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A barley pan-transcriptome reveals layers 
of genotype-dependent transcriptional 
complexity
 

A pan-transcriptome describes the transcriptional and post-transcriptional 
consequences of genome diversity from multiple individuals within 
a species. We developed a barley pan-transcriptome using 20 inbred 
genotypes representing domesticated barley diversity by generating and 
analyzing short- and long-read RNA-sequencing datasets from multiple 
tissues. To overcome single reference bias in transcript quantification, we 
constructed genotype-specific reference transcript datasets (RTDs) and 
integrated these into a linear pan-genome framework to create a pan-RTD, 
allowing transcript categorization as core, shell or cloud. Focusing on 
the core (expressed in all genotypes), we observed significant transcript 
abundance variation among tissues and between genotypes driven partly 
by RNA processing, gene copy number, structural rearrangements and 
conservation of promotor motifs. Network analyses revealed conserved 
co-expression module::tissue correlations and frequent functional 
diversification. To complement the pan-transcriptome, we constructed a 
comprehensive cultivar (cv.) Morex gene-expression atlas and illustrate how 
these combined datasets can be used to guide biological inquiry.

Barley is a highly adaptable cereal crop that underpins key food, feed 
and drink sectors across the world1. Its diploid inbreeding genetics 
have led to it being considered a model for more genetically complex 
temperate small grain cereals of the Triticeae tribe, which include hexa-
ploid, tetraploid and diploid wheat, outbreeding rye and synthetic 
Triticale2,3. A blend of gene-centric and comparative genomic studies 
has demonstrated that barley’s morphological and developmental 
plasticity and general adaptability are, in many cases, the result of 
natural or induced genetic variants that enhance reproductive suc-
cess in diverse agroecological environments4–7. Recently, the type and 
scale of genetic variation in the barley genome were revealed in detail 
through a comparative analysis of chromosome-level sequence assem-
blies from diverse genotypes that are representative of the species’ 
global diversity space8–10. The resulting ‘pan-genome’ revealed the 
impact of both natural and induced postdomestication mutations on 
genome integrity and the origin of phenotypic variants selected and 
maintained over time through human selection11. While these data 

are proving exceptionally powerful, the broader consequences of the 
observed genome diversity have not yet been assessed. Here we explore 
the functional implications of genotypic diversity by characterizing the 
landscape of transcriptional variation within and between the barley 
genotypes used to construct the V1.0 pan-genome8.

Results
A barley pan-transcriptome
To construct a barley pan-transcriptome, we performed RNA- 
sequencing (RNA-seq) and PacBio Iso-seq on three replicates of five 
diverse tissues (Fig. 1a) isolated from the 20 genotypes represent-
ing V1.0 of the barley pan-genome8. We identified ‘tissue’ as the main 
driver of transcript diversity (Fig. 1b). To avoid genotypic bias intro-
duced by using a single reference for mapping RNA-seq reads12, we 
produced genotype-specific reference transcript datasets (GsRTDs) 
for each of the 20 individuals. GsRTDs assemble a broader range of 
transcripts than a single reference, producing more comprehensive 
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transcription start and stop sites and copy number variation (CNV) 
across all 20 genotypes. The resulting pan-RTD, PanBaRT20, includes 
79,600 genes and 582,000 transcripts, with a diversity of 7.3 tran-
scripts per gene. The GsRTDMorex provided exceptional mapping suc-
cess with only 32 genes (0.08%) unmapped, likely due to cv. Morex 
being the ‘backbone’ of the linear pan-genome reference. In contrast, 
on average 9.81% of the genes in a GsRTD were not present in Pan-
BaRT20 (Extended Data Fig. 2a).

Mapping the GsRTDs onto the linear pan-genome identifies rela-
tionships between GsRTDs and PanBaRT20 directly (Methods). Thus, 
13,700 genes in PanBaRT20 mapped uniquely to a single locus in all 
20 GsRTDs. We denote these as core, single-copy genes (core;single). 
These accounted for 17.19% of the PanBaRT20 genes and, on average, 
35.7% of the genes in each GsRTD (Fig. 1c). PanBaRT20 also contained 
3,700 (4.66%) core genes with multiple matched locations (core; 
multiple). PanBaRT20 genes found in 2–19 GsRTDs were defined 
as shell genes that could be further partitioned into single copies 
(27,300 genes) and multiple copies (4,900 genes). The remaining 
30,000 (37.69%) genes were designated as cloud genes, matching a 
single GsRTD (Supplementary Data 3). Gene ontology (GO) enrich-
ment18 revealed that core genes were associated largely with ubiq-
uitous biological functions (for example, DNA, nucleus, nucleolus  

and accurate transcriptomes that improve expression analyses13–16. 
The number of genes in the 20 GsRTDs ranged from 35,500 to 40,800, 
with an average of 38,400. They revealed an average of 3.22 transcripts 
per gene, significantly higher than traditional genome annotations. 
The cultivar (cv.) Barke GsRTD (GsRTDBarke) comprised 39,200 genes 
and 138,600 transcripts with an average of 3.54 transcripts per gene, 
closely resembling the recently published cv. Barke reference transcript 
dataset (RTD; BaRTv2.0 (ref. 16)) assembled from a broad set of tissues, 
treatments and a reference genome (a detailed comparison of barley 
Illumina and PacBio transcript assemblies is described in more detail in  
ref. 16). These statistics reflect the high quality of the assembled  
GsRTDs (Supplementary Data 1).

We explored the possibility of generating a unified transcrip-
tome for domesticated barley, a pan-RTD, as a reference for RNA-seq 
analyses from diverse genotypes. We constructed a linear pan-genome 
using Pan-genome Construction and Population Structure Varia-
tion Calling Pipeline (PSVCP)17 by integrating the 20 reference bar-
ley pan-genomes8 using cv. Morex as the backbone (Supplementary  
Data 2) and then mapping and clustering orthologous transcripts 
from the 20 GsRTDs onto this framework (Methods; Extended Data 
Fig. 1). Clustering transcripts on a linear genome allowed us to directly 
compare features, including gene structures, alternative splicing, 
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Fig. 1 | Transcript diversity and classification. a, Five tissues sampled  
(clockwise from top left) are as follows: embryo, mesocotyl and seminal 
roots (from here referred to as ‘embryonic’ tissue), seedling root, caryopsis, 
developing inflorescence and seedling shoot. b, An MDS plot of the overall 
transcript abundance data. Different colors represent different tissues as 
indicated. c, The percentage of different gene classifications (core, shell and 
cloud genes with single or multiple copies) in PanBaRT20. d, Average mapping 

rates of 14 (HOR8148) and 15 (remaining genotypes) samples for the RNA-seq 
data from different cultivars to the three transcriptomes (PanBaRT20, respective 
GsRTDs and BaRTv2). The lines within the boxes display the median, with the box 
bounds representing the 25th and 75th percentiles. The whiskers extend to the 
minimum and maximum values within the 1.5× interquartile range. Data points 
outside this range are outliers.
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and transcription), while responses to biotic and abiotic stresses 
dominated the shell and cloud gene categories (for example, ‘defense 
response’ and ‘response to stimulus’; Extended Data Fig. 2b), consistent 
with observations on the pan-genome8,9.

GsRTDs and PanBaRT20 as references for transcriptome 
analyses
A key argument for developing a pan-genome is that it reduces bias 
in genomic analysis when compared to a single common reference. 
We therefore investigated how different reference transcriptomes 
would bias quantification accuracy in RNA-seq datasets. Analyzing the 
genotype-specific transcriptomic data against PanBaRT20 revealed 
an average mapping rate of 87.3%, 11.1% higher than BaRTv2.0 (ref. 16; 
76.2%), but only 3.3% higher than the average mapping rates of GsRTDs 
(84.0%; Fig. 1d). To explore further, we simulated RNA-seq reads from 
five diverse genotypes (Akashinriki, Barke, Golden Promise, Morex and 
OUN333) and analyzed them with PanBaRT20, individual GsRTDs and 
GsRTDMorex, which serves as a proxy for a common reference (Methods). 
We found that the respective GsRTDs achieved the highest quantifi-
cation accuracy, with both PanBaRT20 and GsRTDs outperforming 
GsRTDMorex. GsRTDs, when available, are therefore best for RNA-seq 
read quantification, but a pan-RTD is generally more appropriate than 
a single common reference.

