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A B S T R A C T

Objective: Insulin resistance during childhood is a risk factor for developing type 2 diabetes and other health 
problems later in life. Studies in adults have shown that insulin resistance affects regional and network activity in 
the brain which are vital for behavior, including ingestion and metabolic control. To date, no study has inves-
tigated how brain connections during exposure to food cues are association with peripheral insulin sensitivity in 
children.
Methods: We included 53 children (36 girls) between the age of 7–11 years, who underwent an oral Glucose 
Tolerance Test (oGTT) to estimate peripheral insulin sensitivity (ISI). Brain responses were measured using 
functional magnetic resonance imaging (fMRI) before and after glucose ingestion. We compared food-cue task- 
based activity and functional connectivity (FC) between children with lower and higher ISI, adjusted for age and 
BMIz.
Results: Independent of prandial state (i.e., glucose ingestion), children with lower ISI showed higher FC between 
the anterior insula and caudate and lower FC between the posterior insula and mid temporal cortex than children 
with higher ISI. Sex differences were found based on prandial state and peripheral insulin sensitivity in the 
insular FC. No differences were found on mean brain responses to food cues.
Conclusions: In response to food cues, children with lower peripheral insulin sensitivity exhibited distinctive 
patterns of neural connectivity, notably in the insula’s functional connections, when contrasted with their 
counterparts with higher peripheral insulin sensitivity. These differences might influence eating behavior and 
future risk of developing diabetes.

1. Introduction

The prevalence of overweight and obesity among the global popu-
lation is increasing worldwide, with 43 % of adults living with these 

conditions [World Health Organization (WHO), 2024].Unfortunately, 
this upward trend impacts children as well, with 18 % of European 
children between 2 and 7 years old having overweight/obesity 
(Garrido-Miguel et al., 2019). In several European countries, the number 
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of children with overweight/obesity peaks at around 50 % in those aged 
6–9 years old (Buoncristiano et al., 2021), a trend similar to that 
observed in the American population (Fryar et al., 2018). Overweight 
and obesity in childhood are risk factors for obesity and type 2 diabetes 
mellitus (T2DM) in adulthood (Barton, 2012), and they have adverse 
effects on psychological health, cognition, brain structure and function 
(Brooks et al., 2023; Wang et al., 2019). Peripheral insulin resistance, 
which is a condition where insulin is not able to adequately promote 
glucose uptake by peripheral tissues, is considered a risk factor for the 
future development of obesity, type 2 diabetes and cardiovascular dis-
eases (Kahn et al., 2006).

Exposure to high-calorie food in the environment may promote 
overconsumption of unhealthy meals through stimulation of brain areas 
associated with reward and motivation (Pujol et al., 2021; Stice et al., 
2013). These areas include the amygdala, anterior cingulate cortex, 
hippocampus, hypothalamus, dorsal and ventral striatum, insula, and 
prefrontal cortex (Yang et al., 2021). Supporting this theory, increased 
neural activation in response to pictures of high-caloric foods has been 
observed in individuals with obesity, compared to their lean counter-
parts, among adults, adolescents, and children (Li et al., 2023). Of note, 
neural reactivity to food cues is predictive of future weight gain and 
linked to food craving, which may contribute to obesity onset in both 
children and adults (Boswell and Kober, 2016; Stice et al., 2010). 
Functional connectivity (FC) between areas of the reward network 
during the presentation of food cues is also enhanced in adults with 
obesity, increasing the motivational value of food (Stoeckel et al., 2009) 
and food intake (Carnell et al., 2014), and decreasing self-regulation 
(Donofry et al., 2020a, b).

The current state of satiety and postprandial hormonal responses 
modulates regional brain activity and functional connectivity in areas 
essential for ingestive behaviour (Capucho and Conde, 2023). For 
example, the increase in insulin after glucose ingestion is associated with 
a reduction in food cue reactivity in the insula, striatum and orbito-
frontal cortex in adults (Heni et al., 2014; Kroemer et al., 2013). Overall, 
the brain responses to glucose ingestion are more pronounced in chil-
dren compared to adults, and they are related to overweight and obesity 
(Ge et al., 2021). In adults, insulin resistance is associated with 
heightened activation to food cues in the insula and cingulate cortex 
(Drummen et al., 2019). Moreover, it is linked to stronger reward 
network connectivity post-meal, potentially increasing the risk for 
overeating and obesity (Ryan et al., 2018). Additionally, insulin resis-
tance in adolescents also correlates with lower activation to food cues in 
brain areas related to inhibitory control (Mucellini et al., 2022).

