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Causal machine learning for single-cell 
genomics
 

Alejandro Tejada-Lapuerta1,2,10, Paul Bertin3,4,10, Stefan Bauer2,5,6, 
Hananeh Aliee    7 , Yoshua Bengio    3,4,8  & Fabian J. Theis    1,2,9 

Advances in single-cell '-omics' allow unprecedented insights into the 
transcriptional profiles of individual cells and, when combined with 
large-scale perturbation screens, enable measuring of the effect of targeted 
perturbations on the whole transcriptome. These advances provide an 
opportunity to better understand the causative role of genes in complex 
biological processes. In this Perspective, we delineate the application 
of causal machine learning to single-cell genomics and its associated 
challenges. We first present the causal model that is most commonly applied 
to single-cell biology and then identify and discuss potential approaches 
to three open problems: the lack of generalization of models to novel 
experimental conditions, the complexity of interpreting learned models, 
and the difficulty of learning cell dynamics.

Cells are the basic unit of life, with their functions and identities 
shaped by complex physical and biochemical processes. Under-
standing causal relationships within cellular processes is essential 
for revealing the intricate biological mechanisms that drive cellular 
behaviors such as proliferation, differentiation and apoptosis, and 
for identifying the associated signaling molecules, genetic mutations 
or environmental stimuli, as well as for aiding the development of 
targeted therapies for diseases such as cancer, neurodegenerative 
disorders and metabolic syndrome.

Advances in molecular profiling at single-cell resolution have pro-
vided an unprecedented view of cellular processes. Machine learning 
has begun to be applied to single-cell genomics, with crucial contribu-
tions, such as dimensionality reduction1,2 (used mainly for visualization 
purposes), data integration3 (to construct cell atlases), trajectory 
inference4 (for inferring cell fate) and transfer of model predictions 
across modalities5. However, such methods have only provided limited 
insights into the underlying biological processes and do not lead to 
improved predictions of experimental outcomes.

The majority of the machine learning methods applied to single-cell 
genomics have their foundations in noncausal statistical learning, which 

leverages patterns within a unique data distribution. However, when the 
experimental conditions change, the data distribution changes accord-
ingly; so previously identified patterns may not be relevant anymore, 
and noncausal statistical learning may fail to generalize6 (Box 1). Causal 
machine learning (depicted in Fig. 1a) aims to achieve good predictions 
under novel conditions by discovering the biological mechanisms that 
correspond to (a chain of) biochemical interactions through which one 
biological quantity affects another. This is to be opposed to spurious 
correlations (which do not reflect underlying biochemical interactions) 
that are captured via statistical learning and typically lead to poor gen-
eralization in changed conditions (Box 1). Most biological mechanisms 
are expected to remain unchanged even when experimental condi-
tions vary (akin to the immutability of the rules of physics) in contexts 
such as small-molecule or CRISPR perturbations (as highlighted in 
Fig. 1b), which constitute the focus of this Perspective. In some cases, 
however, such as changes in temperature and pressure, most mecha-
nisms can be directly affected, and the dependency of causal mecha-
nisms on such factors should be learned. More broadly, mechanisms 
are subject to change if any aspect of the experimental conditions,  
whether technical or biological, changes too drastically.
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BOX 1

Definitions and key concepts
Causality

 –Biological causality aims to find mechanistic explanations, relying 
on a (cascade of) physical interactions and chemical reactions 
between biological entities inside the cell, that lead a cause to 
have a particular effect.
 –Probabilistic causality aims to find statistical association 
between variables (typically gene expression levels) that remain 
unchanged unless they are directly intervened on.

These two notions of causality are aligned well in the context 
of learning causal models from single-cell data, as biochemical 
interactions (through which one biological quantity affects another) 
are reflected in robust statistical associations.

Causal model
A causal model is able to generate an entire family of distributions; 
each distribution corresponds to a different environment  
(for example, experimental condition). It is usually a pair (g, h) 
composed of:

 –A graph-based model g, which encodes explicit directed 
relationships between causal variables (associated with the nodes of 
the graph) and can generate observations in a given environment.
 –An interventional model h that modifies the graph-based model 
such that it can generate samples from different environments. 
Given an intervention i and the current (unintervened) parameters 
of the graph-based model, h generates intervened parameters 
such that g generates observations under intervention i. Typically, 
h modifies the adjacency matrix of the graph-based model and 
removes some edges.

Environment
The environment is defined by all the characteristics of the cell 
population on which the experiment is performed, as well as the 
characteristics of the experimental protocol, including exposure to 
biological perturbations.

Intervention
An intervention is any action performed by the interventional model 
over the graph-based model.

SCM19,82

A type of graph-based model in which the value of each variable is 
generated through a so-called structural assignment, which takes the 
value of its parents as input:

Xi ∶= fi(PAi,Ui), (i = 1,… ,n),

where fi is a deterministic function, PAi is the set of causal parents of 
node Xi in the graph and Ui is a noise variable that represents 
variability within the population of cells. The members of the set of 
noise variables U1,… ,Un are jointly independent. Most importantly, 
the graph (with nodes X1,..., Xn and edges going from parents PAi to Xi 
for all i) is required to be acyclic.

