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ABSTRACT: The efficiency of machine learning (ML) models is
crucial to minimize inference times and reduce the carbon
footprints of models deployed in production environments.
Current models employed in retrosynthesis to generate a synthesis
route from a target molecule to purchasable compounds are
prohibitively slow. The model operates in a single-step fashion in a
tree search algorithm by predicting reactant molecules given a
product molecule as input. In this study, we investigate the ability
of alternative transformer architectures, knowledge distillation
(KD), and simple hyper-parameter optimization to decrease
inference times of the Chemformer model. Initially, we assess
the ability of closely related transformer architectures and conclude
that these models under-performed when using KD. Additionally, we investigate the effects of feature-based and response-based KD
together with hyper-parameters optimized based on inference sample time and model accuracy. We find that although reducing
model size and improving single-step speed are important, our results indicate that multi-step search efficiency is more significantly
influenced by the diversity and confidence of single-step models. Based on this work, further research should use KD in combination
with other techniques, as multi-step speed continues to prevent proper integration of synthesis planning. However, in Monte Carlo-
based (MC) multi-step retrosynthesis, other factors play a crucial role in balancing exploration and exploitation during the search
process, often outweighing the direct impact of single-step model speed and carbon footprints.

■ INTRODUCTION
The efficiency of machine learning (ML) models is crucial to
minimize inference times and reduce the carbon footprints of
models.1 This is especially pronounced for ML deployed in
production environments, where model queries are more
frequent. ML models have become standard in most areas of
drug design, including computer-aided synthesis planning
tools. Retrosynthesis analysis predicts the synthesis route
from a target molecule to a purchasable material. This route is
generated using a single-step ML model that predicts reactant
molecules for a product molecule. The single-step model is
then employed in a multi-step tree search to generate full
synthesis routes.2 Such algorithms typically only produce the
reactants needed for the synthesis and need to be combined
with other algorithms to predict reagents such as solvents and
catalysts, as well as other reaction conditions.3 Optimizing
single-step retrosynthesis prediction becomes especially
relevant as retrosynthesis tools are routinely used by chemists
and the computational complexity of the multi-step search is
heavily dependent on single-step performance.4

Single-step retrosynthesis models are either template-based
methods, template-free methods, or a combination of both.5

Transformer encoder-decoder architectures6 have been used in
retrosynthesis research7−10 for their ability to scale to large
data set and the promise of extrapolation to novel chemistry.

However, no specific architecture has been recognized to
outperform, as depending on training data and architectures
cover different aspects of the chemical field.11 Additionally,
although single-step accuracy and multi-step success rates are
high with template-free methods, inference and search times
are too slow to be readily used in production.12 Furthermore,
recent work by Torren-Peraire et al.,13 Maziarz et al.14

highlights the difficulty of translating single-step performance
to multi-step retrosynthesis success.

Knowledge distillation (KD)15 exploits previously trained
teacher models to train smaller and more efficient student
models. The information from a teacher model can be
transferred to a student model in three ways: (1) response-
based KD,15 (2) feature-based KD and (3) relation-based
KD.16 These approaches distill knowledge from the output,
internal representations, or the angles/distances in between
batches of internal representations, respectively (Figure 1).
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Additionally, more efficient Transformer architectures have
been pursued to increase the inference speed of encoder-
decoder architectures. Efficient alternative Transformer
architectures are a large area of research17 and include models
with induced sparsity for faster compute times,18−20 and
memory-efficient transformers with lower complexity.21−24

Previous work specific to retrosynthesis also included
increasing the efficiency of the sampling algorithms using
speculative decoding.25

Here, we build on previous work on the AiZynthFinder
tool12,26 that has been used successfully in drug discovery
projects.4 We address the efficiency issue of a retrosynthesis
Transformer model by employing alternative architectures,
KD, and hyper-parameter optimization. We then analyze the
impact these optimizations have on the fine-tuned models in
terms of accuracy, speed, and carbon footprint. Importantly,
we investigate whether single-step speed-up translates into
multi-step retrosynthesis search times. This work thus
demonstrates the promise of scaling up a retrosynthesis
transformer model to reduce carbon footprints while retaining
prediction accuracy and multi-step success rates.

■ METHODS
Data Collection and Processing. We adapted the

Chemformer model10 into different KD variants. The baseline
Chemformer was originally pretrained on a masked auto-
translation task on approximately 100 million randomly
selected SMILES strings of molecules from the around 1.5
billion molecules in the ZINC-15 data set.27 It was then fine-
tuned on the USPTO-50k for the retrosynthesis task.10 We
collected the corresponding data set, original model weights,
and parameters from Irwin et al.10 The USPTO-50k data set
contains around 50,000 reactions and was here used to
benchmark the model variants. Each Chemformer variant was
trained on UPSTO-full, gathered from Genheden et al.28 Both
USPTO-50k and UPSTO-full originated from the USPTO
data set from Lowe.29 To evaluate the multi-step search, we
used 5000 ChEMBL structures from Genheden et al.28 The
stock was taken as the building block set of 24.7 million
molecules from eMolecules.30