Evidence-based pan-genome annotation
A study discussed in ref. 8 previously generated reference-quality 
genome assemblies from the same 20 genotypes used here, but 
transcript-based evidence from only three genotypes was used to 
annotate the remaining 17 via a process of consolidation and projec-
tion. Interestingly, the number of gene models was about 20% higher 
in the projections than in de novo annotations. An important appli-
cation of the pan-transcriptome data has therefore been its value 
in evidence-based re-annotation of all 20 pan-genome assemblies  
(as described in an updated pan-genome study9). This expanded set 
of gene models with transcriptional evidence was once again consoli-
dated and projected onto an extended set of 76 pan-genome genotypes, 
enhancing the overall value of the V2.0 pan-genome.

Drivers of transcript abundance variation
PanBaRT20 revealed a substantial increase in the number of tran-
scripts per gene over the GsRTDs (from 3.5 to 7.3). This is reflected in an 
increased number of nonredundant splice junctions (SJs) from an aver-
age of 146,600 in a GsRTD to 311,300 in PanBaRT20. To illustrate, within 
the highly expressed transcripts of core single-copy genes (average 
transcripts per million (TPM) >10), 132 retained introns, 112 had alterna-
tive 3′ splice sites, 66 had alternative 5′ splice sites, 17 had skipped exons 
and 17 had alternative first exon events, variations generating unique 
genotype-specific transcripts in the pan-transcriptome. For example, 
both chr2H11235 (encoding a DNA helicase) and chr3H26163 (unknown 
function) have 5′ splice site mutations that abolish specific splice sites 
in 7 and 11 of the 20 genotypes, respectively. For chr2H11235, the muta-
tion leads to activation of an alternative 5′ splice site 12 nucleotides 
(nt) upstream with the loss of four amino acids in seven genotypes. For 
chr3H26163, the mutation results in an intron retention (Fig. 2a and 
Supplementary Data 4). Considering alternative transcript abundances, 
in caryopsis over half of the transcripts from chr5H50838 (encoding a 
formate tetrahydrofolate ligase ortholog) are a single 2,842 nt isoform 
containing a 721 amino acids open reading frame (ORF). This tran-
script is replaced by a range of different transcripts in inflorescence 
and root tissues but mostly by a 2,326 nt transcript that loses 219 amino 
acids from the N terminus of the protein due to an alternative tran-
scription start. This shorter transcript also has an alternative 5′ splice 
site that generates an upstream ORF before the main protein-coding  
sequence (CDS). In all cases, the observed variants may affect the trans-
lation and function of the protein products.

We next explored the impact of presence/absence (PAV) and CNV 
on transcript abundance. Across the 20 GsRTDs, 2,925 genes exhibited 
zero TPM in all tissues in 1–19 genotypes (Fig. 2b). In 2,899 of these 
cases, their respective genes were absent in the pan-genome assemblies 
and could therefore be classified as PAVs. They are enriched for GO 
terms associated with ‘modulation’ and ‘response’, which we interpret 
as them being potentially associated with ‘conditional dispensability’. 
We then used cluster analysis on PanBaRT20 to explore the extent of 
CNV across the pan-genome. We identified 723 tandem gene clusters, 
with 98 showing a significant positive correlation (r > 0.45 and P < 0.05) 
between copy number and transcript abundance in one or more tis-
sues (Fig. 2c and Supplementary Data 5). As an example, CNV of a 
17 kb segment on chromosome 5H harboring cold-induced C-repeat/
DRE-binding factor (CBF) 2a (chr5H52041) and 4b (chr5H52037) genes 
has previously been shown to be correlated with frost tolerance19. Our 
data revealed one to five copies of both HvCBF2a and HvCBF4b in the 20 
pan-transcriptome genotypes. Despite there being no cold treatment in 
our biological samples, the higher copy number did, however, exhibit 
higher basal gene expression (Extended Data Fig. 3a and Supplemen-
tary Data 6). As transgenic experiments show that overexpression of 
CBFs induces ‘cold response genes’ in the absence of cold20, we specu-
late that high transcript abundance as a consequence of CNV may thus 
provide sufficient basal CBF gene expression to prime low-temperature 
responses. Accordingly, three of the six winter growth habit genotypes 
show high CNV in comparison to only 1 of 14 spring types containing 
more than one copy.

The original barley pan-genome8 revealed a 141 Mb inversion 
on chromosome 7H in a single genotype (cv. RGT Planet). To assess 
the potential functional impact of this inversion, we interrogated a 
gene-expression quantitative trait locus (eQTL) dataset comprising 
RNA-seq data from four tissues of 201 contemporary spring barley cul-
tivars, including cv. RGT Planet. The eQTL analysis clearly identified 31 
genotypes containing the inversion and 170 without21 (Supplementary 
Data 7). Within the inversion, we observed 36 significantly upregulated 
and 39 significantly downregulated (−0.5 < log(fold change (FC)) > 0.5; 
log(adjusted P) > 10) genes (Extended Data Fig. 3b,c and Supplemen-
tary Data 8). Intriguingly, all upregulated genes were located near the 
telomeric end of the inversion and all downregulated genes toward 
the centromere (Fig. 2d). This region has been previously associated 
with grain-size-related traits, starch content, protein content and 
α-amylase activity22–27. Of the starch metabolism genes, α-glucosidase 
1 (chr7H77818; HvAgl1), an α-amylase 2 cluster (chr7H76138, 
chr7H76155 and chr7H76154; HvAmy2) and starch-branching enzyme 
3 (chr7H75382; HvSbe3) are all found within the inversion. HvSbe3 is 
significantly lower expressed in the lines containing the inversion 
(Supplementary Data 8). Moreover, 57 of the differentially expressed 
genes (DEGs) are expressed in a developing barley grain series indicat-
ing the importance of this region for grain-related traits28. Given the 
size of the inversion, we hypothesized that the observed differential 
expression was a consequence of switching the physical location of the 
respective genes between transcriptionally permissive and repressive 
nuclear compartments. Supporting this hypothesis, principal compo-
nent analysis (PCA) of high-throughput chromosome conformation 
capture (Hi-C) interaction data10, which partitioned the genome into 
active (A) and inactive (B) compartments, revealed that the 7H inver-
sion encompassed the A/B compartment boundary (Extended Data 
Fig. 3d). This genomic region is particularly relevant for breeding as 
it will not recombine. Of note, within the eQTL dataset, the inversion 
is now present in 40% of accessions registered in the United Kingdom 
since 2000, while only 6% contained the inversion before this date. 
Examination of several smaller inversions (10–30 Mb) failed to reveal 
a similar phenomenon.

Given access to a complementary pan-genome, we next assessed 
whether variation in transcription factor binding sites (TFBSs) in the 
proximal regions of orthologous genes could influence variation in 
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transcript abundance. We computed the location and occurrence of 
30 TFBSs29–31 in 2,000 bp upstream and 500 bp downstream of the 
CDS and compared these to a reference set representing all genes 
of cv. Morex (Methods and Extended Data Fig. 4a). The coherence 
of expression of orthologous gene pairs was calculated by compar-
ing the percentage of genes whose TPMs are within ±30% of those 
from cv. Morex to the percent identities of the corresponding TFBSs. 

When gene expression is determined mainly by the selected TFBSs, 
the level of conservation of TFBSs should be highly correlated to 
transcript abundance. Overall, we observed a Pearson correlation 
of r2 = 0.395. However, splitting the genes into classes based on their 
coefficient of variation (CV) of TPM values revealed that genes with 
low CV (from 0 to 0.4; gene set 1) exhibited a much stronger correlation 
(r2 = 0.635), while those with high CV (1.48–20; gene set 5) showed a 

219,670,000 219,671,000

//

No splicing: 11 genotypes

Spliced: 9 genotypes

Chr3H26163—unknown function

38,928,000 38,932,000 38,936,000
Chr2H11235—DNA helicase

7 genotypes 
Abolished 5’SS

13 genotypes 

Chr2

//

a b

c d

Ak
as

hi
nr

ik
i

B1
K.