Causal kinetic model69

A type of graph-based model in which structural assignments govern 
the temporal evolution of causal variables via an ODE or a stochastic 

differential equation (to account for the intrinsic stochasticity  
of biology).

Generalization
Ability of a model to make accurate predictions in new, previously 
unseen environments.

Latent variable
Variable that is not directly observed but inferred from other 
observed variables. It can capture biological quantities such as 
pathway activation or aspects of the acquisition protocol.

A latent variable is considered causal if it plays a role similar to 
that of observed causal variables within the causal model: namely, 
they depend on and influence other causal variables (whether latent 
or observed) and the mechanisms among them are preserved across 
environments.

Conditional independence testing
Variables A and B are considered conditionally independent given C if 
P(A|B, C) = P(A|C).

Granger causality
A statistical hypothesis test that aims to determine whether a time 
series is useful for forecasting another.

GRN
A GRN is a graph representing interactions among genes  
(and sometimes other molecular regulators) that govern 
the expression levels of mRNA and proteins, which in turn 
determine the functions of the cell. The links in the network 
reflect cascades of biochemical interactions involved in gene 
regulation mechanisms (for example, transcriptional regulation, 
post-transcriptional modifications).

This mechanistic definition is stricter than the correlative 
approaches that some available GRNs may rely on.

ODE
An ODE models how a variable changes over time in relation to 
others, often used in biology to describe temporal dynamics 
of gene expression or protein concentrations based on causal 
relationships:

dX = f(PAX, t)dt or
dX
dt

= f(PAX, t),

where PAX represents the causal parents of the variable X.

Stochastic differential equation
A stochastic differential equation extends an ODE by adding  
a noise term, capturing random fluctuations inherent in biological 
systems, making it ideal for modeling stochastic behaviors in 
single-cell systems:

dX = f(PAX, t)dt + σ(X, t)dε,

where PAX represents the causal parents of the variable X and σ(X, t)dε 
is the stochastic term.
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To have an impact in cell biology, causal machine learning must 
be adapted to the specificities of the biological systems being mod-
eled and the data modalities being used. Moreover, causal inference 
methods can fail when some of their core independence assumptions 
(such as stable unit treatment value assumption7 and no hidden con-
founding8) are violated or when the model is misspecified (for example, 
assuming complete observability of the system or assuming linear 
regulatory mechanisms while real ones are known to be nonlinear). The 
violation of assumptions might lead to wrong predictions in unseen 
conditions and provide inaccurate insights. Uncertainty estimation 
can help avoid highly confident but wrong predictions but might still 
lead to inaccurate predictions when core assumptions are violated 
and not relaxed.

In genomics, there has long been interest in discovering interac-
tions between genes to provide mechanistic explanations of biological 
processes, often summarized through module networks that group 
genes (that is, modules) that function together and for which expres-
sion is tightly correlated9 or through gene regulatory networks (GRNs) 
(Box 1) that contain directed connections from regulator to regulated 
genes. Furthermore, mechanistic and dynamical approaches from sys-
tems biology, traditionally applied to small-scale data such as results 
from western blotting and quantitative PCR, are now being adapted 
to large-scale genomic data10. Inference approaches range from the 
use of conditional independence testing11,12 to detect pairs of genes 
that are in direct interaction with one another to Granger causality13 
(Box 1) used for the analysis of time series, as well as methods that 
directly try to predict a graph from experimental data using black box 
approaches14. Large research efforts are aimed at improving GRN infer-
ence15 via heuristics using multimodal data16,17 (for example, restricting 
the set of possible edges in the GRN on the basis of the accessibility of 
transcription factor binding sites measured by single-cell ATAC-seq 
(assay for transposase-accessible chromatin using sequencing) and 
prior knowledge, such as known transcription factor binding sites. 
Validating inferred GRNs has been a major challenge15, particularly in 
human cells, in which the true GRN remains mostly unknown and is 
highly context dependent. Other organisms, such as Escherichia coli, 
are better understood, and databases for GRNs exist18 but are still noisy 
and incomplete.

The increasing availability of perturbational data may enhance the 
applicability of causal approaches to transcriptomics. This Perspec-
tive aims to identify and analyze open problems in the field, as well 
as to place them into perspective with ongoing research directions. 
After providing some background on causal inference techniques in 
genetics and transcriptomics, we present the default causal model that 
underlies most current causal approaches to single-cell biology. We 
then discuss three open problems, namely, the lack of generalization to 
novel experimental conditions, the complexity of interpreting learned 
models and the difficulty of learning cell dynamics.

Causality for transcriptomics
Single-cell resolution offers an unprecedented view of how biological 
processes unfold at the cellular level. It provides fine-grained detail of 
cellular heterogeneity, allowing the discovery of distinct mechanisms 
operating within different cell types. This level of resolution enables 
the identification and analysis of rare cell populations and specific 
responses to perturbations that might be overlooked in bulk analyses. 
However, this resolution comes with the trade-off of noisier observa-
tions and biases such as technical dropout.