Even though glucose uptake in the brain is mostly independent of 
insulin, proper insulin signalling is essential for maintaining energy 
homeostasis and cognitive functions (Kullmann et al., 2020). Insulin 
receptors are expressed throughout the brain, including the hypothala-
mus, striatum, amygdala, hippocampus, insula cortex, and PFC [for a 
review, see Kullmann et al. (2020)]. In adults, central insulin action, 
measured by the neural response to intranasal insulin, has been found to 
modulate regional activity and FC of brain networks underlying food 
behaviour and reward (Kullmann et al., 2017, 2018; Tiedemann et al., 
2017), attributed to regulating hunger, food craving and food choice 
differentially in adults with normal weight or obesity. First evidence 
points to the development of central insulin resistance in utero, as fetal 
brain responses to oral glucose were found to be slower in the offspring 
of mothers with gestational diabetes mellitus [GDM, Linder et al. 
(2015)]. Similarly, children exposed to GDM before the 26th week of 
gestation fail to inhibit hypothalamic activity following glucose con-
sumption (Page et al., 2019). In the same cohort, hippocampal FC 
following food cues was also influenced by GDM exposure (Zhao et al., 
2024). These differences in glucose-induced brain responses are inter-
preted as a possible risk factor for the development of obesity.

However, little is known about the impact of peripheral insulin 
sensitivity on the brain during childhood. To this end, the present study 
aims to explore the relationship between peripheral insulin sensitivity 

index (ISI) and both reactivity and whole-brain functional connectivity 
(FC) during a food cue task, before and after glucose ingestion, in chil-
dren aged 7–11 years old. The analysis was conducted in the BrainChild 
Cohort on the effects of early-life exposures on brain and metabolic 
health (Page et al., 2019). Prior findings in this cohort have shown 
greater food-cue reactivity in brain areas involved in reward and moti-
vation (i.e., orbitofrontal cortex, amygdala, striatum, insula) among 
children in the fasted state (Luo et al., 2019). In addition, prior reports in 
the BrainChild cohort have shown that prenatal exposure to maternal 
obesity or GDM is associated with alterations in the structural devel-
opment of the hippocampus (Alves et al., 2020; Lynch et al., 2021), as 
well as greater food cue reactivity in brain reward regions and greater 
caloric intake (Luo et al., 2021). In the current study, we hypothesize 
that, in contrast to children with higher peripheral insulin sensitivity, 
those with lower insulin sensitivity will display increased whole brain 
activation and enhanced functional connectivity (FC) in response to food 
cues compared to non-food cues. We expected such effects in 
insulin-sensitive brain areas related to reward and motivation such as 
bilateral hypothalamus, nucleus accumbens, caudate nucleus, putamen, 
pallidum, hippocampus, amygdala, insula, and PFC (Kullmann et al., 
2020). Additionally, in the same areas, we expect a reduction in both 
neural activation and functional connectivity in response to food cues 
post-glucose ingestion in children with higher insulin sensitivity.

2. Methods

2.1. Participants

The current study includes 53 healthy children aged 7 to 11 years old 
from the BrainChild study (Page et al., 2019), which examines risks for 
diabetes and obesity in children exposed to maternal gestational dia-
betes during pregnancy. Therefore, children were exposed to different 
levels of maternal gestational diabetes, obesity, or normal glycemic 
control during pregnancy. The children were recruited from Kaiser 
Permanente Southern California (KPSC). To be included, children had to 
be healthy, right-handed, with no neurological, psychological, or sig-
nificant medical disorders, not taking medications affecting metabolism, 
and with normal or corrected vision. The analyses included here 
required functional MRI (fMRI) data before and after glucose 
consumption.

2.2. Procedure

Prior to data collection, parental consent and child assent were ob-
tained. The Institutional Review Board of the University of Southern 
California and KPSC approved all procedures. The baseline study visits 
are comprised of two separate visits conducted on different days. During 
the first visit, anthropometric data were collected and an oral Glucose 
Tolerance Test (oGTT) was performed. The second visit involved the 
fMRI based food cue task conducted before and after glucose ingestion. 
For details see Luo et al. (2019).

The first measurements were conducted at the Clinical Research Unit 
of the USC Diabetes and Obesity Research Institute in the morning after 
a 12 h overnight fast. Child’s anthropometric measures were collected as 
previously described (Page et al., 2019). BMIz (standardized BMI, spe-
cific for age and sex standard deviation) scores were computed for 
children based on the Center for Disease Control (CDC) normative data 
(2000 CDC Growth Charts for the United States: Methods and Devel-
opment, 2002). Finally, a 3 h oGTT was performed, and children’s pe-
ripheral insulin sensitivity (ISI) was estimated using the Matsuda index 
(Matsuda and DeFronzo, 1999).