The original Chemformer vocabulary was constructed by
applying regular expression matching, similar to Schwaller et
al.,9 to the canonical SMILES31 of the molecules in the
ChEMBL 27.32 The total 523 tokens include 250 chemical
tokens, 200 tokens that are unused during the pretraining stage
but filled during fine-tuning, and 73 token meta-tokens, such as
masking, padding, beginning-of-sentence, and end-of-sentence
tokens, or tokens for the originally implemented molecular
optimization task. Tokenization and augmentation of SMILES
was performed by the ChemformerTokenizer which extends
the routines in PySMILESUtils.33

Model Architectures. We experimented with three
different model architectures in Chemformer, so-called
model variants, including the original Chemformer architec-
ture,10 the Perceiver architecture,23 and the Switch Transo-
former.20 The original Chemformer architecture is a BART
(Bidirectional and Auto-Regressive Transformer) model with
encoder-decoder architecture,6,34,35 using sinusoidal positional
embedding, prenorm layer-normalization, and GELU activa-
tion functions. A Perceiver variation was used,23 keeping the
original Chemformer architecture with the exception of an
initial cross-attention layer in the Transformer encoder. This
cross attention is combined with a learnable projection tensor,

which was used for the query, and the embedded source
sequence was used as the key-value pair, projecting the internal
representation to a smaller dimension. Finally, to experiment
with induced sparsity, we used the Switch Transformer20 layer
implementation of Varuna Jayasiri.36 In the Switch trans-
former, the traditional feed-forward was replaced with eight
experts with feed-forward layers of one-eight times the size of
the original model.

Model Training and Hyper-Parameter Optimization.
Model training was performed using PyTorch (version 2.2.2)37

and Lightning (version 2.2.1)38 on a single GPU. Most of the
original training parameters from the Chemformer paper10

were used to allow for direct comparisons (Table 1). Using
Optuna,39 hyper-parameter optimization was carried out using
the Bayesian Tree-structured Parzen estimator (TPE).40,41

Inspired by earlier work on hyper-parameter optimization for
multi-step retrosynthesis,42 we set the objectives for the
optimization to the validation greedy search accuracy, and an
adapted version of the rate-correct score (RCS).43 It was
obtained by dividing the correct samples by the cumulative
time (Correct Samples

Total Time
). The choices of the model parameters are

given in Table 1.

Distillation was performed using implementations from
Textbrewer (version 0.2.1 - post1),44 which was adapted to
Chemformer. Cross entropy losses were computed on the
output values (response-based KD) or internal representations
using direct comparison (feature-based representations) with
or without standard cross-entropy loss, also named hard-label
loss. All losses were combined using a weighted average based
on weight hyper-parameters, normally set to 1.0, which were
subsequently normalized to sum to one. Feature-based
representations were compared between the output of the
embedding, encoder, or decoder modules.

Carbon footprints were approximated using eco2AI (version
0.3.9).45 CO2 emissions were approximated by multiplying the
energy consumption by the average emissions coefficient of a
country, specifically Sweden.

Table 1. Training Hyper-parameters for the Baseline
Implementationsa

Training

Parameter UPSTO-50k UPSTO-full Optimization

Batch size 128 128 128
Epochs 500 50 100
Scheduler cycle cycle cycle
Learning rate 10−3 10−3 (10−2,10−3,10−4)
Model Dim 512 512 (64,128,256,512)
Feed-forward 2048 2048 (64,128,256,1024,2048)
Encoder Layer 6 6 (1,2,3,6)
Decoder Layer 6 6 (1,2,3,6)
Attention Head 8 8 8
Switch Experts 8 8 N/A
Perceiver Dim 32 32 N/A
Max seq length 512 512 512
Vocab Size 523 523 523
Dropout 0.1 0.1 0.1
Optimizer Adam Adam Adam
aMultiple values represent choices for hyper-parameter optimization.
Feed forward dimension was divided by the number of experts in
Switch Transformer architectures.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c01821
J. Chem. Inf. Model. 2025, 65, 1771−1781

1772

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c01821?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Multi-step Search. The multi-step search was performed
using AiZynthfinder (version 3.6.0).2,26 To compare the
performance of Chemformer to the current in-production
model, we used the template model from Genheden et al.28

The multi-step expansion policy was set to either template-
based, Chemformer-based (including all models developed
here) or multiexpansion. In the multiexpansion policy, the
template-based was combined with the original Chemformer
model trained on USPTO-50k. The maximum search time per
search was set to 500 s, maximum iterations to 100, and the
maximum depth to 6.

We evaluate the performance of the multi-step search in
terms of search time (elapsed wall-clock time) and success rate.

The success rate is defined as the percentage of the ChEMBL
targets for which the search finds at least one synthesis route
leading to starting material in the e-Molecules stock (also
referred to as solvability). Although not a measure of route
quality, it is a necessary condition to find the solved synthesis
routes. The measure of route quality is a debated topic,14,46

and herein we have chosen not to evaluate it because our
primary objective is to compare the effect of different single-
step models on multi-step search. To compare the routes
produced by the different models, we compute the route
similarity between the highest-ranked routes for each target.47

The routes were ranked by the AiZynthFinder reward function,
which takes into account the fraction of starting material in
stock and the length of the route.48

■ RESULTS
Investigating Alternative Model Architectures for

Retrosynthesis Prediction. In order to assess the general
effects of using alternative architectures, we investigated three
different architectures, the baseline BART transformer model,
the mixture-of-experts Switch Transformer, and the linear
scaling Perceiver model. Additionally, we studied the effects of
halving the number of encoder and decoder layers and using
KD on the various architectures. To isolate the effects of
architecture and KD, all other hyper-parameters were kept
identical to the baseline.