04
.12

Ba
rk

e
G

ol
de

nP
ro

m
is

e
H

oc
ke

tt
H

O
R1

03
50

H
O

R1
38

21
H

O
R1

39
42

H
O

R2
15

99
H

O
R3

08
1

H
O

R3
36

5
H

O
R7

55
2

H
O

R8
14

8
H

O
R9

04
3

Ig
ri

M
or

ex
O

U
N

33
3

RG
TP

la
ne

t
ZD

M
01

46
7

ZD
M

02
06

4

1
         23
         4

5         67         8
9

         10
11         1213         14
15         1617

         18
19

         20
21

         22
23

         24
25

         26
27

         28
29

         30
31

         32
33

         34
35

         36
37

         38
39

         4041
         42

43
         44

45
         46

47
         48

49         50
51

         52
0.6

0.8

1.0

Ca Co In Ro Sh

C
or

re
la

tio
n 

co
e�

ic
ie

nt
 r

−2

0

2

4

6

500 550 600 650

Position (Mb)

lo
g(

FC
)

−log10(Padj)

20
40
60

f

Cloud
Core
DEGs
Shell

100%

75%

50%

25%

0%

CV 0.00 – 
0.40

CV 0.40 – 
0.58

CV 0.58 – 
0.88

CV 0.88 – 
1.4

8

CV 1.4
8 – 

20
.0

e
CV 0–0.40

CV 0.40–0.58

CV 0.58–0.88

CV 0.88–1.48

CV 1.48–20.0

0.64

0.61

0.43

0.17

0.09

Fig. 2 | Drivers of transcript abundance variation. a, Examples of alternative 5′ 
splice site and intron retention variation among pan-transcriptome genotypes. 
Top: a 1 nt change (G to T) in seven genotypes caused the selection of an upstream 
splicing site in chr2H11235. Bottom: splicing was abolished in 11 genotypes 
in chr3H26163 due to a G to T change. b, Heatmap (PAV) of genes with zero 
transcript abundance in at least one genotype clustered according to similarity. 
Grey represents zero detected expression. c, Correlations between gene copy 
number and transcript abundance for 98 multiple-copy genes across five tissues. 
The boxplot whiskers show minimum and maximum values, the upper bound of 
the box represents the 75th percentile, the lower bound of the box represents the 

25th percentile and the centerline represents the median. d, Location, magnitude 
and direction of DEGs across the 141 Mb inversion on chromosome 7H. Statistics 
were performed using the limma-voom R package with multiple comparison 
adjustments using the BH procedure. e, Heatmap with Pearson correlations 
between percent identities in TFBSs in upstream 2 kb regions and percent 
coherence (within ±30%) in expression values computed for sets of ~3,000 genes 
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null value (r2 = 0.087; Fig. 2e). The lowest CV fraction is dominated by 
core genes, while shell, cloud and DEGs are virtually exclusive to the 
high CV fractions (Fig. 2f). We conclude that for genes with low CV, the 
similarities in TFBSs in the 2 kb upstream region reasonably account 
for the coherence of expression. GO enrichment analysis of 2,999 low 
(0–0.4) and 2,993 high (1.48–20) CV genes showed that the former 
are enriched for intracellular, housekeeping and essential biological 
processes, while the high CV class largely comprises terms referring to 

defense, response and interaction to environmental cues. We venture 
that genes showing high tissue specificity and expression variation 
(high CV) may therefore be influenced more by distal than proximal 
regulatory elements, as described in mammals23,24.

Comparative gene expression and gene network analyses
To investigate expression variation within the single-copy core genes, 
we conducted a comparative co-expression analysis across all 20 
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genotypes. Applying weighted correlation network analysis (WGCNA32), 
we constructed 20 genotype-specific co-expression networks, resulting 
in a total of 738 modules. Community clustering by the degree of shared 
orthologs grouped the genotype modules into six major communities, 
C1–C6 (Methods, Fig. 3a, Extended Data Fig. 5 and community and 

module assignment in Supplementary Data 9). Modules of three com-
munities (C4, C5 and C6) showed pronounced associations with a single 
tissue and associated biological processes (Fig. 3c and Extended Data 
Fig. 6). We found that a notably high number of 12,190 core orthologous 
groups were partitioned across two or more communities, indicating 
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extensive fine-tuning of biological processes among the 20 genotypes. 
Supporting this partitioning, orthologues in the same communities 
showed significantly higher expression correlations (mean Pearson 
correlation coefficient = 0.895) than those split between two com-
munities (mean Pearson correlation coefficient = 0.702; Welch’s t test, 
P < 1 × 10−16). Despite most orthologous groups being split, we observe 
a clear bias toward conserved expression patterns as illustrated by the 
nonuniform retention of orthologous genes in larger clusters within 
a single community (Fig. 3b and Extended Data Fig. 5a). Genes prima-
rily found within a single community were, among others, associated 
with photosynthesis, nutrient uptake and carbohydrate metabolism 
(Extended Data Fig. 7).

Split orthogroups were distributed across all major functional 
categories, biological processes and gene families, including tran-
scription factors (TFs) like MADS-box proteins that integrate many 
developmental signals (Fig. 3d and Extended Data Fig. 5). Database and 
literature surveys identified small clusters of functionally related genes 
that consistently separated into genotype-group-specific patterns23,24 
(Fig. 3d). For example, Mkkk62 (chr3H28843) and Mkkk70 (chr3H28841; 
Fig. 3d) uniquely associate with community 4 in genotype ZDM02064 
as opposed to community 6 for all other genotypes. Their orthologs in 
rice redundantly regulate pollen fertility, leaf angle and cold responses. 
Similarly, Akashinriki and HOR13821 show divergent community asso-
ciations for CesA9 (chr5H50556) and CesA4 (chr3H29441), orthologs of 
cellulose synthases in rice that determine cellulose-to-hemicellulose 
ratio (Bc6 and Bc7; Fig. 3d). A particularly striking example of com-
munity divergence comprised 57 orthologous groups specific for 
the radiation-induced mutant cv. Golden Promise. Of these, 28 were 
associated with chloroplast development and function in barley or 

rice (Supplementary Data 10). Overall, we suggest that both functional 
diversification and genotype-specific transcriptional responses to 
our experimental conditions determine the substantial co-expression 
variation observed in the core orthologs.

An atlas of gene expression for the genome reference cv. Morex
Given the defined tissues in PanBaRT20, we explored transcript abun-
dance variation in a more extensive set of tissues and response to 
treatments from a single genotype, the genome-reference cv. Morex. 
We leveraged all publicly available (as of September 2023) replicated 
(≥3) Morex RNA-seq datasets (Supplementary Data 11) derived from 
various stages of barley development and response to different stimuli 
(Fig. 4a). We constructed a new RTD from 1,425 Gbp of Morex data 
and merged this with the GsRTDMorex developed above. We then used 
this updated Morex RTD (Mx-RTD) to quantify gene and transcript 
abundance across all 315 Morex samples using Salmon33. A multidi-
mensional scaling (MDS) plot again revealed tissues and organs as 
the major drivers of transcriptional variation. Tissues did respond to 
applied treatments, but fewer DEGs were involved in the conditional 
responses (Fig. 4b,c and Extended Data Fig. 8). Co-expression analy-
sis of 12,292 Morex genes that matched the core:single genes in the 
pan-transcriptome revealed 20 unique clusters exhibiting considerable 
tissue, organ and conditional specificity, implicating diverse roles in 
both development and response to treatment (Fig. 4d). Overall, 5,230 
Mx-RTD genes had no sequence match in PanBaRT20, likely represent-
ing new genes that are characteristic of tissues and conditions not 
included in the assembly of PanBaRT20. By comparing DEGs (P ≤ 0.01; 
log2(FC) ≥ 1) from the five cv. Morex pan-transcriptome tissues using 
both PanBaRT20 and Mx-RTD as reference, we observed a 93.2% overlap 
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(Extended Data Fig. 9). However, performing the same comparison 
using specific Morex tissue or treatment datasets not represented in 
PanBaRT20 revealed fewer significant DEGs when mapping against 
PanBaRT20. Thus, the heavy metal dataset (PRJNA382490) revealed a 
74.7% overlap, pollen and stigma (PRJNA910827) revealed a 54.8% over-
lap and developing grain samples (PRJNA975859; related to caryopsis 
in the pan-transcriptome) revealed a 91% overlap. PanBaRT20’s major 
strength is thus in reporting transcript abundance variation among 
genotypes and may be used in conjunction with the current Mx-RTD to 
explore wider tissue/treatment effects. We provide this data as ‘Morex-
GeneAtlas’ in EoRNA34, which provides intuitive transcript abundance 
plots linked to gene models and associated metadata.