During the second visit, which took place at the USC Dana and David 
Dornsife Neuroimaging Center, children underwent MRI measurements 
after being trained on a mock scanner. Here, children were familiarized 
with the environment, sounds, and the importance of staying still. They 
were provided with earplugs, noise-canceling headphones, and foam 
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cushions for stability before the scan began. The MRI protocol consisted 
of a food cue task before (fasted state) and ~15 min after the glucose 
drink. MRI scans were conducted in the morning between 8 and 10 AM, 
after a 12 h overnight fast. The food cue task is described in detail in Luo 
et al. (2019). In a randomized order, the participants were presented 
with 12 pictures of high-caloric food (F, high-caloric food such as french 
fries or pancakes) and 12 pictures of non-food pictures (NF, such as 
books and rulers) and were asked to attentively watch these pictures. 
Each block consisted of three pictures from one of the two stimulus types 
(F vs. NF), which were presented in a random order. The pictures were 
chosen based on pilot testing, which was conducted in studies with 
children of the same age group. Only food images previously rated as 
‘appealing’ and ‘familiar’ and non-food images rated as ‘familiar’ were 
included. These images were selected from the International Affective 
Picture System (Lang, 2005) and from various internet sources, such as 
food blogs. All stimuli had a resolution of 1024 × 768 pixels but the food 
and non-food images were not matched for visual properties like color or 
shape. Each image was displayed for 4 s and followed by a 1 s 
inter-stimulus interval. The total duration of the task was 196 s. After the 
first MRI measurement, participants consumed a glucose drink (1.75 
g/kg of body weight, max 75g ) to match the design of the oGTT test 
performed on the first study visit. About 15 min after the glucose 
ingestion, participants underwent a second food cue task using the same 
procedure as before. Glucose ingestion was used to match the oGTT done 
in the previous visit. The picture set in the two food cue tasks was the 
same, with the order of the images randomized both within and between 
blocks. Overall, the task was optimized to detect differential effects 
(food vs. non-food) using a short stimulus onset asynchrony, rather than 
to assess common task effects or task effects relative to the implicit 
baseline. Fig. 1 illustrates the study protocol.

2.3. MRI data acquisition

The imaging was conducted using a Siemens MAGNETOM Prismafit 
3-Tesla scanner equipped with a 20-channel phased array coil. The 
children were positioned supine on the scanner bed and presented with 
food cue stimuli through a mirror attached to the head coil. Blood- 
oxygen-level-dependent (BOLD) functional scans were obtained using 
a single-shot gradient echo planar imaging sequence with these pa-
rameters: repetition time (TR) of 2000 milliseconds (ms), echo time (TE) 
of 25 ms, bandwidth of 2520 Hz/pixel, flip angle of 85◦, field of view of 
220 × 220 mm, matrix size of 64 × 64, voxel size 3 × 3 × 2.5, and a slice 
thickness of 4 mm, resulting in 32 slices covering the entire brain. A 3D 
Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence was 
also collected as a structural template for multi-subject registration. 
Here, parameters were: repetition time of 1950 ms, echo time of 2.26 
ms, flip angle of 9◦, inversion time of 900 ms, matrix size of 256 × 256 ×
224, a voxel resolution of 1 × 1 × 1 mm3, acquired in interleaved order. 
The functional scan lasted for 196 s, and the structural scan for 4 min 
and 14 s.

2.4. Image preprocessing

The whole analysis (preprocessing, first-level, second-level, func-
tional connectivity) of the fMRI data was conducted using Statistical 
Parametric Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/softw 
are/spm12) software, which is implemented in Matlab (MathWorks, 
Natick, MA, USA). Prior to analysis, the functional images underwent 
slice time correction and realignment. The anatomical images were then 
co-registered to the mean functional image and segmented using unified 
segmentation, which allowed for normalization of the structural image 
to the standard adult Montreal Neurological Institute (MNI) space. The 
resulting transformation matrix was then used to normalize the 

Fig. 1. Experimental protocol. During the first visit, children undergo an oGTT to assess their insulin sensitivity. During the second visit, children undergo food-cue 
task in an fMRI scanner before and after glucose ingestion. The food-cue task consists of 12 blocks of either food or non-food images. The figure was created with the 
help of Biorender.com.
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realigned functional images. Prior studies in children used a standard 
adult MNI template for transformation (Bohon, 2017; Boutelle et al., 
2015; Luo et al., 2019). Finally, the functional images were smoothed 
with an 8 mm FWHM Gaussian kernel. For noise correction, white 
matter and cerebrospinal fluid (CSF) signals were extracted from the 
normalized functional images using the PhysIO toolbox (Kasper et al., 
2017). Analysis was confined to participants with complete datasets, 
encompassing pre- and post-glucose ingestion fMRI scans and separate 
oGTT results. Exclusion criteria included excessive motion during scans, 
defined as exceeding a threshold of 2 mm or 2◦ in any direction, in line 
with Luo et al. (2019). Visual inspections were also performed to detect 
artefacts. Of the 112 participants originally recruited, 51 were excluded 
due to excessive motion or acquisition artefacts — one due to a metallic 
interference and another due to detectable brain lesions. An additional 
eight participants were excluded for incomplete oGTTs. Consequently, 
53 participants met the inclusion criteria for all analyses.

2.5. Neural food cue reactivity

For the first-level analyses, brain responses to stimuli were modelled 
for each participant as blocks convolved with a canonical hemodynamic 
response function using the general linear model. Two regressors rep-
resenting high-caloric food images (F) and non-food images (NF) were 
included, respectively. To account for head motion, the six realignment 
parameters were included as confounds. The PCA based extracted white 
matter and CSF signals were also added as confounds. The data were 
high-pass filtered with a cut-off of 128 s and separate contrast images 
between F versus NF were calculated before and after glucose drink for 
each individual. In the second-level analysis, the F-NF images obtained 
from the first-level analysis were used in a full-factorial model 
(described below, see 2.7).