First, we look at the changes originating from the
architecture changes alone. The Switch transformer architec-
ture initially yielded similar effects as training from scratch with
the baseline Transformer (Table 2), generating similar top-1
and top-10 accuracy. However, the Switch Transformer is
more than twice as slow, 39.42 s over 17.20 s per batch, and
has a significant increase in the carbon footprint of training
similarly sized Transformers from scratch. The Perceiver
architecture similarly yields a reduction in accuracy, 47.2% over
51.1% top-1 accuracy, but has the fastest inference times at
14.10 s per batch.

Next, we investigated the effects of halving the number of
model weights from around 45 to around 23 M through the
reduction of encoder and decoder layers. This architectural

Figure 1. Illustrative example of different types of knowledge
distillation. The information from a teacher model can be transferred
to a student model in three ways. Response-based KD learns from the
output of the teacher model. Feature-based KD, which learns from the
internal representations. And relationship-based KD, which learns
from the angles/distances between samples of the same models and
correlates them between models.

Table 2. Effects of Alternative Model Architectures On Single-step Retrosynthesis Predictiona

model size sample top 1 top 10 percentage percentage CO2

time (s) accuracy accuracy invalid unique emissions (g)

Full Size
Chemformer 44.7 M 17.72 53.5 61.6 0.68 18.06 0.62
Transformer 44.7 M 17.20 51.1 64.2 0.89 22.03 0.48

Switch 47.9 M 39.42 50.9 64.3 1.04 24.54 0.78
Perceiver 45.7 M 14.10 47.2 57.5 1.02 22.92 0.66

Half Size
Transformer 22.6 M 9.25 50.8 70.8 1.34 31.44 0.28

Switch 24.2 M 16.00 49.6 70.3 1.64 35.29 0.38
Perceiver 23.7 M 7.84 42.8 57.2 1.91 31.92 0.25

Knowledge Distillation
Transformer 22.6 M 11.57 50.6 68.3 4.40 78.34 0.51

Switch 24.2 M 18.76 32.6 62.9 5.54 81.04 0.99
Perceiver 23.7 M 8.49 29.0 58.4 6.67 85.24 0.26

aAll models are trained from scratch with different architectures, including an encoder-decoder transformer, an implementation of the Switch
transformer with mixture-of-expert layers, and an implementation of the Perceiver model. CO2 emissions are estimates based on kWh consumption,
GPU type, and location of the compute cluster.
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change yielded a small decrease in top-1 paired with an
increase in top-10 accuracy for both the baseline Chemformer
as well as the Switch Transformer (Table 2). Halving the
amount of encoder and decoder layers resulted in slightly
halved inference times. However, the Perceiver model
experienced a marked decrease in top-1 accuracy when halving
the model size compared to the BART and Switch models.
Top-10 accuracy in the Perceiver also remained similar to the
large-sized variant, while top-10 accuracy actually increased
substantially in the other two architectures upon decreasing the
model size. Carbon footprints also decreased in all half-size
model variants, although the effect was less than the reductions
in sample times.

Finally, we examined whether training the architecture
variants with KD could reduce the inference time while
preserving high accuracy. Response-based KD was used for all
three variants, whereas feature-based KD on the Encoder and
Decoder was used on the baseline and Switch transformer but
was not used in the Perceiver model due to the changes of
internal sequence length which are inherent to the model. The
results of KD on the original Chemformer indicated that most
of the reduction in top-1 accuracy from 53.5 to 50.6% could be
explained by the significant increase of the invalid and unique
molecules during inference (Table 2). When comparing the
original Chemformer to the KD Transformer, we observed a
reduction in sample time and carbon footprint, paired with
slight reductions in model accuracy (50.6% vs 53.5%). The
Switch transformer, however, displayed detrimental results
when trained with KD, reaching at most 32.6% top-1 accuracy.
The Perceiver KD had the worst results overall, with a top-1
accuracy of 29%, while the speed-up was not substantial
compared to the BART Chemformer (8.49 s vs 11.57 s).
Notably, this difference is likely due to the lack of a feature-
based KD.

Overall, reducing the number of encoder and decoder layers
decreases batch inference times and carbon footprints but
impacts model accuracy when evaluated on similar training
times. Additionally, changes in architecture are not directly
compatible with the KD of the original architecture, as
indicated by the low top-1 and top-10 accuracy scores when
using KD on alternative architectures. In conclusion, for single-
step prediction, decreasing the size of the BART Chemformer

variant appears to be more efficient (in accuracy, sample time,
and fraction of invalid) than employing knowledge distillation
on any architecture variant.