Exploring the gibberellin 2-oxidase gene family
To illustrate the value of PanBaRT20 and MorexGeneAtlas, we explored 
the spatial, temporal and genotype-specific expression of members 
of the gibberellin 2-oxidase (GA2ox) gene family. Gibberellic acid (GA) 
metabolism is of central importance in breaking grain dormancy and 
initiating germination as well as plant cell elongation and hence veg-
etative growth and grain yield35. GA metabolism is controlled through 
complex biochemical pathways involving many different forms of GA. 
For example, in germinated barley grains, 16 forms of GA have been 
identified, of which 4 are biologically active. GA2ox enzymes36, which 
catalyze the oxidation of the C(2) carbon atom of different GA forms, are 
particularly important because they can abort GA biosynthesis before 
bioactive forms are generated and/or inactivate the bioactive forms 
themselves. These inactivation processes are central to plant survival 
because they allow a pause in vegetative growth when a germinated grain 
or young seedling is confronted with a variety of environmental stresses.

We identified ten GA2ox genes, mostly represented in a single 
copy (Supplementary Data 12), which is not surprising if one assumes 
that GA2ox enzymes are specific for the many different forms of 
GA that they oxidize36. Of these, chr3H24821 (GA2ox7 (ref. 37)) and 
chr3H29540 (GA2ox3 (ref. 37)) revealed high transcript abundance 
and widespread variance in genotype-specific expression (Supple-
mentary Data 12). GA2ox7 was predominantly expressed in the car-
yopsis in both PanBaRT20 and MorexGeneAtlas, while GA2ox3 shows 
genotype-dependent expression in inflorescence, root, shoot and 
coleoptile and in vegetative tissues in response to wounding, disease, 
salt or heat stress or oxygen deprivation through waterlogging. In 
PanBaRT20, GA2ox7 revealed low expression in the caryopsis of the 
wild barley accession B1K-04-12 compared to the domesticated geno-
types (~50 TPM in B1K-04-12 versus 200 TPM on average for all geno-
types), consistent with anthropogenic intervention in barley selection 
and breeding. Analysis of the upstream TFBS highlighted two zinc 
finger-type TFBS (AGCTG and WGATAR) present only in B1K-04-12. This 
class of TF has been reported to regulate GA expression, mostly acting 
as repressors. In contrast, GA2ox3 transcript abundance was highly 
variable across all genotypes. Its promoter shows a high CV (~1.65) 
with a very poor relationship between TFBS and TPM, suggesting the 
observed TFBS variation is consistent with the observed differences 
in transcript abundance. Both GA2ox3 and GA2ox7 are predominantly 
located within co-expression community 6, strongly associated with 
phytohormone activity (Fig. 3c).

To assess the potential impacts of each gene on agronomic per-
formance and grain quality, we identified FIND-IT35 knockout mutants 
in the cultivar RGT Planet and used these in comparative field trials 
(Supplementary Data 13). The ga2ox7 mutant exhibited a reduction 
in yield (Fig. 5a), 1,000-grain weight (TGW; Fig. 5b) and starch content 
(Fig. 5c), and, in micromalting, strongly reduced α-amylase (Fig. 5d) 
and free limit-dextrinase activity (Fig. 5e), reflecting reduced levels 
of bioactive forms of GA in both developing and germinated grain. 
The ga2ox3 mutant had wild-type yields in two seasons, but in 2021, 
when waterlogging affected crop establishment36 (Fig. 5j,k), showed 
a strong reduction in agronomic performance (Fig. 5f), along with 

increased hydrolytic activity in the grain (Fig. 5g–i). Thus, overex-
pression of GA2ox7 would be predicted to enhance yields and grain 
quality, while GA2ox3 overexpression might improve agronomic  
performance under challenging climatic conditions. Taken together, 
the pan-transcriptome data identify the repertoire of expressed 
GA2oxs while providing clues to the specific functions of individual 
GA2ox genes that can be readily tested in elite germplasm through 
current or emerging breeding technologies.

Discussion
Unlike pan-genomes, few plant studies have comprehensively reported 
the values of assembling and comparing representative transcriptomic 
datasets from multiple, diverse tissues and individuals that collec-
tively represent a species diversity space. However, such datasets have 
considerable value in exploring how species diversity underpins the 
molecular functions that drive biological outcomes, including growth 
and development, plant architecture and responses to the environ-
ment. Previously, variation in transcript abundance among genotypes 
of biparental populations and diverse inbred lines from single tissues 
(often without replication) has been generated and used for genetic 
analysis by eQTL mapping21,38–40 or associative transcriptomics41,42, 
revealing both extensive transcript abundance variation and asso-
ciations between cis- or trans-effects and phenotypic traits43. More 
recently, analysis of de novo assembled public RNA-seq datasets from 
diverse studies and genotypes in barley revealed that 38.2% of the tran-
scripts present in de novo assemblies were absent in the cv. Morex 
reference, highlighting the issue of ‘single reference bias’44. Here we 
illustrate the benefit of establishing and using both genotype-specific 
and pan-transcriptome reference datasets to interpret transcriptomic 
data from species-wide genotypic diversity. We show that GsRTDs are 
powerful and interdependent companions to a pan-genome8,9, provid-
ing experimental evidence for functional genome annotation, enabling 
robust investigations of transcriptional dynamics within and between 
genotypes and erecting a platform for exploring the conservation of 
functional genes, alleles and gene networks among individuals. Our 
focus on diverse domesticated barley genotypes from across the spe-
cies range revealed that the introduction, maintenance and loss of 
functional diversity generally reflect the genomic variation observed 
in the corresponding pan-genome. However, our network analyses 
also indicate that the functional consequences of genomic variation on 
transcript abundance are both complex and genotype-dependent, with 
cascading effects observed throughout the system. Thus, in the core 
transcriptome, resident genes exhibit abundant differential expres-
sion both within and between tissues and genotypes, suggesting high 
functional redundancy and intrinsic resilience. We show that a number 
of evolutionary strategies have contributed to these layers of tran-
scriptional complexity and are reflected in both conserved patterns of 
co-expression—tissue correlations associated with distinct biological 
functions—and frequent functional diversification of orthologous 
genes. Finally, as done previously for wheat45, to contextualize and 
complement the pan-transcriptome and facilitate deeper exploration 
within the biological research community, we provide a ‘gene expres-
sion atlas’ of the barley genomic reference cv. Morex (https://ics.hutton. 
ac.uk/morexgeneatlas/index.html) along with PanBaRT20 (https:// 
ics.hutton.ac.uk/panbart20/index.html) in EoRNA and illustrate how 
these resources can be used to underpin biological investigation. All 
data are available according to findability, accessibility, interoperability 
and reusability data principles.
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Methods
Plant material
The 20 barley pan-genome genotypes8 were used to prepare a bar-
ley pan-transcriptome. These are Akashinriki, Barke, ZDM02064, 
ZDM01467, B1K-04-12, Golden Promise, Hockett, HOR10350, 
HOR13821, HOR13942, HOR21599, HOR3081, HOR3365, HOR7552, 
HOR8148, HOR9043, Igri, Morex, OUN333 and RGT Planet. Five dif-
ferent tissue/organ types, including embryo, mesocotyl and seminal 
roots (together referred to throughout as embryonic tissue), seedling 
shoot, seedling root, inflorescence and caryopsis, were collected in 
three biological replicates, amounting to 300 samples. Tissue samples 
for each genotype were collected at the same growth stage (rather than 
time after planting), which varied between genotypes.