2.6. Functional connectivity. Generalized Psychophysiological Interaction 
(gPPI)

To investigate FC during the food cue task, a generalized psycho-
physiological interaction (gPPI) analysis was employed (McLaren et al., 
2012, https://www.nitrc.org/projects/gppi, version 13.1), which is a 
well-established method for FC analysis in task-based fMRI. Nine seeds 
were defined based on significant neural food cue reactivity (F-NF 
contrast), using a spherical ROI with 6 mm (p < 0.05, FWE-cluster level; 
see Table 2). Functional brain connectivity was then calculated for each 
of these seed regions. The gPPI contrast images of F vs. NF for each seed 
region (and visit) were included in a second-level full-factorial model 
(described below, see 2.7).

2.7. Second level statistics

In the second-level analysis, the F-NF images (neural food cue 
reactivity and gPPI) obtained from the first-level analysis were used in a 
full-factorial model with ISI and sex as between-subject factors, and 
before vs. after glucose ingestion as a within-subject factor (time-point). 
The assignment of children with higher or lower ISI was based on me-
dian split (ISI-Matsuda range: 0.94–26.57, median split at 8.96). Age 
and BMIz were included as adjusted covariates. In addition, we tested 
whether body fat (%) and waist-hip ratio as alternative covariates to BMI 
in our analyses, given their association with metabolic disorders. 
Finally, we conducted an additional model including exposure to GDM 
as covariate to assess its potential impact on our findings.

The primary aim of the analysis was to evaluate the main effect of ISI 
(low vs high) and before and after glucose ingestion (time-point) on 
neural food-cue reactivity and functional connectivity. In exploratory 
analyses, interactions between sex and ISI and time-point were evalu-
ated. Statistical significance was determined using a primary threshold 
of p < 0.001 uncorrected and a secondary threshold of p < 0.05 family 
wise error corrected for multiple comparisons at the cluster level 

(cFWE). We used the SPM Cluster Threshold toolbox (https://github. 
com/CyclotronResearchCentre/SPM_ClusterSizeThreshold) to calculate 
the minimum number of voxels which determine a significant cluster for 
a corrected p-value of 0.05. The resulting threshold for cluster signifi-
cance was 65 voxels. In addition, small volume correction (svc) was 
performed for insulin-sensitive brain regions-of-interest (ROI’s) 
including the bilateral hypothalamus, nucleus accumbens, caudate nu-
cleus, putamen, pallidum, hippocampus, amygdala, insula, and PFC 
(Kullmann et al., 2020). These regions were combined in one single 
mask. The masks were based on the AAL atlas 3 (https://www.oxcns. 
org) and wfu_PickAtlas (https://www.nitrc.org/projects/wfu_p 
ickatlas/). For our post-hoc testing, p-values were adjusted for multi-
ple comparisons using the Benjamini-Hochberg false discovery rate 
(FDR) method (Benjamini and Hochberg, 1995).

3. Results

3.1. Participants

The 53 children included 29 girls and 24 boys, with a mean and 
standard deviation (SD) age of 8.59±0.99 years. The median ISI based 
Matsuda index was 8.96. Table 1 presents the comparison of sex, expo-
sure to GDM during pregnancy, age, adiposity measures, HOMA IR and 
ISI-Matsuda for the lower ISI vs. higher ISI group. Boys and girls are 
similarly distributed across the groups. As expected, high ISI is associ-
ated with lower adiposity and insulin resistance. Supplementary Tables 1 
and 2 provide additional information on the general characteristics of 
the included and excluded participants. In addition, Supplementary 
Table 3 offers an overview of the participants’ characteristics stratified 
by sex, showing no differences between boys and girls.

3.2. Neural food cue reactivity

In the whole brain analysis, we observed several regions that were 
more activated during visual presentation of high-caloric food images 
compared to non-food images (F-NF contrast, Fig. 2, Table 2). This cor-
responds to findings of previous studies investigating neural food cue 
responsivity (Luo et al., 2019). The coordinates reported in Table 2
correspond to the centre of the 9 peak coordinates extracted and used as 
seed regions for the gPPI analysis (6 mm spherical ROIs). No significant 
main effects of time-point (before and after glucose ingestion), sex, or ISI 
were found. No significant 2-way interactions were found. Comparable 
results were obtained using body fat (%) or waist-hip ratio as alternative 
covariates to BMI in our analyses (data not shown).

Table 1 
Participants’ characteristics.

