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ABSTRACT 
Rationale: Treatment monitoring of tuberculosis patients is complicated by a slow growth rate of 
Mycobacterium tuberculosis. Recently, host RNA signatures have been used to monitor the response 
to tuberculosis treatment.

Objective: Identifying and validating a whole blood-based RNA signature model to predict mi-
crobiological treatment responses in patients on tuberculosis therapy.

Methods: Using a multi-step machine learning algorithm to identify an RNA-based algorithm to 
predict the remaining time to culture conversion at flexible time points during anti-tuberculosis 
therapy. 

Results: The identification cohort included 149 patients split into a training and a test cohort, to 
develop a multistep algorithm consisting of 27 genes (TB27) for predicting the remaining time to 
culture conversion (TCC) at any given time. In the test dataset, predicted TCC and observed TCC 
achieved a correlation coefficient of r=0.98. An external validation cohort of 34 patients shows a 
correlation between predicted and observed days to TCC also of r=0.98. 

Conclusion: We identified and validated a whole blood-based RNA signature (TB27) that 
demonstrates an excellent agreement between predicted and observed times to M. tuberculosis 
culture conversion during tuberculosis therapy. TB27 is a potential useful biomarker for anti- 
tuberculosis drug development and for prediction of treatment responses in clinical practice. 

KEYWORDS
biomarker; therapy response; tuberculosis treatment; precision medicine; systems biology

INTRODUCTION
In 2023, the World Health Organization (WHO) estimated that 10.8 million people globally de-
veloped tuberculosis (TB), and 1.2 million died from this disease [1]. Drug-susceptible (DS)-TB 
requires a standardized combination therapy of 4 to 6 months duration [2]. In case of bacillary 
resistance to rifampicin and isoniazid, defined as multidrug-resistant (MDR)-TB, or of rifampicin 
resistance alone (RR-TB), a combination therapy with second-line anti-TB medication over 6 
months is currently recommended for the majority of affected patients [3, 4]. Regardless of the pres-
ence of Mycobacterium tuberculosis drug-resistance, it is essential to monitor the effect of therapy to 
ensure adequate treatment responses and to assess the contagiousness of patients for contacts [5, 6]. 

Currently, the WHO recommends TB treatment monitoring by sputum smear microscopy and/or 
culture after 2, 5, and 6 months [7]. Ideally, both time metrics decrease over time until microscopic 
acid-fast bacilli and growth of M. tuberculosis in culture become undetectable [8]. The detection 
of growth of M. tuberculosis in sputum culture may take weeks, and the conventional detection of 
acid-fast bacilli by sputum smear microscopy during anti-TB therapy cannot distinguish live from 
dead bacilli [8]. Therefore, a persistently positive culture after 2 months is often detected late in the 
course of therapy, which means that it is only possible to intervene at an advanced stage of therapy.  
Accuracy and predictability of both methods decline during treatment [8]. Furthermore, they 
cannot be applied to all patient populations, eg, young children who are unable to regularly produce 
sputum or patients with extrapulmonary TB [9, 10]. 
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In early bactericidal activity studies during anti-TB drug development in Phase II trials, numbers 
of M. tuberculosis colony forming units (CFU) are taken into account [9]. However, CFU counting 
is labor-intensive and requires sputum with high bacterial load [10]. Although imaging techniques 
complement the sputum-based diagnostic and monitoring, there are no globally standardized evalu-
ation criteria for assessing the results of imaging techniques [5].

Various pathogen-based approaches have been tested emerging as alternatives to the current 
standard of practice employing culture and microscopy as therapy monitoring tools. Pathogen- 
based examples include molecular bacterial load assays (MBLA) and lipoarabinomannan 
(LAM) detection [11, 12]. Both are currently not standard of care. MBLA provides significantly 
faster results in comparison to culture but is not suitable for later stages of therapy. Detection of 
LAM in urine and sputum for treatment monitoring has limited sensitivity when the bacterial 
load decreases [12, 13].

Host-based treatment monitoring approaches are evolving in parallel. Transcriptomic markers 
have been identified and validated to predict progression to TB [14], to distinguish TB patients 
from healthy controls [15], and to monitor treatment responses [5, 16, 17]. 