Hyper-parameter Optimization Using Knowledge
Distillation To Increase Inference Speed. To assess the
impact that hyper-parameters have on single-step retrosyn-
thesis for speed, Bayesian optimization was used to optimize
the types and proportions of KD during training, model
dimension, feed-forward dimension, number of attention
heads, and number of encoder and decoder layers (Figure
3). We used the optimization objectives of validation accuracy
and the validation rate-correct score (RCS) on one of three
training variations: training from scratch (randomly initializing
the weights with Xavier uniform distribution), response-based,
and feature-based KD using the original Chemformer (KD:
Chemformer) or the pretrained model trained on Zinc (KD:
Zinc). The Pareto front indicates the highest validation
accuracy in combination with the fastest average inference
time, shown in red.

First, we observe the overall model quality generated by the
hyper-parameter optimization. By optimization on either high
validation accuracy or RCS, models were obtained that were
both fast and accurate. However, the Pareto front shows that
no model achieves a top-1 accuracy above or near the original
Chemformer model of 53.5%. The highest validation accuracy
was achieved using the optimal parameters from randomly
initialized models, 46.7% (Table A1, RandomInit). Overall,
most configurations were dominated by KD using the
pretrained Zinc model (Figure 3), with the highest accuracy
models on the Pareto front coming from the randomly
initialized and KD Chemformer models.

Finally, specific hyper-parameters that contributed to the
highest validation accuracy and RCS models are identified
(Table A2). All models had the maximum number of six
encoder layers and fewer than six decoder layers, with the
exception of the slowest, best-performing randomly initialized
model. Furthermore, all chosen models, with the exception of
the randomly initialized models, selected the largest possible
feed-forward and embedding dimensions of 2048 and 512,
respectively. With respect to KD, models distilling from the
Zinc models selected high values for all possible KD values,
whereas models distilling from Chemformer prioritized

Figure 2. Illustrative example of model training types. Visualization of different types of model training employed, including standard training, fine-
tuning, and knowledge distillation.
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embedding and decoder feature-based KD over encoder
feature-based KD and response-KD, with all preferring training
knowledge distillation in combination with standard training.
In conclusion, hyper-parameter optimization, in general,
showed that on average KD based on the pretrained zinc
model is closest to the Pareto front; however, all training
methods have models on the Pareto front.

Effects of Hyper-Parameters on Fully Trained Models.
Here, we train a variety of models based on the Transformer
architecture to analyze the effects of hyper-parameter tuning
on both the original data set and transferring these to the larger
data set (Figure 2). Table 3 shows a full breakdown of beam
search accuracies including and excluding valid and unique
SMILES.

When analyzing the randomly initialized transformer models
trained on USPTO-50k, we compared each model with
baseline parameters to the model with optimal hyper-
parameters in terms of accuracy and RCS (Figure 4). When
optimizing for accuracy, the resulting model had around 25%
of the original size with only a 1.4% decrease in top-1 accuracy,
coupled with a 5% increase in top-10 accuracy (Table 3).
Optimizing on the RCS instead resulted in a model 10% of the
original size with a 5% drop in the top-1 accuracy and a 16%
increase in the top-10 accuracy. Notable, even though the
sampling time dropped from 9.67 to 6.52 s between optimizing
on accuracy instead of RCS, the carbon footprint was slightly
higher for the RCS-optimized model (0.40 g instead of 0.34 g).
However, both were substantially lower than the original
implementation, indicating that carbon footprints decreased in
these optimized models.

Subsequently, we analyze the difference between the original
model and the newly retrained version to verify that changes in
implementation did not result in significant changes in
baselines. The results are shown in Table 3. First, we observed
no significant difference between accuracy scores and only
slight deviations in invalid and unique values. However, a
significant difference was observed in the carbon footprints,

which can be mostly attributed to the loading of model weights
of the original model over inference after training. Additionally,
models were also trained using the lowest validation loss,
which showed lower top-1 accuracy but increased top-10
accuracy in all randomly initialized and fine-tuned models
(Table A5). The highest change was the Chemformer (FT-
Zinc) which went from 53.6 top-1 and 61.7 top-10 accuracy to
48.3 top-1 and 79.7 top-10 accuracy, for the last and optimal
validation epoch, respectively. In this setting, the optimized
models showed minimal differences or even improvements
with respect to the randomly initialized smaller models, all
reaching above 79% top-10 accuracy.

Furthermore, we compared the effects of KD on the full
model predictions using the original Chemformer and the Zinc
model with the original. Using KD, all models are significantly
faster with respect to the randomly initialized models and Zinc
fine-tuned models. However, this is paired with a decrease in
the top-1 and top-10 accuracy scores. Furthermore, significant
increases in the percentage of invalid smiles generated are
observed in the KD models. Specifically, the best-performing
Chemformer-based KD with optimal hyper-parameters for
accuracy has a top-1 accuracy of 48.5% compared to 53.5% of
the original Chemformer. A major explanation for this is the
high percentage of invalid predictions, which range from 2.78%
up to 23.32% for the KD models. These models are on average
half the size of the original implementation but are as fast or
faster than the randomly initialized model optimized for RCS,
which is only 10% of the original model.