Variable Lower ISI (N = 27) Higher ISI (N = 26) p-value

Sex 14 Girls / 13 Boys 15 Girls / 11 Boys 0.78
GDM exposure 12 GDM / 15 NGT 19 GDM / 7 NGT 0.051
 Mean ± SD Mean ± SD 
Age (years) 8.88±1.07 8.28±0.82 0.026
BMI (kg/m2) 21.09±4.85 16.99±2.27 <0.001
BMI percentile 80.86±23.09 59.07±27.10 0.002
BMI z-score 1.13±1.01 0.31±0.90 <0.001
Body fat (%) 28.94±9.93 21.00±5.94 <0.001
Waist-hip ratio 0.90±0.06 0.86±0.05 0.04
HOMA-IR 1.88±1.51 0.48±0.20 <0.001
ISI-Matsuda 5.43±2.58 16.16±4.66 <0.001
Fasting glucose (mg/dL) 88.70±10.65 82.16±8.68 0.02
2-hour glucose (mg/dL) 122.98±17.37 106.51±22.10 0.004

Abbreviations: ISI = insulin sensitivity index, SD = standard deviation, BMI =
body mass index, HOMA-IR = homeostatic model assessment for insulin resis-
tance, GDM = gestational diabetes mellitus, NGT = normal glucose tolerance. 
ISI-Matsuda range (0.94–26.57, median split at 8.96). Statistical comparisons 
were performed using Fisher’s exact test for count variables and two-sample t- 
tests for continuous variables.
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3.3. Task-based functional connectivity analysis

We investigated functional connectivity in response to food cues 
before and after glucose ingestion (time-point) in children with high and 
low peripheral insulin sensitivity. There was a significant main effect 
based on ISI group such that FC was higher between the left anterior 
insula and the right nucleus caudate in the lower ISI compared to the 
higher ISI group (Cohen’s d = 1.25, Fig. 3, Table 3). In addition, we found 
lower FC between the left posterior insula and the right middle temporal 
gyrus (MTG) in the lower ISI compared to the higher ISI group (Cohen’s 
d = − 1.14, Fig. 4, Table 3).

We found an interaction between time-point × sex in FC between the 

left postcentral gyrus and the left anterior insula (Fig. 5, Table 3). FC in 
boys increased from before to after glucose ingestion, while it decreased 
in girls (Post hoc tests: Boys before < Boys after: t(46) = − 2.60, pFDR =

0.01, Cohen’s d = − 0.75; Girls before > Girls after: t(56) = 4.05, pFDR =

0.0004, Cohen’s d = 1.05; Boys before < Girls before: t(51) = − 2.70, 
pFDR = 0.004, Cohen’s d = − 0.84; Boys after > Girls after: t(51) = 3.61, 
pFDR = 0.001, Cohen’s d = 0.96).

We found an interaction between ISI × sex in FC between the right 
anterior insula and the left precentral gyrus (Fig. 6, Table 3). Boys with 
low ISI and girls with high ISI showed the strongest FC (Post hoc test: 
Boys lower ISI > Boys higher ISI: t(46) = 4.28, pFDR = 0.001, Cohen’s 
d = 1.01; Girls lower ISI < Girls higher ISI: t(56) = − 3.61, pFDR =

0.0004, Cohen’s d = − 1.16; Boys lower ISI > Girls lower ISI: t(52) =
3.70, pFDR = 0.0004, Cohen’s d = 1.22; Boys higher ISI < Girls higher 
ISI: t(50) = − 4.34, pFDR = 0.001, Cohen’s d = − 0.91).

No main effects of sex or of time-point were found. No other in-
teractions were detected. Similarly to what was observed for food-cue 
reactivity, similar results on FC were obtained using body fat (%) or 
waist-hip ratio as alternative covariates to BMI in our analyses (data not 
shown).

After including exposure to GDM as an additional covariate (see 
supplementary Table 4 and supplementary figures 1–4), the main effect of 
ISI on FC between the left anterior insula and the right nucleus caudate 
was no longer significant (psvc = 0.14). The remaining findings stay 
largely unchanged. With a sample size of N = 53 children and a mean 
effect size of Cohen’s d = 1.20 for the main effect (higher ISI vs. lower 
ISI), we achieved a statistical power of 0.99 at an alpha level of 0.05. For 
our interactions effects, with average Cohen’s d = 0.99, the achieved 
power ranged between 64 and 72.

Fig. 2. Neural food cue reactivity. Figure shows food cue responsive brain areas based on the F-NF contrast. These regions were used as seeds for gPPI functional 
connectivity analysis. Color map corresponds to T values (P < 0.001 uncorrected for display) overlaid on the average normalized T1 weighted image of the children. 
R = right; L = left; P = posterior; A = anterior; amy = amygdala; postCG = postcentral gyrus; OC, occipital cortex.

Table 2 
Brain food cue response (Food > non food).

Brain region Peak MNI coordinates 
(X,Y,Z)

Peak 
t

p 
(cFWE)

Cluster 
size

R posterior Insula 39, − 4, 8 7.19 0.012 116
R anterior Insula 36, 5, − 13 5.20  
L posterior Insula − 39, − 7, 8 7.12 <0.001 237
L anterior Insula − 36, 2, − 10 5.58  
R Lateral occipital 

cortex
45, − 64, − 4 6.21 0.018 104

L Lateral occipital 
cortex

− 45, − 64, 4 6.16 <0.001 241

R Postcentral gyrus 60, − 19, 41 6.13 <0.001 462
L Postcentral gyrus − 57, − 28, 47 5.67 <0.001 349
L Amygdala − 15, − 4, − 22 6.07 0.031 89