Until now, whole blood RNA signatures have not been correlated with bacteriological markers 
of anti-TB treatment responses. To address this, we aimed to identify and validate a TB-specif-
ic, host-based whole blood artificial intelligence (AI) RNA-signature biomarker algorithm. This 
algorithm monitors microbiological treatment response during anti-TB therapy and predicts, in a 
culture-free manner, the time remaining until M. tuberculosis culture conversion.

MATERIALS AND METHODS

Study Design and Participants
The recruitment of patients to the German DS Identification Cohort (DS-GIC), the German MDR 
Identification Cohort (MDR-GIC), the DS German Validation Cohort (DS-GVC), and the MDR 
German Validation Cohort (MDR-GVC) has already been described elsewhere [17]. Between  
October 1, 2018, and July 31, 2021, patients with DS-TB and MDR-TB were enrolled in the Second 
German Validation Cohort (SGVC) at the Research Center Borstel. Up to 7 (DS-TB) or up to 10 
(MDR-TB) blood samples were collected at fixed time points during the course of the patients’ 
therapy from the start of therapy to 1-year follow-up [17]. The study visits included collecting 
whole blood RNA from PAXgene tubes (Qiagen®, Venlo), clinical data such as age and gender, 
and culture-based data such as time to positivity (TTP), and time to culture conversion (TCC).

Details on RNA processing, labeling, hybridization, and microarray analysis, data extraction, data 
normalization, data analysis, free availability of RNA data, detailed steps of model development, 
and comparison with other published signatures or scores have been reported previously [17].

Statistical Analysis
Patient characteristics were reported using median and interquartile range (IQR) or frequencies 
and percentages, and they were tested for differences between the identification and validation 
cohorts using Wilcoxon rank sum test, and Chi-squared or Fisher’s exact test, respectively. All 
tests were 2-sided.
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Preprocessing of microarray data was described previously [17]. Microarray data were modeled 
with R software (version 4.0.1) using the limma, glmnet, and MASS packages, among others. The 
datasets of the German cohorts DS-GIC, DS-GVC, MDR-GIC, and MDR-GVC were combined 
as the identification cohort and afterwards divided randomly into a training and a test dataset at 
a 70:30 ratio, while SGVC served as an independent external validation cohort. All datasets were 
z-score normalized.

In a first step, the bacterial burden score (BBS) was modeled. For this purpose, a LASSO (Least 
Absolute Shrinkage and Selection Operator) regression was used to identify genes that are im-
portant for the prediction of TTP. After further gene reduction steps, a generalized linear model 
(GLM) was created to classify the current bacterial load by training the model on TTP. 

The second step was a retrodiction for the time to culture conversion (TCC) at the start of therapy. 
For this, only the data subset of patients at baseline was used, with TCC as the dependent variable. 
The genes identified by the LASSO procedure in a further GLM model were reduced to a mini-
mum number of genes using the Akaike Information Criterion (AIC), and the days under therapy 
and the calculated BBS value were included in a final model for the bacterial clearance score (BCS). 

In a final step, genes were identified using LASSO and subsequently AIC, which correlated with 
the days remaining until culture conversion at the time of blood collection.

The dependent variable was the difference between TCC and the days under therapy at the time 
of blood collection. These genes, days on therapy, BBS, and BCS were used in the final GLM model 
to predict the time remaining to culture conversion at the time of blood collection.

Bland-Altmann analysis was also used to assess the ability of the selected signatures to serve as 
surrogates for culture as a gold standard to provide evidence of both correlation and systematic 
variation.

Performance Comparison with Existing Signatures
To further validate the discriminatory power of the model, published RNA signatures and scores 
were also examined for their ability to predict the remaining TCC in time and compared with the 
model [14, 17–30]. For this purpose, TB-associated signatures or scores with less than 100 genes 
were identified. The extent to which the existing signatures were able to represent any culture 
transformation was investigated. The genes from the signatures were used to test their respective 
predictive power for the remaining TCC. 

Furthermore, the signatures described here and those taken from the literature were used to 
create random forest algorithms in the training set (70:30 ratio of the complete data set) that can 
distinguish between time points before and after culture conversion in the test set.