A single-cell experiment typically involves a population of cells 
belonging to a certain environment. Here, the notion of environment 
represents the characteristics of the cell population (for example, 
cell type information), as well as information on the experimental 
protocol, such as exposure to a biological perturbation or the devices 
used to perform the experiment. This definition of the environment 
corresponds to the terminology used in the causality community 

and is broader than the notion of the extracellular environment used 
in cell biology.

Causal models can usually be broken down into two components 
(Box 1). The first component models biological mechanisms (usually 
through a causal graph), while the second component models the way 
these mechanisms are affected by biological perturbations, typically an 
edge-removal operation (that is, the perturbation is assumed to remove 
some specific interactions that are no longer represented by edges in 
the causal graph), or how mechanisms change across environments.

Causal graph of a cell
Within a cell, biological mechanisms can be portrayed as a causal 
graph with nodes denoting gene expression levels and edges indi-
cating causal relationships between genes. An edge is directed from 
a ‘parent’ to a ‘child’ node and means that the gene expression level 
of the child node depends on the expression level of the parent node. 
This representation, called a structural causal model (SCM)18,19 (Box 1), 
defines nodes as causal variables and the functions that govern the 
expression of a gene in relation to its parents as causal mechanisms. 
In the context of cell biology, causal mechanisms correspond to bio-
logical mechanisms, typically transcriptional regulation (Fig. 2a). 
Most causal approaches to single-cell genomics have been based on 
this model and the assumptions it entails12,18–22. Note that causal mod-
els do not always rely on an explicit graph. In some cases, the graph  
is not explicitly constructed but can be recovered through the model’s 
internal dependencies23.

The default SCM model has several limitations. First, the causal 
graph must be acyclic to be able to generate synthetic cell observa-
tions: the gene expression levels of the root nodes (that is, nodes with 
no incoming edges) are sampled first, followed by the expression levels 
of their direct children (conditionally on the value of the parents), and 
so on, until all nodes have been sampled. This contrasts with real GRNs, 
in which cyclic interactions are commonly found as part of regulatory 
motifs, such as autoregulation or feedback loops24. Additionally, the 
default SCM lacks a temporal dimension, limiting its ability to capture 
the dynamic aspect of transcription regulation. Finally, this model only 
accounts for gene expression levels, but, in reality, numerous other 
variables, such as the levels of transcription factors and the propor-
tions of different splicing variants for a given gene, also play a role in 
transcriptional regulation.

Biological perturbations as causal interventions
A biological perturbation refers to a disturbance or alteration in the  
normal functioning of biological systems, often induced experimen-
tally to study the system’s response and understand underlying mecha-
nisms. In an SCM, the impact of a perturbation can be replicated in the 
causal graph through a so-called intervention by manipulating the 
specific variables or causal mechanisms targeted in the experiment. 
The commonly assumed perfect intervention (illustrated in Fig. 2b) 
removes the dependency of the intervened causal variable on its causal 
parents. It is set to zero to signify a complete loss of function in the 
targeted transcript, independent of the value of its regulators.

In practice, the applicability of the perfect intervention assump-
tion is limited. Evidence indicates that CRISPR knockouts have 
off-target effects24–28 and may fail to edit the genome. Methods have 
been proposed to identify cells within a dataset that have not been 
affected by the knockout29. Similarly, drug perturbations cannot usually 
be approximated by perfect interventions. This is due to the fact that 
their mechanisms of action are not always known, and, in numerous 
instances, the drug does not directly affect transcription regulation 
mechanisms.

The exact nature of biological perturbations largely remains 
unknown, and different modeling choices can be relied on, which we 
refer to as interventional models, to successfully represent the impact 
of perturbations on the causal graph. In some contexts (for example, 
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small-molecule perturbations), it might be more appropriate to assume 
that changes in cell state correspond to a new state within a static 
graph (except for the directly altered mechanism). In other contexts 
(for example, new cell types), it may be more suitable to assume that 
many mechanisms on the graph, and possibly the graph’s structure 
itself, have changed. Different approaches can be considered: from 
interventional models that remove or modify the parameters of more 
than one edge at a time (which can help to model off-target effects, as 
depicted in Fig. 2c) to interventional models that take uncertainty into 
account or create new edges within the graph. This means that each 
type of intervention requires a modeling framework that resembles 
as closely as possible the true biological perturbation.

Below, we identify and discuss three open problems associated 
with the use of causal models in single-cell genomics.

Predicting the outcome of novel experimental 
conditions
One of the grand challenges of computational biology is to develop 
models that can predict the outcome of novel experimental conditions, 
for instance, predicting the effect of a disease on unseen cell states or 
the effect of an unseen drug5,30,31. Below, we discuss the importance 
of having access to high-quality data from diverse environments to 
train a causal model that effectively translates knowledge to novel 
environments and how such models can be used for the prospective 
acquisition of informative perturbations.