When looking at the ability of transferring optimal hyper-
parameters across related training data, we observe similar
effects found in the USPTO-50k models but more
pronounced. The randomly initialized baseline model has a
6% higher top-1 and 4% higher top-10 accuracy over the
smaller randomly initialized model with hyper-parameters
optimized on accuracy from the UPSTO-50k data set (Table
3). The decrease in sample time and carbon footprint was also
less pronounced between the accuracy model and the baseline
model. The decrease in accuracy was larger in the randomly
initialized model with parameters optimized for RCS, where
accuracy dropped to 29.8 and 57.8%, for top-1 and top-10
respectively. This constitutes a 16.7 and 14.9% drop in
accuracy from the baseline model for top-1 and top-10
accuracy, respectively.

Overall, all optimized models are faster but less accurate
than the baseline and original implementations. Furthermore,
the original implementations outperform all other models in
top-1 accuracy but have lower top-10 accuracy and percentage
of unique predictions. Additionally, the original implementa-
tions have carbon footprints higher than those of the newly
trained models. Finally, we additionally investigated the
influence of the invalid percentage and the unique percentage
on top-n accuracies and observed minimal differences between
top-n accuracy with or without valid and uniquely valid
predictions (Table A3).

Translating Single-Step into Multistep. In order to
assess whether single-step speed-ups translate to a multistep
retrosynthesis search, a full multistep retrosynthesis search on
5000 ChEMBL molecules was analyzed for each of the single-
step models. We compared model performances with a small
template-based model which is currently used as the default in
the AiZynthFinder framework. We focus our analysis on the
speed, carbon footprint, and percentage of targets for which a
route to starting material in stock is found (percentage solved).

Figure 3. Results of hyper-parameter optimization with two
optimization objectives and three training variations. Greedy search
validation accuracy of hyper-parameter optimization with Pareto front
of most accurate and fastest models. Three training variations include
training from scratch, KD using the original Chemformer, and KD
using the pretrained model trained on Zinc. Red points represent
models chosen for further analysis for each variation of the highest
rate correct score and highest accuracy.
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Carbon footprints are noted in grams and are mostly in
agreement with search times.

First, we analyzed the differences between the original
implementations and newly trained baselines (Table 4). When
comparing the original implementations of the randomly
initialized model and the Chemformer model and fine-tuning
the Zinc model (FT-Zinc), we observed only small differences
(Table 4). Most notable was the difference in the percentage
solved between the original and the retrained baseline of the
Chemformer model which decreased from 54.6 to 56.2% and
the small decreases in carbon footprints from the original
implementations, 196.34 and 123.46 g, to the baseline
implementations, 168.15 and 110.17 g, for the randomly
initialized and Chemformer models, respectively.

When investigating model behaviors on a single- and
multistep basis, we could draw five key conclusions. First, an
increased training data size, as exemplified by going from
USPTO-50k to USPTO-full, showed significant increases in
percentage solved but also markedly increased both search
time and carbon footprints, with similar model calls and policy
probabilities. Second, single-step top-1 is not predictive of the
number of model calls (Figure 5). In contrast, multistep search
times are more correlated with the average number of model
calls per search. The number of model calls reflects how often
the single-step model was queried over the retrosynthesis
search. Third, the top-10 accuracy and policy probability are
the major predictors of the average number of model calls, with
lower policy probability correlating with a higher number of

Table 3. Single-step Model Full Training Model Statistics Based on the Transformera

training size sample top 1 top 10 percentage percentage CO2

time (s) accuracy accuracy invalid unique emissions (g)

USPTO-50k Original
RandomInit 44.7 M 17.97 50.6 63.1 0.93 21.90 0.70

FT-Zinc 44.7 M 17.45 53.5 61.6 0.68 18.06 2.01
Baselines

RandomInit 44.7 M 16.20 51.3 63.7 0.87 21.75 0.76
FT-Zinc 44.7 M 16.73 53.6 61.7 0.82 18.61 0.61

Optimized: Randomly Initiated
Opt: Acc 11.3 M 9.67 50.9 70.2 1.14 30.96 0.34
Opt: RCS 4.0 M 6.52 45.8 79.5 2.52 62.04 0.40

Optimized: KD Chemformer
Opt: Acc 27.9 M 6.94 48.5 60.4 2.78 29.71 0.33
Opt: RCS 23.7 M 4.58 43.3 55.7 23.32 57.27 0.29

Optimized: KD Zinc
Opt: Acc 27.9 M 6.64 19.0 53.5 7.92 60.56 0.33
Opt: RCS 23.7 M 4.30 19.5 49.1 21.03 71.73 0.24
USPTO-full Baselines
RandomInit 44.7 M 29.69 46.5 72.7 1.10 66.46 12.30

FT-Zinc 44.7 M 24.22 47.9 72.6 0.98 60.53 6.42
Optimized: Randomly Initiated

Opt: Acc 11.3 M 21.85 40.2 68.6 1.23 73.21 9.40
Opt: RCS 4.0 M 7.55 29.8 57.8 1.64 75.59 2.25

aModels are trained either from scratch (RandomInit), fine-tuned from training on Zinc (FT-Zinc), using KD on the Chemformer model (KD-
Chem) or KD on the zinc model (KD-Zinc). Hyper-parameters are either from the original publication (original), retrained models (baseline), or
using hyper-parameters gathered from an Optuna search (opt: Acc/RCS) where specific parameters depend on the training set. Models are then
trained and evaluated on USPTO-50k and USPTO-full. Reported statistics are based on beam-search results on random split test set values.

