (Spangenberg et al., 2023), demonstrated unbiased
results, yet their applicability across different datasets is hampered by the
constraints of histogram-based thresholding for image segmentation.
Furthermore, quantifying 2D data is error prone as projection methods
inherently cause information loss, leading to underestimating the density
of the tissue network. Commercial software systems such as Amira
(Thermo Fisher Scientific), Aivia (Leica Microsystems), Imaris (Oxford
Instruments) or Arivis Pro (ZEISS) are potentially capable of processing
and quantifying large-scale 3D neuronal data sets including the
application of machine learning approaches for image segmentation,
yet their purchase entails significant costs and they are typically less
flexible regarding the implementation of custom features than open-
source software systems. Previous studies have used FilamentTracer,
a component of the commercial software package Imaris for the
quantification of sympathetic nerve density (Chi et al., 2018b; Xie
et al., 2022). However, these tracing tools are used on limited
randomly sampled cubes, presumably due to inapplicability of
filament tracing algorithms on whole-mount samples, which would
necessitate unsurmountable computational requirements. Alternative
approaches, such as Python-based tools (Jaeschke et al., 2022), hold
high potential for future implementation of potent deep-learning
libraries for image segmentation including TensorFlow (Abadi et al.,
2016 preprint) or PyTorch (Paszke et al., 2019 preprint). However,
current versions only implement manual gray-value thresholding
or unsupervised histogram-based image segmentation methods,
and the construction as a command-line tool also results in a high
entry barrier for coding-inexperienced users. One limitation of
deep learning approaches is their reliance on extensive manually
labeled ground-truth datasets for training. 3DVascNet (Narotamo
et al, 2024), a recent and promising method, utilizes the 3D
CycleGAN model, which only requires 2D ground-truth masks for
training. Tests using their pretrained model were promising; however,
even on high-performance workstations including GPU usage, this

pipeline remained computationally expensive, making its application
for whole-mount segmentation impractical at this stage. Upon
comparing our TiNeQuant pipeline with 3DVascNet and
VesselExpress, we found TiNeQuant to be the most accurate and
the fastest option. The estimated calculation time for processing an
average whole-mount scanned adipose tissue depot using 3DVascNet
is 1740 h 6 min, whereas VesselExpress takes 3 h 26 min and
TiNeQuant completes the same operation in 2 h 40 min. One further
consideration is the maximum processable dataset size, which is most
limited by RAM usage. For a test stack of 37 images measuring
512x512 pixels, the peak RAM usage was 3 GB using TiNeQuant, 5
GB for VesselExpress and 95 GB for 3DVascNet. The supervised
learning-based image segmentation of TiNeQuant offers 3D
segmentation that can easily be tailored to the input data from the
user. A limitation of the shallow learning approach used by
TiNeQuant is that too much training data often leads to deteriorating
segmentation results, which can be managed following the best
practice examples in the LABKIT documentation (Arzt et al., 2022).
Although deep learning-based image segmentation could potentially
lead to increased segmentation quality, the minimal training data and
limited computational resources needed for TiNeQuant drastically
increase usability irrespective of the availability of image analysis
experts or high-end workstation computers. We used our clearing
pipeline and TiNeQuant to compare neuron and vasculature density in
WAT of cold-exposed mice and mice kept at thermoneutral conditions
for 7 days. In WAT, sympathetic nerve activation induces catabolic
remodeling characterized by increased lipolysis and recruitment of
‘thermogenic’ adipocytes (Willows et al., 2023), whereas blood
vessels enable endocrine communication, substrate supply and
prevent hypoxia of WAT. Previous studies have suggested that
enhanced intraadipose sympathetic activity is due to axon outgrowth
in cold-exposed and cachectic animals (Cao et al., 2018; Xie et al.,
2022). In these approaches, random WAT regions were selected
for quantification. Owing to the heterogeneous distribution of
sympathetic neurons in adipose tissue, sole quantification of a
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Fig. 4. Evaluation of automated neuron length quantification. iWAT depots excised from mice housed at 30°C or 4°C for 7 days were processed with our
methanol containing (MeOH) clearing protocol. Image stacks of anti-tyrosine hydroxylase antibody labeled neurons were selected evenly between the two
housing conditions and randomly selected across the whole depot of three biological replicates. (A—C) Linear regression analysis of manual neuron length
quantification plotted against automated neuron length quantification by TiNeQuant (A), Vessel Express (B) and 3DVascNet (C). (D) Linear regression
analysis of manual neuron length quantification plotted against the thresholded area (8-bit gray value>170). (E) Accuracy was tested by comparing the
results obtained from six independent manual annotators with the results of the automated quantification by our pipeline. A violin plot with median highlighted
is shown. (F) Processing time per image stack of TiNeQuant, VesselExpress and 3D VascNet [test dataset contained 8 (n=8) image stacks with a total of