Importance of the diversity of observed perturbations
Advanced interventional models such as the one depicted in Fig. 2c 
have parameters that should be learned on the basis of data across 
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Fig. 1 | Causal modeling of the cell. a, Biological perturbations or environmental 
changes affect cellular mechanisms, leading to altered gene expression 
and other measurable outcomes. These alterations in cellular mechanisms 
can be simulated through interventions within a causal model to predict 
gene expression and outcomes under different conditions. KO, knockout; 
UMAP, uniform manifold projection and approximation. b, Using a dataset 

of observations from various cell types affected by different biological 
perturbations, statistical learning methods (shown at the top) can predict 
outcomes for cell types and perturbations present in the training data. However, 
they often fail to accurately predict outcomes for novel perturbations or novel 
cell types, a challenge tackled by causal learning methods (shown at the bottom).
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multiple environments and can only be applied in contexts in which 
data are available for a sufficient amount of conditions. Ultimately, 
the right choice of interventional model is the one that yields the most 
accurate predictions for unseen perturbations, which can be assessed 
by reserving several conditions for the test set. This highlights the 
need for a diverse set of observed perturbations to accurately train 
the interventional component of the causal model.

Recent breakthroughs in experimental methodologies, such 
as Perturb-seq32, have facilitated the generation of large single-cell 

CRISPR screen datasets32–34, encompassing perturbations across tens 
to thousands of genes. However, in most cases, the vast majority of 
the available perturbations are associated with only a small number 
of cells, limiting the reliability of estimates of perturbational effects.

Additionally, single-cell data often contain technical noise and 
measurement errors entangled with the biological signals23, leading to 
so-called batch effects. Disentangling these technical variations from 
biological signals is, therefore, crucial for causal models, often trained 
on diverse conditions from multiple batches. Extensive literature is 
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Fig. 2 | Overview of the default SCM model and strategies for learning 
generalizable causal models of cells. a, Modeling of a cell through a model 
termed the default SCM (cellSCM). Edges represent causal relationships between 
genes, corresponding to transcriptional regulation. In the absence of any 
intervention on the cell, the model generates expression profiles associated 
with control cells. Here, genes G1 and G3 are causal parents of G2, meaning 
that the value of G2 is determined on the basis of the values of G1 and G3. Cyclic 
interactions are not allowed in the graph, which prevents, for instance, G2 being 
a causal parent of G1 or G3. b, Perturbations in an SCM are naively treated as 
perfect interventions, which completely abolishes the dependence of targeted 
variables on their regulators. Therefore, the expression level of gene G4 is 

directly set by the intervention, as it no longer depends on the expression of 
G2 and G5. c, A more accurate means to model biological perturbations allows 
several targets to account for uncertainties in the interventional targets, as well 
as for an incomplete removal of regulator dependency. d, Schematic overview 
of model capabilities across different regions of the experimental space, using 
small-molecule effect prediction as an example. A model trained primarily with 
MEK inhibitors may be able to extrapolate predictions to compounds that act 
over similar pathways, such as EGFR inhibitors. However, it may struggle with 
accurately predicting the effects of molecules acting through different pathways, 
such as KRAS inhibitors or calcium channel blockers, for which responses differ 
greatly from those previously observed.
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available for how to account for technical covariates and integrate dif-
ferent datasets3,35–37, which can be leveraged to build training sets for 
causal models when required. However, these methods can potentially 
remove important biological signals. Experimental replicates, in which 
variability is expected to be purely technical, are vital for calibrating 
and validating these approaches. Some types of technical noise can 
be reduced by standardizing experimental protocols between labo-
ratories, but others, such as uncontrolled genetic mutations in cell 
lines grown in different laboratories or the stochastic nature of cell 
differentiation, are more challenging to manage.

In summary, diverse, high-quality perturbational data are required 
when attempting to model biological perturbations in a realistic and 
physiologically relevant manner. Currently, the number of cells used 
per perturbation, as well as the number of available perturbations and 
technical noise have been limiting factors that hinder the effective 

development and training of generalizable causal models. It is also 
important to note that most experimental methods capture proxy 
measurements rather than direct observations of biological processes. 
For instance, RNA sequencing measures RNA abundance as a proxy for 
transcriptional activity but does not fully capture transcription rates or 
RNA processing. Similarly, ATAC-seq indicates chromatin accessibility, 
not active gene transcription. These limitations highlight challenges 
in bridging experimental observations with biological ground truth 
for causal modeling.

Machine learning-driven experimental design
One of the key applications of causal approaches is to propose test-
able hypotheses for experimental validation. The huge complexity 
of cell biology (Box 2) leads to an overwhelming number of potential 
experiments. Hence, it is essential to choose the most promising and 

BOX 2

Toward understanding the complexity of causal modeling in 
cellular biology
Evaluating the full complexity of causal modeling in single-cell 
genomics is challenging. However, we can provide some estimations 
based on the complexity of interactions of the proteome and the 
transcriptome to illustrate the challenge of the task.