Figure 4. Median multi-step sample times set against single-step
sample time. Median sample times of 5000 ChEMBL molecules set
out against single-step average beam search sample times. Models
include those trained on USPTO-50k, including the original models
highlighted in light blue and models trained for USPTO-full.

Figure 5. Median multi-step sample times set against top-1 single-step
accuracy. Median search times of 5000 ChEMBL molecules set out
against the accuracy of single-step models. Models include those
trained on USPTO-50k, including the original models highlighted in
light blue, and models trained for USPTO-full.
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model calls. The exceptions are the template-based and KD
models, where low policy probability is more associated with
fewer model calls, as well as the KD models with a high
percentage of invalid molecule predictions where lower policy
probability is also associated with fewer model calls. Fourth,
the percentage of searches where a molecule has a solved route
is also inversely correlated with single-step top-1 accuracy.
Additionally, the percentage solved is associated with the
number of model calls, where fewer calls correlate to a higher
percentage solved. Finally, choosing the final epoch as done in
previous research results in faster but fewer solved routes
(Table A6). We observe that using the lowest validation loss
checkpoints, with lower top-1 accuracies, but higher top-10
accuracies, results in significant increases in model calls. This is
paired with increases in percentage solved, where the baseline
FT-Zinc increases from 54.6 to 84.1% when the lowest
validation weights are used.

Taken together, an uncertain diverse model may lead to
more model calls, as it promotes exploration in the tree search.
The multi-step efficiency of a single-step model thus depends
on the overall feasibility and quality of the predicted top-10
reactions. Moreover, the ability to properly rank predictions
becomes important, something that is difficult to assess in a
single-step setting. While all predictions produced by the
single-step model affect the multi-step performance, the top 10
only considers the best prediction.

Route Similarity. To investigate the similarity between the
predicted routes from different models, the average route
similarity was analyzed using a recently published metric.47 In
this analysis, we only compared the top-ranked routes of each
target and only made comparisons where both methods
produced a route to commercial starting material (Figure 6).
Most methods show an average route similarity of approx-
imately 0.7 or higher. This indicates that the methods on
average produce routes that share a majority of the synthetic
strategy. Thus, these methods would produce routes of similar
quality. However, the two KD-Zinc models stand out with
their low route similarities to those of the other model routes.
This can be explained by these two models producing routes
with fewer starting materials relative to the route length, which
is not considerably different compared to routes generated by
the other models (Table A4). In Figure A1, we show routes for
an example target, CHEMBL1668049, that can be synthesized
in only one step. The template-based and KD-Chemformer-
OptRCS models suggest simple esterification. This is likely the
suggestion of KD-Zinc-OptRCS as well, but only one of the
reactants is produced. This causes the similarity metric to
return zero, as it cannot determine that the bond-forming
similarity is in fact identical in all of these three routes. This
feature is consistent for the KD-Zinc models; 44.1% of the
routes produced by the KD-Zinc-OptRCS model end up in a
single starting material, compared to 11.8 and 1.8% for the

Table 4. Multi-Step Retrosynthesis Searcha

median average over search average per molecule

search search CO2 percentage # solved policy # model

training time (s) time (h) emissions (g) solved (%) routes probability calls

USPTO-50k Including template-based model
template-based 26.01 40 0.25 67.3 20.74 0.17 446
multiexpansion 382.08 495 2482.29 89.0 159.17 0.19 1832

Original
RandomInit 25.48 62 196.34 61.5 132.92 0.48 1384

FT-Zinc 19.16 47 123.46 56.2 125.21 0.53 1259
Baselines

RandomInit 27.29 69 168.15 60.4 134.19 0.48 1391
FT-Zinc 18.54 46 110.17 54.6 120.21 0.54 1277

Optimized: Randomly Initiated
Opt: Acc 40.96 94 237.94 69.7 136.59 0.39 1641
Opt: RCS 57.71 93 258.59 84.8 134.16 0.22 1733

Optimized: KD Chemformer
Opt: Acc 13.19 35 106.63 60.3 110.48 0.40 1053
Opt: RCS 15.37 34 97.60 62.4 65.99 0.28 773

Optimized: KD Zinc
Opt: Acc 13.59 29 101.10 63.9 37.77 0.15 442
Opt: RCS 10.82 25 61.89 63.5 35.50 0.16 365

USPTO-Full Baselines
RandomInit 138.87 259 967.68 87.5 119.53 0.22 1493

FT-Zinc 149.99 271 1340.05 86.8 116.00 0.22 1472
Optimized: Randomly Initiated

opt: acc 201.37 325 975.75 88.4 116.86 0.20 1500
Opt: RCS 107.15 180 552.17 91.1 122.95 0.17 1701

aTranslating effects of single-step models to multi-step search. The models used here are the standard template-based model, a multi-expansion
model combining template-based, and the original Chemformer. Furthermore, it includes the original implementations of the Chemformer paper,
randomly initialized and fine-tuned from the pretrained Zinc model (RandomInit, FT-Zinc) and the retrained baselines. Additionally, optimized
versions used either accuracy or rate correct score (OptAcc, OptRCS) of the randomly initialized (RandomInit), KD using Chemformer (KD-
Chemformer), and KD using the pretrained Zinc model (KD-Zinc). Finally, it also includes models trained on USPTO-full.
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KD-Chemformer-OptRCS and template-based models, respec-
tively. Five illustrative examples are shown in Figure A2 to give
intuition about the general differences between template-based
and template-free methods. For some disconnections, the
second reactant may be small such that it exists in the stock,
e.g., a bromination agent or the reactant in the example above.
However, it is likely that the second reactant in some cases
requires further disconnections to reach the starting materials.