1124 512x512 pixels slices]. Graph shows mean+s.d.

randomly selected subfraction of the tissue might not be sufficient for
reliable comparative analyses. In contrast, our approach setting neuron
length in relation to local lobe volume provides information about
spatial heterogeneity and allows robust global density quantification in
the whole-tissue sample in an automated and unbiased manner. When
performing whole-mount analysis, we did not observe a global
increase in sympathetic neuron density in WAT upon cold exposure,
which is consistent with recent findings (Blaszkiewicz et al., 2019;
Willows et al., 2021). It must be noted that Blaszkiewicz et al. and
Willows et al. used the pan-neuronal markers PGP9.5 and -3 tubulin,
whereas Cao et al. and Xie et al. used pan-neuronal (synaptophysin),

mostly sympathetic neuron-specific (TH), markers as well as
stathmin-2 and growth-associated protein-43 as markers for axon
outgrowth. In our hands, of all the antibodies tested, TH was the most
sensitive option for staining sympathetic neurons. This is crucial, as
axonal outgrowth predominantly affects only the smallest neurons.
One major caveat is that TH levels rise during cold exposure, so highly
sensitive imaging is essential to avoid confusion from increased
neuron detectability caused by higher protein expression. The fact that
we did not detect increased neuron density in cold-exposed mice
indicates that we achieved a sensitivity level sufficient to detect the
smallest axons, which are those most likely to change during
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Fig. 5. Analyzing sympathetic innervation and vascular density in iWAT of mice housed at different ambient temperatures. C57BL/6J mice were
either housed at 30°C or at 4°C for 7 days. Mice were killed, and iWAT excised, treated according to the protocol for methanol-insensitive antibodies and
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metabolic adaptation. In comparison to light-sheet microscopy (Cao
et al., 2018; Xie et al., 2022), the use of confocal laser scanning
microscopy, as employed in our study and by others (Blaszkiewicz
et al., 2019; Willows et al., 2021), allows higher sensitivity and
resolution and leads to the capture of finer structures. However, it is
possible that even more sensitive approaches might challenge our
current views in the future.

Blood vessels regulate the transport of nutrients, oxygen, growth
factors, cytokines and hormones that are required for proper WAT
function. Additionally, they transport adipokines and fatty acids from
WAT to other organs affecting whole-body energy homeostasis
(Corvera et al., 2022). We are the first to demonstrate significantly
higher 3D vascular density in WAT of cold-exposed mice compared to
mice kept at thermoneutral conditions. However, this finding is in
agreement with those from previous studies which have described
increased vessel area in immunohistochemically stained WAT slides
after 1 week of cold exposure (Luo et al., 2017; Xue et al., 2009).
These studies concluded that cold-induced angiogenesis depends on
sympathetic activation and is crucial for non-shivering thermogenesis
in mice. We are confident that our tissue clearing protocol in
combination with TiNeQuant will advance future studies on
vascularization and innervation, and their role in maintaining WAT
homeostasis under physiological and pathophysiological conditions.

This work enables the analysis of spatial heterogeneity of a
plethora of different cell types and to quantify blood vessel,
lymphatic vessel or neuron length in 3D datasets, accelerating the
application of tissue clearing for the holistic examination of organs
across a wide range of research disciplines.

MATERIALS AND METHODS

Animals and tissue preparation

Male C57B1/6] mice [Janvier Laboratories, CSAL (Orleans) - 1993 (F172)]
of 10 to 11 weeks of age were housed at 22°C or, if indicated, at
thermoneutral conditions (30°C) or exposed to cold (4°C) for a period of 7
days. We randomly allocated samples or animals to experimental groups,
ensuring an equal average body weight across groups. Mice subjected to
cold were housed singularly to ensure consistent exposure to the
environment. Experiments using cold-exposed mice were reproduced in
two independent experiments. Mice were killed by cervical dislocation; the
inguinal WAT was dissected and drop-fixed for 24 h in 1% paraformaldehyde
(PFA) in phosphate-buffered saline (PBS) at 4°C without shaking to preserve
tissue shape. Fixed tissue was stored in PBS supplemented with 0.05% sodium
azide. Animal study protocols were approved by the Austrian Federal Ministry
for Science, Research, and Economy (protocol numbers BMBWF-66.007/
0005-V/3b/2019) and were conducted in compliance with the council of
Europe Convention (ETS 123).

Sample pretreatment for immunolabeling and clearing
After excision and PFA fixation, tissues were washed three times for 1 h in
PBS supplemented with 10 U/ml heparin at gentle shaking.