The raw probabilities from the random forest model were used and calibrated using Platt cali-
bration [31]. The calibrated representation shows the optimal probability distribution in the test 
set and is compared with the actual probability distribution of the raw probabilities to show the 
precision of the classification of the respective raw probabilities. 
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ETHICS
The study to investigate biomarkers for treatment response in patients was approved by the 
ethics committee of the University of Lübeck (AZ 12-233), which in turn was confirmed by the 
corresponding local ethics committees of all participating centers in Germany. All patients were 
informed about the objectives of the study and gave their broad consent to participate and to the 
use of clinical, microbiological, and laboratory data, which could be revoked at any time.

RESULTS
The identification cohort consisted of 149 patients. The median age of participants in the vali-
dation cohort was 37.7 years (IQR = 26.8 - 46.9 years). Ninety-two (65.2%) patients were male 
and 100 (67.1%) had MDR-TB. The median baseline TTP was 15 days (IQR = 8.3 - 27.0), and the 
median TCC was 49 days (IQR = 22.0 - 77.5 days). In addition, 98 (77.2%) patients had cavitary 
disease and 68 patients (50.7%) were smokers (Table 1). 

Table 1. Patient Characteristics of the Identification Cohort and Validation Cohort 

Identification cohort 
(n=149)

Validation cohort 
(n=34)

P-value

Age in years (median, IQR) 37.7 (26.8 – 46.9) 42.1 (34.3 – 53.5) 0.036*
Sex male (n, %) 92 (65.2%) 25 (75.8%) 0.341
MDR-TB (n, %) 100 (67.1%) 16 (47.1%) 0.046*
Baseline TTP in days (median, IQR) 15.0 (8.3 – 27.0) 11.5 (7.8 – 32.3) 0.621
TCC in days (median, IQR) 49.0 (22.0 – 77.5) 36.0 (21.0 – 53.0) 0.099
Cavitary disease (n, %) 98 (77.2%) 22 (68.8%) 0.448
Smoking (n, %) 68 (50.7%) 16 (48.5%) 0.969

IQR, Interquartile range; MDR-TB, multidrug-resistant tuberculosis; TTP, time to positivity; TCC, time to 
culture conversion

Figure 1 shows the modeling process and associated evaluation of the microarray datasets within 
3 steps to identify and validate an RNA-based biomarker model. The identification cohort was 
divided in a 70:30 ratio into a training and a test set. After the model, containing 27 transcripts, 
was defined in the training data set and achieved a coefficient of determination of r²=0.98, the AI 
algorithm was first applied to the test data set. Here, a correlation coefficient of r=0.98 was found 
between the observed and the remaining days until culture conversion (Figure 1). The median 
difference between the observed and calculated remaining time to culture conversion was 1.7 
days with an IQR of -4.9 to 11.6.

The independent validation cohort included 34 patients with a median age of 42.1 years (IQR = 
34.3 - 53.5 years). Of the 34 patients, 25 (75.8%) were male (P=0.341), 16 (47.1%) had MDR-TB, 
22 (68.8%) had cavitary disease (P=0.448), and 16 (48.5%) were active smokers (P=0.969). Medi-
an baseline TTP in the validation cohort was 11.5 days (IQR = 7.8 - 32.3, P=0.621) and TCC was 
reached at a median of 36 days with an IQR of 21.0 to 53.0 days (P=0.099) (Table 1). The AI algo-
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rithm was applied to the validation cohort, revealing a strong correlation of r=0.98 between the 
observed and predicted remaining TCC. The median difference between observed and calculated 
remaining TCC was 7.4 with an IQR of -8.7 to 32.5 (Figure 1, Figure 2).