Forty-five seeds from each genotype, representing three plants 
for each tissue and each biological replicate, were germinated on 
water-soaked filter papers in Petri dishes, covered with foil and left at 
room temperature. Four to eight days postgermination, embryonic tis-
sue at a similar developmental stage was collected by carefully remov-
ing the seed coat, leaving the embryo, mesocotyl and seminal roots. The 
remainder of the germinated seeds were planted in cereal mix compost 
in seed trays and grown in a glasshouse at nominally 18 °C—16 h light, 
400 µmol m−2 s−1 and 14 °C—8 h dark, 0 µmol m−2 s−1. Young shoot and 
root tissues were collected between 14 and 17 days. Plants were then 
vernalized for 2 weeks at 4 °C—2 h light, 400 µmol m−2 s−1 and 4 °C—12 h 
dark, 0 µmol m−2 s−1, then transplanted into six-inch pots containing 
cereal mix compost and transferred to a glasshouse and grown under 
standard barley growing conditions (nominally 18 °C—16 h light, sup-
plemented when appropriate with 400 µmol m−2 s−1 light from sodium 
lamps, and 14 °C—8 h ambient dark, 0 µmol m−2 s−1). The 1–1.5 cm  
immature inflorescences (Waddington W6–W7) were dissected from 
the developing spike, and whole developing caryopses were collected 
at 15–20 days postanthesis (Fig. 1).

RNA extraction and sequencing
Total RNA extraction was carried out using the Macherey-Nagel Nucle-
oSpin RNA Plant Mini Kit using the manufacturer’s instructions. All 
extractions included the DNAse step. Seedling root and caryopsis 
tissues included a plant isolation aid (Invitrogen; equal volume of 
plant isolation aid per gram of tissue) and centrifugation before RNA 
isolation. Total RNA was quality checked using a Bioanalyzer 2100 
(Agilent) and showed an RNA integrity number >8 except for two  
samples (HOR10350 caryopsis rep 3 and HOR7552 root rep 2), which 
were not replaced. Hor8148_In3 was identified as mislabeled, thus  
also being excluded. Strand-specific dUTP libraries and Illumina paired- 
end 150 bp sequencing were completed by Novogene (UK) Company.

Single-molecule real-time sequencing (SMRT) was performed 
at IPK Gatersleben. Equal amounts of total RNA from one biological 
replicate from each of the five sample tissues were pooled, and this 
was repeated for each of the remaining barley genotypes to produce 20 
pooled samples for long-read sequencing. Samples were size fractioned 
to ~2 kbp, and 300 ng of total RNA per genotype was used to prepare 
libraries according to the Iso-Seq Express 2.0 workflow using the SMRT-
bell Express Template Prep Kit 2.0 (Pacific Biosciences) following the 
manufacturer’s instructions. Each library was sequenced through an 
individual SMRT cell (one genotype/SMRT cell) on a PacBio Sequel II.

Assembly of GsRTDs from RNA-seq and Iso-seq reads
We used RNA-seq short-read and Iso-seq long-read data derived from 
the five tissues to construct GsRTDs for 20 barley genotypes. Short-read 
RTDs and long-read RTDs were separately assembled using different 
approaches and then merged to produce comprehensive GsRTDs.

RNA-seq reads were processed using Fastp (v0.20.1)46 to remove 
adapters and filter reads with a quality score of less than 20 and a 
length of less than 30 bases. STAR (v2.7.8a)47 was applied to map the 
trimmed reads to the reference genomes8. We applied the two-pass 

method and used SJs detected in the first mapping pass to improve 
sensitivity in the second mapping pass. We used Stringtie (v2.1.5)48 and 
Scallop (v0.10.5)49 to construct the transcript assemblies. We then used 
RTDmaker (https://github.com/anonconda/RTDmaker) to merge the 
assemblies across samples and filter out low-quality transcripts, includ-
ing those with noncanonical SJs, SJs supported by fewer than ten reads 
in fewer than two samples, fragmentary transcripts whose lengths 
are less than 70% of the gene length, low-abundance transcripts (less 
than one TPM in fewer than two samples) and mono-exonic antisense 
fragment transcripts located on the opposite strand of the gene with 
a length less than 50% of the gene length.

The raw Iso-seq long-read data were processed into full-length non-
concatemer (FLNC) reads using the IsoSeqv3 pipeline v3.4.0 (https:// 
github.com/PacificBiosciences/IsoSeq). We mapped the FLNC reads 
to the reference genome using Minimap2 (v2.24) with maximum intron 
size ‘-G 15,000’ (ref. 50) and collapsed the mapped reads using TAMA 
(24 December 2022)51 to generate transcript models. As described 
previously52, we only retained transcripts with high-confidence (HC) 
SJs and transcript starts and ends. We then conducted a redundancy 
evaluation to merge transcripts with small variances of 50 bp at the 5′ 
and 3′ UTR regions using TAMA merge (-a 50 and –z 50).

Finally, we integrated the short-read assemblies into the long-read 
assemblies by only including transcripts containing new SJs or contrib-
uting to new gene loci, resulting in GsRTDs of all 20 genotypes.

Construction of pan-transcriptome
We used PSVCP (v1.0.1)17 with default parameters to construct a linear 
pan-genome using Morex V3 as the reference. New sequences of the 
remaining 19 genomes were integrated iteratively (Supplementary 
Data 2). To construct the barley pan-transcriptome (PanBaRT20), the 
transcripts from 20 GsRTDs were mapped to the PSVCP pan-genome 
using Minimap2 (v2.24; ref. 50) with the maximum intron size restricted 
to 15,000 (ref. 50). The unmapped transcripts and transcripts with sec-
ondary and supplementary alignments were eliminated. The mapped 
transcripts were grouped into representative transcript models using 
the following approach (Extended Data Fig. 1): (1) multiple-exon tran-
scripts with identical intron combinations were merged, and the fur-
thest position of transcript start site/transcript end site of that gene 
was considered as the start and end of the representative transcript. 
(2) Overlapped mono-exon transcripts were merged into a single rep-
resentative transcript by taking their union set. (3) A set of overlapped 
transcripts located entirely within the intronic regions of other tran-
scripts was treated as a separate gene model. A gene and transcript ID 
look-up table between PanBaRT20 and GsRTDs was generated based 
on the transcript grouping processes.

The core genes of PanBaRT20 were defined as those genes repre-
sented in all 20 genotypes, the shell genes as those represented in 2–19 
genotypes and the cloud genes denoted genes that were unique to a 
single genotype. These categories were further distinguished based on 
whether a PanBaRT20 gene matched single or multiple genomic loci 
within a single genotype. We used Transuite (v0.2.2)53 to identify the 
longest ORFs and derived protein sequences. We used InterProScan 
(v5.59-91.0)54 to gain insight into the transcript functions from multiple 
protein databases.

Transcript quantification and expression analysis
We conducted transcript quantifications using Salmon33 on 327 
RNA-seq samples using PanBaRT20, 20 GsRTDs and BaRTv2 (ref. 16; 
please note this included RNA-seq data from two genotypes (30 sam-
ples) not reported here). We used the 3D RNA-seq (v2.0.1)55 pipeline 
to perform differential expression analysis to identify the genes with 
significant expression changes among five tissues across 20 genotypes. 
In each tissue, Morex samples were treated as the reference, and all the 
remaining genotypes were compared to Morex. F test was used to gen-
erate a P value across 19 contrast groups. To be considered significant, 
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a gene must have a Benjamini–Hochberg (BH)-adjusted P value < 0.01 
and an absolute log2(FC) ≥1 in at least one of the contrast groups.