Pretreatment for sample clearing with methanol

Samples were dehydrated using a methanol ladder, starting with 20%
methanol diluted in double-distilled (dd)H,O, for 30 min at room temperature
(RT) with gentle shaking. Thereafter, samples were subjected to 40%
methanol for 30 min, followed by 60% methanol for 30 min, 80% methanol
for 30 min, and finally twice in 100% methanol for 30 min each time. Next, to
effectively reduce autofluorescence, the samples were bleached using 5%
hydrogen peroxide in 100% methanol supplemented with 10 mM EDTA at
pH 8 for 48 h at 4°C. Samples were rehydrated with methanol diluted in
ddH20 by gentle shaking, starting with 80% methanol for 30 min at RT,
followed by 60% methanol, 40% methanol and 20% methanol. Samples were
washed twice for 1 h in PBS supplemented with 0.2% Triton X-100. Finally,
samples were permeabilized in PBS containing 0.2% Triton X-100, 20%
DMSO and 300 mM glycine at 37°C on a rotating wheel for 24 h.

Pretreatment for sample clearing without methanol

Samples were permeabilized in PBS containing 0.2% Triton X-100, 20%
DMSO and 300 mM glycine for 24 h on a rotating wheel at 37°C. Owing to
the risk of forming highly explosive and shock-sensitive organic peroxides,
bleaching of the samples using hydrogen peroxide is not recommended upon
tetrahydrofuran-based dehydration.

Immunolabeling

To avoid unspecific antibody binding, tissues were blocked in a solution of
0.2% Triton X-100 in PBS containing 5% horse serum (Thermo Fisher
Scientific, #16050122) for 24 h at 37°C on a rotating wheel. Next, the
tissues were incubated with the primary anti-CD68 antibody (1:500, Bio-
Rad, #MCA1957GA), or anti-tyrosine hydroxylase (1:1250, Sigma-
Aldrich, #AB-152) and anti-CD31 (1:300, Biotechne, #AF3628)
antibodies in PBS containing 0.2% Tween 20, 1 U/ml heparin, 5%
DMSO and 5% horse serum for 72 h at 37°C on a rotating wheel.
Thereafter, samples were washed five times for 2 h each at RT in PBS
containing 0.2% Tween 20 and 1 U/ml heparin. Tissues were subsequently
incubated with the secondary goat anti-rabbit-IgG Alexa Fluor 647 (1:500,
Thermo Fisher Scientific, #A-21246) and goat anti-rat-IgG Alexa Fluor 488
(1:500, Thermo Fisher Scientific, #A-48262) or donkey anti-goat-IgG
Alexa Fluor 488 (1:500, Thermo Fisher Scientific, #A-11055) antibodies in
PBS supplemented with 0.2% Tween 20, 1 U/ml heparin and 5% horse
serum for 72 h at 37°C on a rotating wheel. Samples were again washed five
times for 2 h each in PBS containing 0.2% Tween 20 and 1 U/ml heparin,
followed by an overnight wash in the same solution. Finally, the samples
were embedded with 1% agarose prepared in PBS.

Sample clearing

Clearing with methanol

The dehydration process was performed at RT under gentle shaking by
incubating the embedded samples with 20% methanol in ddH,O for 2 h,
followed by 40% methanol for 2 h, 60% methanol for 2 h, 80% methanol for
2 h and twice with 100% methanol for 1 h each. Subsequently, the samples
were incubated in 50% dichloromethane in methanol for 2 h, and then twice
for 30 min in 100% dichloromethane. Finally, the samples were incubated
for at least 12 h in 100% dibenzylether under slight shaking at 4°C. The
samples remained stable for imaging for at least 5 days when stored at 4°C.

Clearing without methanol

Embedded samples were dehydrated at RT using tetrahydrofuran (Sigma-
Aldrich, 186562-1L) with gentle shaking. First, the samples were incubated
with 50% tetrahydrofuran in ddH,O for 2h, followed by 75%
tetrahydrofuran for 2 h, and finally with 100% tetrahydrofuran twice for
1 h each time. A gentler gradient with shorter incubation times might
preserve the tissue morphology even better. Thereafter, samples were
incubated in 100% dichloromethane for 1 h and then twice for 30 min each.
Finally, samples were incubated in 100% dibenzylether under slight shaking
at 4°C for at least 12 h. The samples can be stored at 4°C and remain stable
for imaging for at least 14 days without signal deterioration (Fig. S3).

Adipo-Clear

Following the Adipo-Clear protocol, mice were deeply anesthetized with
ketamine-xylazine and transcardiac perfusion was performed with ~20 ml
PBS until the blood was removed from the tissue. Then the perfusate was
switched to 4% PFA in PBS and perfusion was stopped when the mouse
significantly stiffened. iWAT depots were dissected and post-fixed in 4%
PFA in PBS overnight at 4°C. The Adipo-Clear protocol was then followed
for small tissue as described by Lin et al. (2022), using identical antibodies
and concentrations to those specified above.