Table presents areas in which activation was higher following presentation of 
high-caloric food compared to non-food pictures, before and after glucose 
ingestion, adjusted for age and BMI z-score. Labels from the SPM Neuro-
morphometrics atlas, adapted for children. Abbreviations: L = Left, R = Right, 
cFWE = family wise error corrected for multiple comparisons at the cluster level.
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4. Discussion

The aim of this study was to examine the relationship between pe-
ripheral insulin sensitivity and neural food-cue induced activity and 
functional connectivity (FC) both before and after glucose ingestion in 

children aged between 7 and 11 years from the BrainChild Cohort (Alves 
et al., 2020; Luo et al., 2019; 2021; Lynch et al., 2021). Neural food cue 
reactivity reported in the current study corresponds to previous works in 
the BrainChild study (Luo et al., 2019), with higher activity to food 
compared to non-food in the bilateral posterior and anterior insula, 

Fig. 3. Higher food-cue induced functional connectivity in lower ISI compared to higher ISI children. A) Shown is the cluster of the right nucleus caudate, revealing 
higher FC with the anterior insula in children with lower peripheral insulin sensitivity. Color map corresponds to T values (P < 0.001 uncorrected for display) 
overlaid on the average normalized T1 weighted image of the children. B) Box plots show the left anterior insula FC to the right nucleus caudate in children with 
lower and higher peripheral insulin sensitivity (lower ISI and higher ISI, respectively). Displayed the mean FC between before and after glucose ingestion. Whiskers 
indicate 1.5 interquartile range. ISI = Insulin Sensitivity Index. Data are adjusted for age and BMI z-score.

Table 3 
Food-cue induced functional connectivity (food vs. non-food).

Seed region Target region MNI coordinates of target region (X Y Z) Peak T Cluster size p FWE

Lower ISI > Higher ISI
L anterior insula R Nucleus caudate 9 17 8 4.76 23 0.007svc

Lower ISI < Higher ISI
L posterior insula R Middle temporal gyrus 51 − 28 − 4 4.95 111 0.006*
Time-point (before vs. after glucose ingestion) × sex
L postcentral gyrus L anterior insula − 45 5 − 10 5.10 189 <0.001*
ISI (Lower vs. Higher) × sex
R anterior insula L Precentral gyrus − 33 − 13 50 4.50 189 <0.001*

R = right; L = left, FWE = family wise error corrected for multiple comparisons. Data are adjusted for age and BMI z-score.
* indicates significance at the cluster level.
svc indicates significance after small volume correction. For the svc, we used the mask as specified in section 2.7.

Fig. 4. Lower food-cue induced functional connectivity in lower ISI compared to higher ISI children. A) Shown is the cluster in the middle temporal gyrus, revealing 
lower FC with the left posterior insula in children with lower peripheral insulin sensitivity. Color maps on the left correspond to T values (P < 0.001 uncorrected for 
display) overlaid on the average normalized T1 weighted image of the children. B) Box plots show the left posterior insula FC to the right middle temporal gyrus in 
children with lower and higher peripheral insulin sensitivity (lower ISI and higher ISI, respectively). Displayed the mean FC between before and after glucose 
ingestion. Whiskers indicate 1.5 interquartile range. ISI = Insulin Sensitivity Index. Data are adjusted for age and BMI z-score.
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lateral occipital cortex, postcentral gyrus, and left amygdala to food 
compared to non-food visual cues. We found no significant effects of 
peripheral insulin sensitivity on whole-brain food cue reactivity. How-
ever, we observed that children’s FC patterns in response to high-calorie 
food cues vary depending on their insulin sensitivity. Specifically, our 
findings indicate that children with lower insulin sensitivity exhibited 
altered insular functional connectivity to regions implicated in food 
processing (e.g. Li et al., 2023; Stice et al., 2008). These differences in FC 
patterns, particularly within the insular region, were evident both when 
children were fasting and after glucose ingestion, and might suggest an 
altered processing of homeostatic regulation of hunger (Parsons et al., 
2022). Moreover, explorative analysis revealed sex differences in func-
tional connectivity responses to food cues. Our results suggest that 
children with lower peripheral insulin sensitivity, independent of body 

mass index, have alterations in FC between food-cue responsive brain 
regions regardless of prandial state. In addition, we obtained similar 
results considering body mass index, body fat (%) or waist-hip ratio as 
covariates, suggesting that the choice of adiposity measure does not 
significantly alter the observed relationship between insulin sensitivity 
and food-cue evoked FC.

4.1. Insular functional connectivity during food cues is associated with ISI

While we found differences in FC during the food cue task with 
respect to peripheral insulin sensitivity, we did not observe differences 
in whole brain reactivity to food images. This corresponds to a recent 
meta-analysis showing that there is little evidence for obesity related 
differences on whole brain food cue reactivity in children and adults 

Fig. 5. Interaction between time-point (before and after glucose ingestion) and sex on functional connectivity in children. A) Shown are the clusters of the left 
postcentral gyrus network, revealing an interaction between sex and time-point (before and after glucose ingestion). Color maps on the left correspond to T values (P 
< 0.001 uncorrected for display) overlaid on the average normalized T1 weighted image of the children. B) Box plots showing the left postcentral gyrus FC to the left 
anterior insula in boys and girls before and after glucose ingestion. Whiskers indicate 1.5 interquartile range. * indicates pFDR ≤0.01, ** pFDR ≤0.001.