Proteomic interactions
The human genome comprises approximately N ≈ 20,000 
protein-coding genes. As a first approximation, we can consider 
that there are similarly N unique proteins in the human proteome. 
With that simplifying assumption and considering only pairwise 
interactions, the total number of possible interactions is on the  
order of 108:

Possible proteomic interactions = N
2 ≈ 108.

Proteoform-specific interactions
The value above is an oversimplification and does not account for the 
various factors that increase the complexity of the human proteome, 
such as alternative splicing, post-translational modifications, 
translation errors and coding SNPs.

Recent studies suggest that the total number of unique mRNA 
transcripts generated by protein-coding genes, accounting for 
alternative splicing and coding SNPs, is approximately 150,000 
(ref. 85). Of these, just around 90,000 are protein coding, while 
the noncoding isoforms possess modulation functions86. This 
provides a more realistic baseline for proteome diversity, even before 
considering post-translational modifications.

While the total number of proteoforms is still an open question, 
studies suggest that the total number of proteoforms in a given cell 
can be approximated. By making assumptions, such as only half 
of the human genome being expressed in each cell type, the total 
number of proteoforms in a given cell is estimated to be around 
N ≈ 1,000,000 (ref. 87). Thus, the total number of possible protein–
protein interactions increases to the order of 1011:

Possible proteoform-specific interactions = N
2 ≈ 1011.

To contextualize this result, current state-of-the-art large language 
models operate with a number of parameters that are also on a similar 

order of complexity88. Therefore, whole-cell models with a constant 
number of parameters per pairwise proteoform interaction are within 
reach of current computational capabilities.

Beyond pairwise interactions
Proteins do not only interact in a pairwise manner but also form 
multiprotein complexes. Using the same estimated number of 
proteoforms as above (N ≈ 1,000,000), we estimate that the number of 
triple proteoform interactions is on the order of 1017. It is worth noting 
that protein complexes often consist of more than three distinct 
proteins, increasing this value substantially.

Multiple types of interactions
The above calculation corresponds only to the estimated number 
of protein–protein interactions within a single cell. It does not 
encompass the complexity of noncoding mRNA transcripts or the 
RNA–DNA interactome, from which studies identify over 40 million 
contacts88,89. Cell–cell interactions should also be incorporated.  
As a point of reference, there are estimations of more than 100,000 
ligand–receptor interactions90.

Biological perturbations
Assuming CRISPR as the main experimental tool to validate causal 
interactions, there are approximately 104 unique single-gene 
knockouts. Multigene perturbations are most likely necessary to 
effectively learn a causal model, as biological mechanisms are known 
to often be redundant (that is, a similar function is encoded by more 
than one gene91). There are ~108 double-gene knockouts and ~1012 
triple-gene knockouts.

Complexity can increase further considering that different parts 
of a gene’s regulatory sequence can be targeted using different 
CRISPR guides, as happens in nature and is reflected in our genomic 
variability, provoking even more complex effects.

Takeaway
The complexity of causal modeling in biological cells is enormous, 
and we have not even considered temporal and spatial dynamics or 
cell–cell interactions. With such a complex system in which there are 
redundant mechanisms, learning and validating causal relationships 
is a technical and experimental challenge.
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informative experiments to perform. Causal models can be used to 
suggest the design of future experiments through their ability to pre-
dict the outcome of yet untested conditions. Experimental results can 
then be incorporated into the available data to improve the model’s 
predictions before new recommendations are generated again in an 
iterative fashion. This is known as machine learning-driven experi-
mental design38,39.

It is common to have access to only a limited set of previously 
acquired conditions. Models trained on such data may struggle to 
generalize to considerably different experimental conditions (Fig. 2d). 
Understanding when model predictions can be trusted is therefore 
extremely important. To this end, a common approach is to design 
models that provide, for a given input, a distribution of predictions 
instead of a single prediction. If this predictive distribution spreads 
across a wide range of values, uncertainty is considered to be high. 
Several approaches exist for estimating uncertainty40–43. They rely 
on inferring a distribution over the parameters of the models that are 
consistent with the data or rely on directly predicting the error made 
by the model. In causal modeling, this extends to obtain probabilities 
over graph structures39,44,45.

The next step involves leveraging model predictions and uncer-
tainty to guide the design of future experiments. The goal is to design 
strategies that can reduce uncertainty in a minimal number of experi-
ments, a process known as active learning, or maximize some prop-
erties (for example, a phenotype, proportion of a given cell type), 
known as sequential model optimization or Bayesian optimization46. 
Recommendations for future experiments are made on the basis of 
their predicted outcome and informativeness derived from uncertainty 
estimation. These sequential approaches have been adapted to the 
context of causal models47,48 to recommend informative interventions.

Sequential approaches have shown great promise in various areas 
of science, including molecular property prediction49,50 and material 
design51. However, their application to cell-based assays, in which 
batch effects are relatively large3, remains challenging. To the best of 
our knowledge, suggesting drug combinations is the only context in 
which sequential model optimization has been applied prospectively 
and quantitatively validated in human cells52,53. Adapting and scaling 
up these methods to, for instance, CRISPR knockout recommendation 
for GRN inference is an open challenge.