Image acquisition

Confocal images were captured on a Leica DMi8 DLS (Leica Microsystems,
Wetzlar, Germany) confocal laser scanning microscope. Fluorescence
labels were excited with an argon laser (488 nm) and a helium neon laser
(633 nm), respectively. Emission spectra was set to ensure minimum
crosstalk (505-535 nm for Alexa Fluor 488, 660—720 nm for Alexa Fluor
647). A decrease in signal intensity along the z-axis of the image stack

9

()
Y
C
ey
()
(V]
ko]
O
Y=
(©)
‘©
c
—
>
(®)
-



https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.263438

TOOLS AND RESOURCES

Journal of Cell Science (2025) 138, jcs263438. doi:10.1242/jcs.263438

was compensated by a preset linear adjustment of the detector gain enabling
even exposure across the whole-tissue depth. Whole iWAT samples were
scanned using photomultiplier tube-detectors, using a HC FLUOTAR L 25x
objective (NA 0.95, WD 2.4 mm, water). Z-stacks were bidirectionally
recorded across the full tissue depth of ~2 mm with 15 um step size.

Image preprocessing

We corrected the z-axis compression resulting from the refractive index
mismatch between the immersion media and the clearing media using a Fiji
tool as described by Diel et al. (2020). All calculations were performed on a
Dell Precision 3660 (128 GB RAM, Intel Core 19-12900, NVIDIA GeForce
RTX 3070).

TiNeQuant

The image analysis pipeline was implemented in Fiji software (NIH,
Bethesda, MA, USA; Schindelin et al., 2012). The following plugins were
used within the pipeline: Bio-formats importer (Linkert et al., 2010) was
used for data import, LABKIT was used for image segmentation (Arzt et al.,
2022), Skeletonize3D was used for 3D skeletonization. Heatmap generation
was executed in Python 3.11, utilizing the data analysis library Pandas 1.5.3
(McKinney, 2010) for data preparation and GraphPad Prism 9.0.0 for
visualizing the heatmap. 3D volume rendering was performed using Blender
(https:/www.blender.org/, accessed 12 November 2023).

3DVascNet

To evaluate the performance of TiNeQuant relative to existing alternative
pipelines, we employed 3DVascNetV4. We installed the required cuDNN
v8.1.0 and CUDA11.2 versions to utilize our NVIDIA GPU and executed the
pipeline following the detailed instructions provided at https:/github.com/
HemaxiN/3DVascNet/wiki/Downloading-and-Running-3DVascNet. We used
their pretrained classifier for segmentation and because of the high memory
demand of the pipeline, exceeding our available 128 GB of RAM for complete
test image stacks, we divided the image stacks for segmentation. In 3DVascNet,
vessel density is defined as network area per region of interest (%), which
differs from our metric, defining network density as network length per lobe
volume (m/m?). Given that there is no possibility to extract the combined
network length calculated in 3DVascNet, we calculated neuron length using
our Fiji pipeline with the segmentation results acquired by 3DVascNet.

VesselExpress

We employed VesselExpress as a second potential alternative quantification
pipeline to TiNeQuant, as described in detail at https:/github.com/RUB-
Bioinf/VesselExpress.

Quantification of adipocyte diameter

Transmission light microscopy was used to capture images of five randomly
selected regions per sample from three iWAT samples per clearing method,
following fixation and prior to the clearing procedure. Post-clearing,
adipocyte autofluorescence was recorded again from five randomly selected
regions within each WAT sample. We measured adipocyte diameters of 100
adipocytes per biological replicate, across the five randomly selected regions
using Fiji software.

Statistical analysis

Statistical analysis was performed in GraphPad Prism 10.4.0. To compare
neuron and vascular density, 876 and 803 regions from three biological
replicates per group were analyzed. ROUT outlier detection (Q=0.2%) was
performed to remove statistical outliers within the dataset. For both the
analysis of neuron and vascular density, as well as the adipocyte diameter
measurements, a normal distribution was tested using a Shapiro—Wilk test.
Subsequently, a Mann—Whitney U-test was performed to analyze the non-
normally distributed data. We compared automated neuron length with
ground-truth measurements by performing linear regression analysis and
calculating the mean absolute error between the measurements.

Large language models
ChatGPT was used to refine use of words, improve grammar and syntax of
the manuscript. After using this service, the authors reviewed and edited the

content as needed and take full responsibility for the content of the
publication.

Code availability

The code used in this manuscript, along with imaging data to test
TiNeQuant, can be found on GitHub at https:/github.com/SchweigerLab/
TiNeQuant. TiNeQuant can be freely modified and distributed under the
GNU-3.0 General Public License.
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