Evaluation of expression quantification using PanBaRT20, 
GsRTDs and GsRTDMorex

We simulated RNA-seq data (150 bp paired-end reads) to assess the 
performance and accuracy of expression quantification using different 
transcriptomes. Ground truth was set during the simulation using 
Polyester (v1.29.1)56 as the transcript read counts obtained through 
GsRTD quantifications of five genotypes (Akashinriki, Barke, Golden 
Promise, Morex and OUN333). Quantification was carried out based 
on the simulated reads using PanBaRT20 and the corresponding 
GsRTDs and GsRTDMorex. Error assessment was based on relative per-
centage difference RPD = 2 × |x−x0 |

|x+x0 |  to measure the errors between  
quantification x and ground truth x0. We used Pearson correlation to 
evaluate the consistency of expression changes across samples 
between quantification of the RTDs and ground truth.

Identification of tandem duplicated genes
In total, 79,580 PanBaRT20 gene sequences were clustered using 
CD-HIT (v4.8.1) with the following parameter settings: -c 0.95 -r 0 -g 
1 -s 0.5. Initial clusters with gene number ≥2 were further filtered as 
follows: (1) removing clusters with overlapping genes, (2) removing 
clusters spanning more than 5 Mbp and (3) excluding clusters if any 
gene copy is from another chromosome. All filtering was done in R.

Association between CNV and gene expression
The total PanBaRT20 gene number for all 20 accessions was collected 
from the GsRTD and PanBaRT20 match table (Supplementary Data 
15). Clusters with a median expression below ten TPM were excluded, 
and for the remaining clusters, the Pearson correlation coefficient was 
calculated on a per-tissue basis. The CDS for CBF2 (chr5H52041) and 
CBF4 (chr5H52037) was used to confirm the CNV in the genomes and 
GsRTDs with BLAST 2.15.0 (ref. 57), setting minimum percent identity 
and coverage to 95% (Supplementary Data 6).

Inversion analysis
In total, 20 different inversions over 10 Mb in size in relation to the 
cultivar Morex8 were aligned on a per-chromosome basis using 
minimap2 (-2 -I 6G -K 5G -f 0.005 -x asm5 -c --eqx) followed by variant 
identification using SyRI (v1.6.3)58 and plotting using plotsr (v0.5.4)59 
with default parameters. Differential gene expression analyses using 
RNA-seq reads from PRJEB49069 (ref. 21) were as described above. 
PCR primers as described8 were used to confirm genotypes with the 
141 Mb 7H inversion (Supplementary Data 7). Contrast groups were 
set up that contained either genotypes with the inversion or without it. 
Genes with an adjusted BH P value of below 10−10 and a log FC above 0.5  
were considered significant.

TFBS analysis
Using the barley pan-genome8, we first selected sets of HC genes con-
sisting of CDS of high quality (Automatic assignment of Human Read-
able Descriptions score = 3; see https://github.com/groupschoof/ 
AHRD) without potential association to transposable elements (TE;  
TE-related = 0) and further filtered for the absence of any ‘N’ bases by 
scanning each CDS. This selection resulted in 22,000–23,000 filtered 
CDS for each accession.

We defined a set of genes in Morex V2 that had a bona fide counter-
part in Morex V3 by BLAST Best Reciprocal Hits, setting the minimum 
percent identity and coverage to 95% and the expected value to 10−40 
using the high-quality 22,541 Morex_V2 proteins as the query and 
70,355 Morex_V3 proteins (including isoforms) as the database. Close 
correspondence between Morex_V2 and V3 was found for 15,001 genes, 
and whenever necessary, these were used to trace the counterparts of 
Morex V3 genes in the pan-genome V1 genotypes.

For each of the 15,001 V2_V3 corresponding genes, we conducted 
a BLAST Best Reciprocal Hits analysis of Morex versus each genotype  
filtering for CDS identity ≥99% and no alignment gaps (100% coverage 
for query and participants). This defined 19 sets of close orthologous 
pairs ranging from 12,071 to 10,330 pairs. Then, for each pairwise com-
parison, 2 kb upstream sequences from CDS start (based on coordi-
nates as available in general feature format (gffs)) were retrieved and 
split into four 500 bp bins. Furthermore, a 500 bp downstream region 
was also captured and compared to prove substantial identity in the 
sequences of the selected genes.

Thirty TFBS consensus sequences (cis-elements, in direct ori-
entation) have been selected based on recent data29 and further 
literature30,31 to account for the major plant TF classes of the most 
well-known cis-elements. The following TFBS consensus sequences 
were considered: (1) AP2-DREB-RCCGAC, (2) AP2-ERF—CGCCGCC, 
(3) AP2-TOE2—MTCGTA, (4) B3-AuxRE2—TGTCGG, (5) B3-AuxRE—
TGTCTC, (6) B3-LEC-AB3—CATGCA, (7) B3-RAV—CACCTG, (8) bZIP-A- 
box—TACGTA, (9) bZIP-C-box—GACGTC, (10) bZIP-G-box—CACGTG, 
(11) bZIP-GCN4—TGASTCA, (12) C2C2-ZF-DOF—AAAGY, (13) C2C2-ZF- 
GATA—WGATAR, (14) C2C2-ZF-YABBY—WATNATW, (15) C2H2-ZF—
CAGCT, (16) GARE—TAACARA, (17) HD-WOX13—CAATCA, (18) HD-ZIP— 
AATNATT, (19) LOB—TCCGGA, (20) MRECHS—AACCTA, (21) MYB-GARP- 
B-ARR—AGATWCG, (22) MYB-R2R3-MBSI—CNGTTR, (23) MYB-R2R3- 
MBSIIG—GKTWGGTR, (24) MYB-R2R3-MBSII—GKTWGTTR, (25) 
MYB-related—AGATAT, (26) SPL—CGTAC, (27) STY1—CCTAGG, (28) TCP— 
GGNCCC, (29) trihelix—GRWAAW and (30) WRKY—TTGACY. This list 
corresponds to the positions from 1 to 30 reported on the x axis in 
Extended Data Fig. 4a.

Degenerate International Union of Pure and Applied Chemistry 
bases were set according to the appropriate position weight matrix 
to account for ambiguities. By scanning for occurrences of the 30 
TFBSs in the four 500 bp bins, we obtained (via SeqPattern (v1.32) 
and OmicsBox (v3.1.2)) overall statistics by comparing the location 
and occurrences in all pairwise comparisons among Morex and the 
other 19 genotypes. These data were used to evaluate the expression 
coherence for ortholog pairs defined as the percent of genes whose 
TPMs are in the range of plus or minus 30% relative to their Morex 
orthologs. ‘Expression coherence’ was computed on these ortholo-
gous gene pairs.

The entire TPM dataset was used to compute the CV, resulting 
in minimum, median, mean and maximum values of 0.16, 0.71, 0.99 
and 15.07, respectively, splitting the genes into five classes based on 
CV ranges (0–0.4, 0.4–0.58, 0.58–0.88 and 0.88–20 with the first and 
last values set to 0 and 20, respectively) and close to 3,000 members 
in each class.

Network analysis
Of the 13,680 single-copy genes, 13,652 genes passed a filter for 
lowly expressed genes (TPM >0.5 in minimum of two biological 
replicates) in all accessions. From the original 297 samples, PCA 
revealed an outlier (ZDM01467_In2) that was removed from fur-
ther analysis. R package DESeq2 (v1.34.0)60 was used to perform 
variance-stabilizing transformation for normalization, applying a 
design ‘~Tissue’ with the argument ‘blind = FALSE’. Co-expression net-
works were built for all accessions’ single-copy orthologs separately 
using the WGCNA package (v1.69). The soft power threshold used for 
scale-free topology was determined automatically using ‘pickSoft-
Threshold’. Unsigned networks were calculated with Pearson correla-
tion to obtain the adjacency matrix that accounted for both positive 
and negative correlations among gene pairs by applying methods 
dynamicTreeCut and TOMtype with a minimum module size = 30, 
‘unsigned’ network type and otherwise default settings. This resulted 
in 20 networks, with different module numbers for each accession. 
This approach was followed by merging closely clustered modules 
by a cut height of 0.1, which resulted in the final set of modules for 
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each accession. A total of 738 modules across all accessions were 
identified. In total, 91 genes with insufficient variation have been 
filtered out from each of the genotype-specific networks using the 
‘goodSamplesGenes’ function, leaving 13,561 single-copy genes for 
the following analysis.