Fig. 6. Interaction between peripheral insulin sensitivity and sex on functional connectivity in children. A) Shown are the clusters of the right anterior insula 
network, revealing an interaction between sex and peripheral insulin sensitivity. Color maps on the left correspond to T values (P < 0.001 uncorrected for display) 
overlaid on the average normalized T1 weighted image of the children. B) Box plots showing the right anterior insula FC to the left precentral gyrus in boys and girls 
with lower and higher peripheral insulin sensitivity (lower ISI and higher ISI, respectively). Displayed the mean FC between before and after glucose ingestion. 
Whiskers indicate 1.5 interquartile range. * indicates pFDR ≤0.01, *** pFDR ≤0.0001. ISI = Insulin Sensitivity Index.
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suggesting that there are other mediating factors that may not have been 
considered thus far (Morys et al., 2020). Our results show, however, 
distinct patterns of insular FC during the viewing of food-cues in chil-
dren based on their peripheral insulin sensitivity. Generally, reduced 
insulin responsiveness in the insula cortex has been observed in adults 
with peripheral insulin resistance and poor cognitive control (Wagner 
et al., 2022, 2023). Post hoc computation of achieved power revealed 
that our sample size was adequate to detect a main effect of insulin 
sensitivity of FC.

In our work, we found differences in connectivity independent of 
prandial state in two regions of the insula, an anterior and a posterior 
region that are known to underlie brain responses to taste and visual 
presentation of food (Avery et al., 2020; J.A. 2021). However, these two 
insular regions also present functional differences. While the dorsal, 
posterior region is associated with cognitive and attentional processing, 
the anterior ventral insula is primarily involved in social and emotional 
functions (Avery et al., 2021; Kurth et al., 2010). Connections of the two 
insular regions are also different. Specifically, the posterior section is 
mainly connected with frontoparietal regions, while the anterior ventral 
region is connected with emotional regions in the limbic system (Avery 
et al., 2021; Kurth et al., 2010). In agreement with our hypothesis, we 
observed higher FC between areas responsive to high-caloric food im-
ages in children with lower ISI vs. higher ISI, with higher FC between the 
left anterior insula and the right caudate (Fig. 3). The insula and caudate 
play a crucial role in associating food cues with rewards, in wanting and 
craving, and attributing subjective value to palatable food 
(Kahathuduwa et al., 2016). Hyper- or hypoactivations in neural activity 
along these areas are associated with alterations in reward processing, 
inhibitory control, and body weight regulation (Li et al., 2023) and may 
lead to overeating due to increased sensitivity to food cues (Meng et al., 
2020; Rothemund et al., 2007). Prior studies have shown that adults 
with obesity (Stoeckel et al., 2009; Wijngaarden et al., 2015) and lean 
adolescents at high risk of developing obesity (Sadler et al., 2023) have 
higher FC between reward-related areas, which is thought to contribute 
to the elevated motivational value of food in this population. Specif-
ically, heightened connectivity between the anterior insula and caudate 
was previously interpreted as one factor that may lead to overeating by 
impairing self-awareness, increasing arousal in response to food cues, 
and reducing responsiveness to a post-prandial state (Donofry et al., 
2020b; Geha et al., 2017; Nummenmaa et al., 2012). In light of these 
previous reports, the observed heightened functional connectivity be-
tween the anterior insula and caudate in children with lower peripheral 
insulin sensitivity might serve as an early marker of insulin resistance 
and an increased susceptibility to obesity in youth. Notably, the 
ISI-based difference in FC to the caudate was no longer significant after 
adjusting for GDM exposure. This reflects current evidence suggesting 
that brain insulin sensitivity may mediate the effects of early life ad-
versities, including GDM, on brain development, including striatal re-
gions (Alberry and Silveira, 2023; Batra et al., 2021; Zhao et al., 2024).

In addition, we found that children with lower insulin sensitivity 
have lower FC between the left posterior insula and the right MTG 
(Fig. 4). The MTG is involved in emotional memory and processing of 
food odors (Dolcos et al., 2005; Han et al., 2021; Kohn et al., 2014). 
Adults with obesity exhibit reduced intrinsic activity in the MTG 
following intermittent energy restriction (Li et al., 2023). The authors 
attributed this reduction to a potential decrease in cognitive functions 
and neural processing of sensory information, which could in turn 
impact eating behavior. The role of MTG in obesity is found also in 
earlier life stages. For example, a lower FC in the MTG was found in 
adolescents with overweight and obesity (Moreno-Lopez et al., 2016). 
Furthermore, in children aged 7 to 9 with obesity, there was a lower 
brain response in the MTG when exposed to high-energy food pictures 
(Masterson et al., 2019). These results are consistent with the idea that 
metabolic conditions like overweight, obesity, and insulin resistance 
may have an effect not only on the brain networks responsible for 
metabolic control and reward, but also on more complex cognitive 

functions (Moreno-Lopez et al., 2016; Verdejo-García et al., 2010).