■ DISCUSSION
In this study, we adopted alternative transformer architectures
and knowledge-distillation (KD) to boost the retrosynthesis
prediction efficiency with Chemformer. Model training
variations were compared to the original Chemformer,
uncovering the complex interplay between the single-step
model and multi-step search. Specifically, we focused on the
speed-up in the single-step model variants and how this
influenced multi-step retrosynthesis performance. This builds
on earlier work with the AiZynthFinder tool12,26 which has
been used extensively in drug discovery projects.4 The models
developed herein can furthermore be used in other retrosyn-
thesis frameworks such as Synthesus14 or ASKCOS.49

Single-Step Retrosynthesis Prediction. Alternative
Model Architectures. The initial findings indicated several
important aspects. First, our investigation extended to
alternative model architectures, including the Switch Trans-
former20 and the Perceiver model.23 The Switch Transformer
showed similar accuracy as the baseline Transformer model
but was significantly slower. This was possibly due to a
suboptimal implementation and the usage of only a single
GPU, making the sparsity effects of the original implementa-
tion less effective. The Perceiver model showed promise,
having similar accuracy to the transformer trained from scratch

while being faster. However, we found that these alternative
architectures under-performed when coupled with KD. The
Switch transformer and the Perceiver models were chosen as
alternative architectures as these architectures were relatively
closely related to, though projected to be faster than the
original Transformer architecture. The fact that these model
variants under-performed when trained with KD indicates that
the benefits of KD may not be applicable to all model
architectures and emphasizes the need for careful evaluation.
One notable aspect here is that the Perceiver model, which
uses different dimensions, was unable to use the feature-based
KD, and thus solely relied on the response-based KD. Future
work could focus on implementing and evaluating the relation-
based KD,16 which uses comparisons of in-between batch
distances and angles to match between models, making them
more impervious to dimensional changes.

Hyper-Parameter Optimization. During hyper-parameter
optimization, we found that the Pareto front contained mostly
smaller decoders and larger encoders. This is expected
behavior as the inference calculations were based on
autoregressive greedy search, which iteratively calls the
decoder to make its predictions. Using Optuna, we trained
150 models, including three training settings from random
initialization, KD using Chemformer, and KD using the
pretrained Zinc model. However, the Optuna search allowed
for duplicate parameter suggestions, resulting in on average
seven to eight duplicate model settings. This is likely because
some models had especially poor validation averages (around
0% accuracy margin). Additionally, no model reached a high
accuracy, none higher than 46.7%. This is likely due to the
theoretical maximum of the model parameters, where the
original implementation parameters were set as the maximum.

Figure 6. Comparison of route similarity of the highest ranked routes of each model. Route similarity indicates that most models have high route
similarity and therefore high route quality, with the exception of KD-Zinc models, which predict significantly less reactants per reaction step.
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Finally, the Pareto front mostly included pretrained KD
models.

Fully Trained Models and KD. Translating the effects of
hyper-parameter optimization to fully trained models, we
observed mixed results. First, comparing optimized models
with baseline implementations indicated that we were
successful in creating increasingly faster models. Interestingly,
KD models had around half of the baseline implementations
but were similar or even faster than the fastest trained from
scratch model with five times fewer model parameters. Another
interesting finding is that speed did not necessarily translate
one-to-one with decreases in carbon footprints. This is possibly
due to the rather basic method of calculating carbon footprints
through power usage over the inference time. However, we did
observe a general trend where smaller, faster models translate
to lower carbon emissions. Moreover, we also observed a
substantial increase in the number of invalid smiles generated
using smaller models, especially when using KD. This does
indicate that a smaller decoder size comes with a cost, and KD
might introduce competing objectives during training, meaning
that the model might prioritize similarity to the original model
over correct SMILES prediction. This could be the reason why
the pretrained models dominated the Pareto front but had the
worst performance during full-size training. Finally, we
observed that using the last epoch for inference on USPTO-
50k results in models more optimized on top-1 accuracy,
where models using the optimal validation loss (around 100−
200 epochs) result in models better optimized for top-10.

Overall in the fully trained models, KD generally leads to
lower accuracy compared to standard training methods, which
aligns with previous research,15 possibly due to capacity
issues.50 Relation-based KD could play a bigger role possibly
increasing accuracy in future research,16 especially when
considering alternative architecture. Additionally, using the
top-10 accuracy in USPTO-50k might be a misleading
benchmark, as we observed that the top-1 accuracy was
inversely related to the top-10 accuracy in USPTO-50k but not
in USPTO-full. This indicates that the long training on
USPTO-50k does not translate well to beam search accuracy,
as the model becomes overconfident in optimizing for low-
diversity, high-accuracy responses over diversity.