Module eigengenes were calculated using the ‘moduleEigengenes’. 
Pearson correlation with Fisher’s exact significance test was calcu-
lated among a binarized tissue table and the eigengenes (Fig. 3c and 
Extended Data Fig. 5). Mercator4 (v5.0)61 functional annotation was 
performed, and enrichment with over-representation analysis (ORA) 
of sets of module-genes was done using the R package clusterProfiler 
(v4.6)62 with BH false discovery rate (FDR) correction P value cutoff 
0.05 (Fig. 3c and Extended Data Figs. 5 and 6). ORA results are shown 
only for those modules where module size enabled the enrichment 
analysis (Extended Data Figs. 5 and 6).

To compare the shared number of orthologs across accession- 
specific network modules, cosine similarity was calculated for each 
module pair (Extended Data Fig. 6) using Python (v3.10.12). Across all 
accessions, a meta-network was established by computing edges using 
the cosine similarity values and nodes as modules using NetworkX 
(v3.1)63 and clustered further into six distinct communities via Louvain 
community detection64. The final network layout was calculated using 
the Netgraph (v4.12.11)65 package with the edge bundle option (Fig. 3a). 
Ortholog detection among Oryza sativa66, Arabidopsis thaliana67 and 
selected barley accessions Morex, Akashinriki and B1K representative 
protein sequences was performed using OrthoFinder (v2.5.5)68 with 
default parameters.

Creation and analysis of barley ‘MorexGeneAtlas’
All public cv. Morex datasets with ≥3 replicates were retrieved from 
the European Nucleotide Archive (ENA). Discovery of datasets using 
the Representational State Transfer Application Programming Inter-
face is available at https://www.ebi.ac.uk/ena/portal/api/search. 
Samples came from the following study accessions: PRJEB29972, 
PRJEB52944, PRJNA315041, PRJNA326683, PRJNA382490, 
PRJNA639318, PRJNA661163, PRJEB143 49, PRJNA910827, 
PRJNA975859 and PRJNA589222 (Supplementary Data 11). We also 
included the 15 samples from the Morex pan-transcriptome dataset 
listed under the study accession PRJEB64639. Raw RNA-seq reads 
were trimmed using fastp (v0.20.0)46 and mapped to the Barley 
cv. Morex V3 (2021) genome69 using STAR (v2.7.8a)47. Transcripts 
were assembled using Stringtie (v2.1.5)48 and Scallop (v0.10.5)49. 
The resulting annotation was filtered to remove redundant and 
fragmented transcripts, transcripts with poorly supported SJs and 
low-expressed transcripts. The resulting assemblies were merged and 
filtered using the RTDmaker (v0.1.5; https://github.com/anonconda/
RTDmaker), forming Mx-RTD. Quantification of expression against 
both Mx-RTD and PanBaRT20 was carried out using Salmon (v0.14.1) 
in quasi-mapping mode33.

The Morex Gene Atlas and database were prepared using the LAMP 
configuration (Linux, Apache, mySQL and Perl) and created as described 
previously34. Significant differential gene expression and differential 
alternative splicing analysis were performed using the 3D RNA-seq 
App (https://3drnaseq.hutton.ac.uk/app_direct/3DRNAseq/)55. 
All scripts used in the construction and analysis of the Morex 
Atlas have been made available at https://github.com/cropgeeks/ 
barleyPantranscriptome.

GA metabolic pathway analysis
Gene sequences of the GA metabolic pathway genes (based on IBSC2017 
cv. Morex assembly) as reported previously36 were used to BLAST 
against the genome assemblies of the 20 barley accessions used in the 
updated pan-transcriptome study9. Identified gene sequences were 
BLASTed against PanBaRT20, and individual gene expression values 
were extracted.

FIND-IT screening
Barley FIND-IT variants ga2ox3w106* (ID CB-FINDit-Hv-034) and 
ga2ox7w107* (ID CB-FINDit-Hv-035) were identified and isolated in the 
RGT Planet mutant library as described70.

Barley field trials and yield performance
FIND-IT variants and controls were grown in field trial plots for agro-
nomic evaluation (7.5 m2 plots) in Denmark. Grain from field plots was 
harvested and threshed using a Wintersteiger Elite Plot Combine (2019 
and 2020) and a Wintersteiger Classic Plus Combine (2021 and 2022; 
Wintersteiger AG), and grains were sorted by size (threshold, 2.5 mm) 
using a Pfeuffer SLN3 sample cleaner (Pfeuffer GmbH).

Agronomic performance evaluation
Mature dry grains from field-grown plants were analyzed to determine 
TGW using a MARVIN digital seed analyzer (GTA Sensorik GmbH), and 
grain quality (starch, protein and water content) was measured using 
near infrared technology (Foss Infratec 1241 analyzer).

Weather data
Weather data for the field trial region of the respective years were 
extracted from the weather archive of the Danish Meteorological Insti-
tute (https://www.dmi.dk/vejrarkiv/).

Micromalting and hydrolytic enzyme activity analysis
Nondormant barley samples of RGT Planet and the FIND-IT variants 
ga2ox3w106* and ga2ox7w107* were placed in individual containers, each 
holding 100 g of seeds, and submitted into 16 °C fresh water to reach 
33% moisture content on day 1 and 43% moisture content on day 2. The 
actual water uptake of individual samples was determined as the weight 
difference between initial water content, measured with the Foss 1241 
NIT instrument (Foss A/S), and the sample weight after surface water 
removal. Following the last step, the barley samples were maintained 
at a degree of steeping of 43% for 4 days. After each 24 h, samples were 
checked for moisture content and sprayed with additional water to 
overcome possible respiration loss. After the germination process, the 
barley samples were kiln dried in a Curio kiln using a two-step ramping 
profile. The first ramping step started at a set point of 27 °C and a linear 
ramping at 2 °C h−1 to the breakpoint at 55 °C using 100% fresh air. The 
second linear ramping was at 4 °C h−1 reaching a maximum at 85 °C. 
This temperature was kept constant for 90 min using 50% fresh air. The 
kiln dried samples were deculmed using a manual root removal system 
from Wissenschaftliche Station für Brauerei. Before enzyme activity 
analysis, the germinated grain samples were milled using a standard 
IKA Tube Mill 100. All measurements of enzyme activity in germinated 
barley grains were made within 48 h after milling of the sample. The 
enzymatic activity of α-amylase, β-amylase and free limit dextrinase 
was measured using the Megazyme ‘Ceralpha’, ‘Betamyl-3’ and ‘PullG6’ 
methods, respectively, that were modified for the Gallery Plus Enzyme 
Master (Thermo Fisher Scientific).

Gene and transcript naming
Multiple historical genomic and transcriptomic experiments have led 
to a range of barley gene name annotations for the same gene. Morex-
GeneAtlas provides a barley gene name ‘look-up’ function (https://
ics.hutton.ac.uk/morexgeneatlas/relator.html). Submitting a legacy 
barley gene identification name returns a table of matching transcript 
identification names from MLOCs, JLOCs, HORVUv1, HORVUv3, BARTv1 
and BARTv2 datasets. It also provides transcript identification names 
from the GsRTDMorex, HvMxRTD and PanBaRT20 datasets from the 
current paper.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
All raw data are available through the ENA (https://www.ebi.ac.uk/
ena/browser/home). Raw Illumina reads are available as BioProject 
accession PRJEB64639; Iso-seq CCS reads are available as BioProject 
accession PRJEB64637. All data underpinning PanBaRT20 and Morex-
GeneAtlas are also available in EoRNA (https://ics.hutton.ac.uk/pan-
bart20/index.html) and https://ics.hutton.ac.uk/morexgeneatlas/
index.html. The Morex V3 pseudomolecules are available at https://doi.
org/10.5447/ipk/2021/3. Supplementary Data 1–15 have been uploaded 
to figshare repositories and can be accessed at https://doi.org/10.6084/
m9.figshare.28035638 (ref. 74).