Learning interpretable models
Another great challenge of computational biology is to be able to derive 
biological insights from models. We consider a model, or part thereof, 
interpretable when the operations it performs can be associated with 
known processes (for example, transcriptomic regulation) and the 
values it computes can be associated with known and measurable bio-
logical quantities (for example, concentration of a specific molecule). 
Such an interpretable view can help biologists to extract meaningful 
insights from the model, propose new experiments and advance our 
understanding of cellular systems.

In practice, genome-scale models contain numerous interacting 
variables, making it difficult for a human to grasp as a whole, and it 
might be easier to analyze subparts of the model separately. For such 
an analysis to be meaningful, however, causal interactions need to be 
sparse and lead to reasonably independent clusters (corresponding 
to pathways or gene modules) that can be interpreted separately. 
Interestingly, interpretability often aligns with model faithfulness 
(that is, causal mechanisms accurately reflect biochemical interac-
tions). Indeed, most entities within a cell directly interact with only a 
limited number of other entities, as for instance seen in the extreme 
sparsity of known protein–protein interaction networks54, making 
faithful models usually easy to interpret. However, when broad influ-
ences occur (for example, environmental stress such as an increase 
in pressure or temperature), interactions may be more widespread, 
limiting interpretability.

Conversely, existing knowledge can be incorporated into an inter-
pretable model to constrain the model’s operations to known molecu-
lar interactions. However, incorporating prior knowledge can limit 
discovery potential. This is in sharp contrast with a non-interpretable 
model that would be provided with some representation of the prior 
knowledge as input. In addition, latent variables (Box 1), while useful for 
capturing unobserved biological factors, can introduce interpretability 
challenges if they lack direct biological correspondence.

Below, we discuss the opportunities and challenges associated 
with the incorporation of prior knowledge into interpretable models 
as well how introducing latent variables can impact the interpretability 
of causal models.

Incorporation of prior knowledge
Extensive research in cell biology has provided a vast amount of prior 
knowledge, including binding motifs and interaction databases, that 
can be incorporated into models. For instance, groups of genes known 
to function together, such as gene programs or biological pathways, 
are cataloged in databases54–56. By incorporating these known rela-
tionships into the causal learning framework, we can guide the model 
toward biologically plausible solutions. For example, if we know that a 
specific protein acts upstream of another in a signaling cascade, we can 
introduce this constraint into the model to make it more representative 
of known biology and so potentially improve its performance in novel 
scenarios. This represents a direct way of incorporating prior knowl-
edge into causal models: a constraint or prior over edges of the causal 
graph. Prior knowledge incorporation may ease the task of complete 
causal graph discovery by providing a good preliminary estimate or by 
turning the task into a partial graph discovery problem44.

Assessing the quality of available prior knowledge and figuring out 
the extent to which it can improve model performance is an ongoing 
challenge57. While high-quality prior knowledge can enhance causal 
models, incorporating flawed information can bias the model and 
impede its effectiveness. There is a need for methods that tackle poten-
tial biases in existing databases. For example, some proteins are well 
studied, while others are less so. Methods that can account for missing 
links between understudied proteins could help mitigate this bias. 
These predicted links could in turn be validated and used to refine 
existing databases based on empirical evidence.

Moreover, a more systematic reflection on how various types 
of prior knowledge should be incorporated is needed. For instance, 
protein–protein interaction networks should be incorporated differ-
ently than GRNs, as they represent distinct biological phenomena. 
Another challenge is the extraction and encoding of relevant metadata 
and information about the experimental protocol from the scientific 
publications that released the datasets.

A combination of using data-driven learning and prior biological 
knowledge holds substantial promise for building more robust and 
interpretable causal models of cellular processes.

Latent causal variables and their challenges for interpretability
Latent variables can represent any aspect of the generative process 
and are thus a broad concept. They are considered causal if they play 
a role similar to that of observed causal variables within the causal 
model: namely, they depend on and influence other causal variables 
(whether latent or observed) and the mechanisms among them are 
preserved across environments. They are expected to capture bio-
logical quantities involved in cellular mechanisms but are not directly 
observed. An example of noncausal latent variables is those designed 
to capture true gene expression levels: these variables are linked to 
observed gene counts via a negative binomial distribution58, which 
accounts for technical dropout artifacts. Such artifacts reflect aspects 
of the data acquisition protocol rather than the underlying biological 
system. Such noncausal latent variables can help distinguish between 
technique-specific signatures and true biological properties.
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Single-cell models often include latent variables to represent 
important but unobserved biological quantities (Box 2). They could, 
in principle, correspond to some attributes of known mechanisms, 
such as the activation of gene programs or pathways, or interactions 
between cells, along with features of their local microenvironment. 
Fig. 3a illustrates the specific case of incorporating spatial informa-
tion into a causal model by adding latent variables that encode the 
characteristics of the extracellular environment of the cell and directly 
affect the expression levels of some genes.