Multi-step Retrosynthesis Is Less Dependent on
Single-Step Expansion Models than Policy. Impact of
Single-Step Speed in Multi-step. In this research we also
investigated the relation between single-step speed and multi-
step speed; however, this relation was less predictive than
initially expected. We mostly find that multi-step search times
are associated more with a higher number of model calls,
which in turn is impacted by higher average policy
probabilities. This average policy probability is a reflection of
model confidence, thereby influencing the exploration/
exploitation trade-off in the Monte Carlo search as it depends
on the prediction probability. This is further supported by the
smaller number of model calls made by the original models.
Future research into increasing multi-step speed might prefer
to look into optimizing the exploration/exploitation axis of the
multi-step research.

Solvability and Exploration. Furthermore, there is also a
relation between the percentage of solved targets (also referred
to as solvability or success rate) and the number of calls, which
can be interpreted as higher exploration, resulting in more
solved routes. However, there also is a slight inverse
relationship between the percentage solved and the single-

step top-1 accuracy, meaning that the accuracy of the solved
routes might not be as precise as routes from higher-accuracy
single-step models. However, top-10 is positively related to the
number of calls and solvability, especially when looking at
using optimal validation loss. This indicates that future
research interested in multi-step solvability should focus on
top-10 accuracy, not top-1 accuracy in single-step models.
Finally, we observe that the models trained on the larger
USPTO-full model have an increased percentage solved, which
is expected due to their higher chemical space coverage.
However, this is also paired with a significantly decreased
inference speed, even with identical model parameters. In
previous research, the original Chemformer has been shown to
under-perform on USPTO-50k compared to other models, but
outperform on larger, more complex data sets.12,13,51 This can
likely be explained by the increase in the percentage of unique
predictions from beam search, which might also translate to
better solvability for more difficult targets. Although solvability
does not correspond to route quality, it is a necessary
condition to find solved routes,14,46 and as we focus on
comparison between models in this study we leave the
assessment of route quality for future studies. We include
several examples of retrosynthesis plans in the Support
Information for the interested reader and publish all produced
routes as a digital download.

Route Similarity. Because the template-based model is used
extensively in drug discovery projects,4 we are confident that
this is a good baseline for comparing routes. Therefore, we
used a route similarity metric47 and found that most models
produce highly similar routes compared with the baseline
template-based model (around 0.7−0.8). In other words, the
resulting routes are often very similar regardless of the
solvability or speed. The exception to this was the routes
generated with KD-Zinc models, which exhibit considerably
lower similarity. The reason for this route disparity stems from
the propensity of KD-Zinc models to predict only a single
reactant for the reactions. Notably, these models were distilled
from the pretrained model, which was trained to predict single
molecules. These conclusions are supported by both route
statistics and the illustrative example given in the route analysis
case study.

In general, using single-step models in a multi-step setting,
we need to further evaluate and determine the translation of
effects of single-step characteristics on multi-step behavior.
Specifically, in the field of retrosynthesis, multi-step behavior
analysis is still an open question with end-users having various
preferences. For example, a reduction in accuracy might be
acceptable given the advantages in model size and efficiency
gained. Specifically, as mentioned before, single-step retrosyn-
thesis accuracy may not directly translate in a multi-step
setting, where diversity might play a more important role13 and
speed might allow for higher exploration. In general,
exploration versus time costs should be evaluated further,
and exploration should be better calibrated based on single-
step models, not necessarily viewed as independent.

■ CONCLUSIONS
In this research, we investigated the potential of hyper-
parameter tuning, alternative model architectures, and knowl-
edge distillation (KD) to accelerate both single-step and multi-
step retrosynthesis prediction. The initial motivation was to
reduce model size in a system that makes multiple model
queries, hypothesizing that speed increases in a single-step
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setting would have a compounding effect in a multi-step
setting. While KD offered promising speed improvements,
these gains were often accompanied by reduced accuracy and
the effectiveness of KD varied significantly across different
model architectures. This suggests that the benefits of KD are
architecture-dependent and that careful tuning is required to
avoid undesirable trade-offs. Further investigations into
multispeed settings uncovered important aspects of single-
step retrosynthesis models that impact multi-step, including
top-10 accuracy influence on solvability and the influence of
exploration on multi-step speed. Future research into retrosyn-
thesis prediction should focus on optimizing the exploration/
exploitation dynamics, particularly in multi-step scenarios, and
further refine KD techniques, alternative architectures, and
hyper-parameter optimizations to balance speed and accuracy.
Investigating hybrid methods that combine the strengths of
KD with advanced model architectures may also prove useful
in improving both the efficiency and the robustness of
retrosynthesis predictions. Although reducing model size and
improving single-step speed are important, our results indicate
that multi-step search efficiency is more significantly influenced
by the diversity and confidence of single-step models. In
Monte Carlo-based (MC) multi-step retrosynthesis, these
factors play a crucial role in balancing exploration and
exploitation during the search process, often outweighing the
direct impact of single-step model speed.
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