4.2. Sex differences on food cue induced FC

In our exploratory analysis, no overall sex differences were found on 
food-cue reactivity and FC. However, sex differences in FC were found 
depending on prandial state and on peripheral insulin sensitivity. Spe-
cifically, FC between the left postcentral gyrus and the left anterior 
insula increased after glucose ingestion in boys, and decreased in girls 
(Fig. 5). In addition, when comparing children with different ISI levels, 
we observed that boys with lower ISI had higher FC, whereas this trend 
was reversed in girls (Fig. 6). However, our power analysis revealed that 
a larger sample size would be required to achieve sufficient power for 
interaction effects. In the current analysis, interactions with sex were 
intended as exploratory, and while they provide valuable insight on 
food-cue processing in children, their significance should be interpreted 
with caution and have to be confirmed in future studies.

Generally, sex effects on insula and sensorimotor regions functional 
connectivity have been reported before in the context of obesity and 
metabolic research. However, the outcomes of these studies do not yet 
show a clear pattern. For example, there is some indication that males 
(vs. females) with obesity had higher FC in response to food cues with 
the amygdala in supplementary and primary motor areas (Atalayer 
et al., 2014; Kilpatrick et al., 2023). In addition, males showed a more 
prominent decrease in postprandial insular resting-state connectivity 
with sensorimotor and prefrontal cortex (Kilpatrick et al., 2020). Based 
on these results, the authors have suggested an increased vulnerability of 
males to obesity-related alterations in the precentral gyrus and occipital 
cortex (Gupta et al., 2017; Kilpatrick et al., 2023). In general, however, 
alterations in somatosensory regions in children with overweight and 
obesity might indicate an expanded somatosensory and motor cortical 
representation of the body as a function of body mass (Pujol et al., 
2021). In their work, the authors found that higher body mass was 
associated with higher integration of the sensorimotor cortex to superior 
parietal regions that underlie body awareness. Possible sex differences 
might also be attributed to the differential distribution of subcutaneous 
and visceral adipose depots observed between males and females, which 
is implicated in insulin resistance (Machann et al., 2005).

5. Limitations

In the current analysis we recognize some limitations. The cross- 
sectional nature of the analysis precludes inference about the direc-
tionality between children’s peripheral insulin sensitivity and the dif-
ferences in brain functional connectivity. Moreover, since the majority 
of children in our study were peripherally insulin sensitive (ISI-Matsuda 
> 5) and the ISI distribution was skewed, the median split we applied 
represents an arbitrary threshold rather than a meaningful indicator of 
insulin resistance. Therefore, the group of lower ISI is partly insulin 
sensitive. In addition, GDM exposure may partially influence the 
observed brain connectivity patterns. Further research is needed to 
evaluate whether, and to what extent, children with obesity, insulin 
resistance and exposure to GDM show similar alterations to those 
observed the current study. Perinatal and birth variables are also not 
included in our sample. In addition, the ~15 min interval between the 
two food cues tasks (before and after glucose ingestion) may not capture 
neural food cue processing when circulating insulin levels are at their 
peak. Moreover, presenting the same set of food cues before and after 
glucose ingestion may introduce familiarity or habituation effects. 
Additionally, while our study was well powered to detect main effects of 
insulin sensitivity on FC, a larger sample size is needed to validate the 
interaction effects. Finally, in our analysis we focused on task-related FC 
during a food cue task. Analysis of resting-state connectivity is also 
useful to study brain network changes at a young age (Brooks et al., 
2023).
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6. Conclusion

The study investigated the relationship between peripheral insulin 
sensitivity and neural responses, encompassing both neural reactivity 
and whole brain FC in children during the processing of high-caloric 
food cues. Our findings showed no relationship between peripheral in-
sulin sensitivity and whole-brain food reactivity. However, our data 
revealed a significant association between low peripheral insulin 
sensitivity and increased functional connectivity to the insula, specif-
ically from neural circuits involved in food processing such as the 
caudate nucleus and the middle temporal gyrus. In addition, our 
exploratory analysis identified sex-specific patterns of functional con-
nectivity that were dependent upon peripheral insulin sensitivity and 
the prandial state, whether fasted or post-glucose ingestion. However, 
future studies with larger sample sizes are needed to further validate 
these interactions. Overall, the results support the premise that lower 
insulin sensitivity, independent of body mass index, contributes to the 
modulation of neural communication within circuits governing food 
processing, reward, regulation of food intake, and emotional regulation 
in a pediatric population. These findings not only corroborate existing 
literature on obesity but also extend our understanding by delineating 
the congruent neural correlates of obesity and insulin resistance in 
children. The implications of this study are that metabolic dysregula-
tions, including overweight, obesity, and lower insulin sensitivity, exert 
tangible effects on the brain networks implicated in metabolic control 
and cognitive operations, with these influences manifesting during the 
critical developmental stages of childhood.
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