These latent variables are typically inferred from a collection of 
low-level observations (that is, direct measures of biological quantities, 
typically gene expression levels), which can make them less subject 
to technical noise, as their value is not based on a single experimental 
measurement but usually derived from several measurements (the 
expression of several genes can serve for predicting the activation of a 
gene program). Latent variables can also provide a lower-dimensional 
representation of the cellular state, helping to avoid scalability issues. 
Furthermore, latent variables can solve other algorithmic limitations, 
such as the existence of cycles in the causal graph. For instance, in a 
bistable switch mechanism, models can infer a latent variable that is 
parent to both genes involved and represents the state of the switch. 
This approach removes the necessity to model direct interactions 
between the genes involved and therefore the cyclic regulation among 
them (shown in Fig. 3b).

Learning representations of single-cell data have been widely 
explored in single-cell genomes, mainly through matrix factorization59 
or disentanglement techniques60,61. These representations capture 
the major axes of variation in the data, helping to reveal key biological 
patterns. However, these representations are not necessarily causal, 
and interactions among latent variables may either be unmodeled or 

vary across environments. Causal representation learning62 aims to 
discover latent causal variables from low-level observations. Current 
training approaches rely on interventional data to learn causal latent 
variables that change sparsely across conditions62–65.

Latent variables can hinder model interpretability, as it often 
remains unclear which biological entities or quantities they represent, 
complicating the mapping of gene programs and known structures to 
these inferred variables. Without constraint, latent variables lack clear 
links with known processes or entities, making them hard to interpret. 
Interpretability can be enhanced through strategies that sparsify the 
dependencies between latent variables and known biological variables 
such as genes, so that each latent variable depends on only a small 
subset of genes. For instance, latent variables can be linked to known 
biological pathways on the basis of the set of genes they are most 
dependent on66. These strategies can either rely on hard constraints 
based on prior knowledge or soft constraints based on regularization 
during training. For example, one approach involves constraining 
perturbations to target a reduced set of latent variables67,68. As CRISPR 
knockouts or small molecules target specific biological processes, 
latent variables learned this way are more likely to correspond to one 
specific biological process, as opposed to a mixture of them (which 
would involve more genes) and therefore are more likely to be inter-
pretable. This opens the way to the analysis of when specific pathways 
become activated in particular cell subtypes.

Learning causal kinetic models
The last challenge we focus on is modeling the temporal aspect of bio-
logical processes that occur over time. In many cases, such as in cell 
differentiation, development or disease progression, the temporal 
aspect cannot be ignored.
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the state of the mechanism

Interactions with neighboring
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Fig. 3 | Latent causal variables help to model complex processes. a, Complex 
cellular processes that are difficult to model, such as the effect of the spatial 
environment, can be captured by latent variables and included in the causal 
graph as additional causal variables (shown on the right). However, these learned 
latent variables might be difficult to interpret. b, Including latent variables in 
the causal model may resolve algorithmic limitations such as the existence of 

cyclic processes in the causal graph. Here, genes 1 and 2 participate in a bistable 
mechanism and downregulate each other. This allows two stable states in 
which only one gene (either G1 or G2) is expressed but not the other. Instead of 
modeling the cycle structure directly, a latent variable can be included in the 
model, which accounts for the current state of the bistable mechanism.
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In the causal models discussed so far, time is not taken into 
account, and relationships are drawn between static values of causal 
variables. By contrast, causal kinetic models, introduced by Peters 
et al.69 (depicted in Fig. 4a), incorporate temporal information and 
account for dynamical properties of a system (Box 1). More precisely, 
these models assume that the rate of change of causal variables is gov-
erned by either ordinary differential equations (ODEs) or stochastic 
differential equations and depends on the expression of a small set of 
parent variables69 (Box 1). For instance, such models can account for 
branching phenomena that occur during differentiation (illustrated in 
Fig. 4b). Interestingly, cyclic structures such as autoregulation do not 
pose any difficulty for such causal models, in which cells are framed as 
a dynamical system (shown in Fig. 4c).

The main difficulty in the application of causal kinetic models to 
single-cell genomics resides in the single-cell data reflecting only a 
snapshot as cells are destroyed before being measured and therefore 
observed at a single time point. One strategy to overcome this limi-
tation is to use pseudotime inference methods70–72 (Fig. 4d), which 
associate each cell with a different pseudotime, recapitulating its dif-
ferentiation stage. Dynamical models have been applied to single-cell 
data by relying on pseudotime73,74, in which the pseudotemporal 
information associated with each cell is used to construct multiple 
series of cells on which the dynamical model is trained. However, 
the performance of pseudotime analysis methods depends on the 
type of trajectory in the data75, which is often unknown. While pseu-
dotime analysis can be valuable, its limitations in complex datasets 

with unknown trajectories should be considered when interpreting 
the results.