Code availability
Scripts used for data analysis have been made available at  
https://github.com/cropgeeks/barleyPantranscriptome, https://
github.com/vanda-marosi/PanBarleyNetworks and https://github.
com/WCGA-Murdoch/Barley-phenology-2023. Correspond-
ing DOIs have been minted with Zenodo (https://doi.org/10.5281/
zenodo.13961253 (ref. 71), https://doi.org/10.5281/zenodo.13961795 
(ref. 72) and https://doi.org/10.5281/zenodo.13950149 (ref. 73)).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Construction of PanBaRT20. The Morex and Barke 
GsRTDs were used as examples to illustrate the construction of PanBaRT20 from 
20 GsRTDs. a, The transcripts in each GsRTD gene were collapsed into an exon 
union set (step 1). The union sets of all the GsRTD genes were mapped to the 
PSVCP pan-genome using Minimap2 (step 2). This ensured that all the transcripts 
from the same gene were mapped to the same genomic loci on the PSVCP pan-
genome (step 3). b, The overlapped transcripts were assigned the same gene ID. 
The multiple-exon transcripts that shared identical intron combinations were 

merged, and the furthest start and end of these transcripts were taken as the 
transcript start site (TSS) and end site (TES) of the merged transcript (step 4). 
The overlapped mono-exon transcripts were merged into one transcript with 
the furthest starting and ending as the TSS and TES (step 5). If a set of overlapped 
transcripts were located entirely within the introns of other transcripts, they 
were assigned a separate gene ID (step 6). c, After assigning new gene and 
transcript IDs to the PanBaRT20 gene models, a look-up table was created to 
record the gene and transcript associations between PanBaRT20 and 20 GsRTDs.

http://www.nature.com/naturegenetics
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a c

b

Extended Data Fig. 2 | Characteristics of GsRTDs and PanBaRT20. a, The 
percentages of GsRTD genes in 20 genotypes that matched core-single copy, 
core-multiple copy, shell-single copy, shell-multiple copy, cloud-single copy 
and cloud-multiple copy genes in PanBaRT20. b, Significant gene ontology (GO) 

enriched terms of PanBaRT20 genes in core, shell and cloud gene categories.  
c, Significant GO enriched terms of 2,925 PanBaRT20 genes with zero TPM in any 
tissue in 1–19 genotypes.
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Extended Data Fig. 3 | Drivers of variation in transcript abundance.  
a, Expression of HvCBF2 and HvCBF4 by tissue and copy number. Each genotype 
had 3 biological replicates per tissue, except for HOR10350 (caryopsis n = 2), 
HOR7552 (root n = 2) and HOR84148 (inflorescence n = 2). Significant correlation 
can be found for HvCBF2 in the coleoptile (r2 = 0.85), inflorescence (r2 = 0.62), 
root (r2 = 0.5) and shoot (r2 = 0.71) and for HvCBF4 in the inflorescence (r2 = 0.44) 
and shoot (r2 = 0.49). The boxplot whiskers show minimum and maximum 
values, the upper bound of the box represents 75th percentile, the lower bound 
25 percentile and the centerline the median. b, Principal component cluster 
analysis of the genes expressed in the inversion. The region contained 2508 

expressed PanBaRT genes in at least one of the four tissues. The PCA splits the 201 
genotypes into two clusters in every tissue corresponding to those genotypes 
carrying the inversion versus those carrying the wild type. c, Alignment of 
chromosome 7H between cultivar RGT Planet and the linear pan-genome 
generated through PSVCP highlighting the genomic 140 Mb inversion. d, Hi-C 
interaction matrix of chromosome 7H from the cultivar Morex. The division 
into A and B compartments emerges as principal component 1 in a PCA of Hi-C 
interaction frequencies. The A/B compartment boundary on the long arm of 7H is 
quite distinct and part of the inversion in RGT Planet.
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Extended Data Fig. 4 | Transcription factor binding site analysis. a, Percent 
identities for transcription factor binding sites (TFBS) in 500 bp segments of 2 kb 
upstream (regions from A to D) and 500 bp downstream (region E) of start codon 
computed for each genotype vs. Morex. The x axis indicates 30 TFBS consensus 
sequences with a code from 1 to 30 (see Methods for details). b, Percent TFBS 

identities against percent coherent expression in each pairwise comparison 
(individual genotypes vs. Morex, each pair represented by a dot) for all genes 
(15,001 genes Pearson correlation value = 0.395), genes with low coefficient 
of variation (CV; 0–0.4 CV, 2,999 genes, corr. = 0.695) and genes with high CV 
(1.48–20 CV, 2,994 genes, corr. = 0.087).
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Extended Data Fig. 5 | Community clustering. a, Full distribution of 1:1 
orthologous groups (exactly 20 genes, one from each genotype) across the 
six communities. Number of accessions refers to the largest cluster within a 
single community for the respective orthogroup. b, Heatmap displaying the 
Louvain community clustering of all 738 WGCNA modules (bottom). Six main 
communities were identified (x axis C1–C6), which show distinct functional 

patterns where the color of the dot represents the false discovery rate (FDR) 
adjusted p value of one-sided Fisher’s exact test (top) and module-tissue 
correlations where the size of the dot represents the p value of two-sided Fisher’s 
exact test (middle). c, The 861 transcription factors presence–absence clustering 
representation across the six communities.
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Extended Data Fig. 6 | Functional enrichment, tissue specificity and 
correlations among the three most connected modules. a, Summary of 
functional enrichments where the color of the dot represents the false discovery 
rate (FDR) adjusted p value of one-sided Fisher’s exact test. b, Module-tissue 

correlations where the size of the dot represents the p value of two-sided Fisher’s 
exact test for (c) the 3 most connected groups (C4, C5 and C6) of modules with 
cosine similarity cutoff 0.43 (zoom-in of Extended Data Fig. 4) displaying their 
cosine similarity values and accession wise module names.
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Extended Data Fig. 7 | Functional enrichment within one community. 
Enrichment for orthologous groups exclusively present in one community for 
the two highest hierarchical Mercator categories (level 1 and level 2) for  

17 orthologous groups in C1, 34 in C2, 1 in C3, 414 in C4, 288 in C5 and 616 in C6. 
The color of the dot represents the false discovery rate (FDR) adjusted p value of 
one-sided Fisher’s exact test.
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Extended Data Fig. 8 | Multidimensional scaling plots of gene expression of the 12 RNA-seq datasets used to generate the Morex Gene Atlas. a–c, First three 
dimensions show the distribution of samples from all projects. d–o, First two dimensions of the gene expression data from the individual projects.
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Extended Data Fig. 9 | Differentially expressed genes (DEGs) in two 
experimental datasets. a, Results from the pan-transcriptome sample 
dataset (PRJEB64639). b, Results from the heavy metal experimental dataset 
(PRJNA382490). Graphs show the numbers of DEGs in each named contrast 
group. Samples were pre-processed with cutoff of 10 CPM in a least two of the 
different samples. DEGs were selected with a greater than 2-fold change and a 
significance value of p ≤ 0.01. Statistics were performed using the limma-voom R 
package with multiple comparison adjustments using the Benjamini–Hochberg 

procedure. The blue box represents the total number of DEGs calculated using 
the Morex RTD (MxRTD), and the green and red boxes represent the total number 
of DEGs calculated using the PanBaRT20 RTD. Green represents PanBaRT20, 
which showed more DEGs compared to MxRTD, and the red represents 
PanBaRT20, which showed less DEGs compared to MxRTD. The Venn diagrams 
show the total number of unique genes across all the contrast groups tested using 
both MxRTD and PanBaRT20 RTD. The overlap represents the number of DEGs 
common to both RTDs.

http://www.nature.com/naturegenetics
https://www.ebi.ac.uk/ena/data/view/PRJEB64639
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA382490
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