Trends at the cell population level can be analyzed across experi-
ments, but because single-cell sequencing is a destructive process, 
explicit matching between cells at different time points is impossible. 
Optimal transport methods75–78 are being explored to match individual 
cells within populations across time points, helping to track cell state 
changes over time. Defining the necessary number of time points for 
reliable inference of kinetic causal dynamics is complex and should 
be determined empirically in simple contexts in which the ground 
truth mechanisms that drive the dynamics are known. However, the 
results likely depend on the context of the data and in particular on the 
complexity of the dynamics observed in the data. The development 
of single-cell simulators can help to explore the problem, as they can 
generate idealized datasets that mimic biological processes, helping 
researchers to understand and refine their models.

Causal kinetic models offer the promise to generate trajectories 
under different interventions, thereby opening the door to investi-
gating the different developmental pathways that cells follow from 
their progenitor states to fully differentiated and functional cells. To 
make further progress in this direction, we believe that it is of crucial 
importance to have access to large temporal interventional datasets.

Conclusions
Causal questions lie at the core of biological research; however, causal 
machine learning is still in its infancy regarding its applications to 
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contains cyclic regulatory motifs and autoregulation. b, Cellular development 
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stem cell. c, Causal kinetic models can account for cyclic regulatory motifs.  
In the regulatory mechanism (left), G1 and G2 downregulate each other, creating 

a feedback loop that forms a cycle. This cyclic structure poses algorithmic 
challenges for SCMs, which typically require acyclic graphs to define clear causal 
relationships. On the right, the system is represented as a time-dependent 
dynamical model, where the expression levels of G1 and G2 at time t influence 
their states at t + dt. This approach allows tracking of the temporal evolution of 
gene expression, bypassing the limitations imposed by cycles in static causal 
models. d, Data preparation strategies to train a causal kinetic model. Here, 
multiple acquisition times can be used or cell-specific pseudotimes can be 
attributed to obtain multiple series of expression profiles that are then used to 
construct training data of temporal dynamics. These temporal profiles enable 
the model to approximate causal relationships between gene expression over 
time, potentially uncovering the underlying kinetics of cellular processes.
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single-cell biology. Here, we have discussed the framework of causal 
machine learning that is classically applied to single-cell genomics and 
outlined three challenges in making accurate predictions under novel 
conditions, the interpretability of causal models and the inference of 
transcriptional dynamics.

A large data generation effort is needed to improve model train-
ing and to experimentally validate model predictions. In particular, 
we highlight the need for an increased availability of reliable inter-
ventional data (with large numbers of interventions and numbers of 
cells per intervention), temporal observations under intervention 
and an increased standardization of experimental protocols across 
batches and studies. Additionally, experimental replicates are crucial 
for addressing batch effects, enabling models to identify and learn the 
biological signal. Together, these improvements will allow the consti-
tution of large and reliable interventional single-cell datasets that can 
serve as benchmark datasets to evaluate the generalization power of 
causal approaches across novel conditions. Notably, there are already 
ongoing efforts within the community to establish such benchmarks 
across a range of topics, from perturbation prediction79,80 to experi-
mental design for cell biology81, which aim to provide standards for 
assessing model performance and fostering consistency and rigor in 
the field. Ultimately, the existence of consequential unknowns and 
unmeasured factors complicates efforts to faithfully capture biologi-
cal mechanisms. Fortunately, continuous advances in experimental 
technologies for single-cell sequencing are anticipated to enhance 
data availability and quality, such as measuring multiple modalities 
simultaneously82.

While data quality and availability are critical factors in advanc-
ing causal machine learning for single-cell genomics, they are not 
the only hurdles to overcome. One major issue is the lack of effec-
tive computational methods capable of scaling to the complexities 
of biological interactions. Many existing approaches operate with a 
limited number of variables and do not provide essential convergence 
guarantees83,84. Moreover, methodologies that combine causality with 
cross-modal data integration are lacking. Addressing varying spatial 
and temporal scales is also essential, as biological processes occur at 
different resolutions.

Causal machine learning for single-cell genomics offers the prom-
ise of providing a mechanistic view of cellular decision making. When 
causal variables are interpretable, such as genes and their amount 
of messenger RNA (mRNA) transcripts, models can yield biological 
insights that are then validated through targeted experiments, leading 
to new scientific knowledge. However, validating causal relationships in 
complex biological systems, such as those studied in single-cell genom-
ics, can be particularly challenging due to the interplay of numerous 
factors (Box 2). In addition, validation experiments can be used to 
update and improve the causal model within an experimental design 
pipeline, which can then guide the design of the most informative 
experiments to perform. This strategy reduces the need for extensive 
experimentation and associated costs.

With the advent of single-cell atlases and increasing perturba-
tion data, we expect causal models to become a crucial tool for 
informed experimental design and for deciphering the biological 
mechanisms that rule cellular decision making. Causal models hold 
the potential to help scientists navigate the vast complexity of bio-
logical systems by uncovering novel insights and accelerating the 
discovery of new therapeutic interventions with greater precision 
and efficacy.
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