Figure 1. Multi-step development for predicting time left until culture conversion. Simplified flow 
chart showing the multi-step approach of transcriptomic and clinical data analysis to develop the TB27 
model for predicting days left until culture conversion at any given time during therapy. Step 1: A) 
“Bacterial burden score (BBS)” modeling. Identification of genes using LASSO regression Genes identified 
for predicting time to culture positivity. After further gene reduction steps, a model consisting of 10 genes 
was created to draw conclusions about bacterial burden through TTP prediction. Step 2: B) Bacterial 
clearance score (BCS). Retro prediction for time to culture conversion at therapy initiation. Through the 
LASSO and other reduction procedures, 6 genes were identified to predict the time to culture conversion 
at therapy start. Step 3: C) TB27 Score. BBS, BCS, and 44,000 transcripts formed the basis. Gene reduction 
led to the final model consisting of BBS, BCS, time under therapy, and 11, which is expected to predict the 
remaining time to culture conversion. The model fit is R=0.98; in the test set, the correlation coefficient is 
r=0.98; in the validation set, the correlation coefficient is r=0.98
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Figure 2. Comparison of the 27-RNA gene signature model with published RNA-signatures and scores 
for predicting time left until culture conversion during therapy.  Y-axis: Predicted days left until culture 
conversion; X-axis: time under therapy in months. Figure 2A: TB27. Figure 2B: TB22 [17]. Figure 2C: 
Anderson et al, 43 genes [18]. Figure 2D: Berry et al, 87 genes [19]. Figure 2E: Blankley et al, 4 genes [20]. 
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Figure 2F: Kaforou et al, 27 genes [21]. Figure 2G: Kaforou et al, 44 genes [21]. Figure 2H: Kaforou et al, 
53 genes [21]. Figure 2I: Laux da Costa et al, 3 genes [22]. Figure 2J: Maertzdorf et al, 3 genes. Figure 2K: 
Sambarey et al, 10 genes [25] Figure 2L: Singhania et al, 20 genes [26]. Figure 2M: Sutherland et al, 4 genes 
[28]. Figure 2N: Suliman et al, 4 genes [27]. Figure 2O: Sweeney et al, 3 genes [30]. Figure 2P: Thompson 
et al, 9 genes [29]. Figure 2Q: Thompson et al, 16 genes [29]. Figure 2R: Thompson et al, 32 genes [29]. 
Figure 2S: RISK6 genes [23]. Figure 2T: Zak et al, 16 genes [14].

The Bland-Altmann plot, which is a graphical tool for comparing 2 measurement methods, shows 
the difference between culture and TB27 and one standard deviation as limit of agreement above 
and below the mean in the validation cohort. In 7 measurements, the TB27 results deviated from 
the culture gold standard beyond the acceptable range, but 5 of these concerned the baseline mea-
surement before the start of therapy (Figure 3).

The TB27 AI algorithm was compared to previously described signatures. TB27 was the only 
signature with a stringent prediction of time to culture conversion (Figure 2). Further, none of the 
signatures showed the difference between patients with and without cavities in terms of remain-
ing TCC at the time of therapy initiation as clearly as TB27 (Figure 4A). Although other signa-
tures tested also predicted shorter remaining times in the absence of cavities (Figure 4B-T), these 
also showed negative values at the start of therapy, which indicates that culture conversion had 
already occurred. Finally, the coefficient of determination R² as well as the correlation coefficient r 
were superior to those of previously described signatures (Table 2).
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Figure 3. Bland-Altman plot as a graphical representation of the agreement between the observed 
remaining time to culture conversion as the gold standard and the TB27 score with a limit of agreement 
of one standard deviation (upper and lower dashed line) in the validation cohort. A) Consistency of 
TB27 and culture data in all samples of validation cohort. B) Consistency of TB27 and culture data in all 
measurements after the start of therapy and before the culture conversion of validation cohort.
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Figure 4. Comparison of the 27-RNA gene signature model with published RNA-signatures and scores 
for predicting time left until culture conversion at baseline with consideration of presence or absence 
of cavities. Y-axis: Predicted days left until culture conversion. Figure 4A: TB27. Figure 4B: TB22 [17].
Figure 4C: Anderson et al, 43 genes [18]. Figure 4D: Berry et al, 87 genes [19]. Figure 4E: Blankley et al, 
4 genes [20]. Figure 4F: Kaforou et al, 27 genes [21]. Figure 4G: Kaforou et al, 44 genes [21]. Figure 4H: 
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Kaforou et al, 53 genes [21]. Figure 4I: Laux da Costa et al, 3 genes [22]. Figure 4J: Maertzdorf et al, 3 
genes [24]. Figure 4K: RISK6 genes [23]. Figure 4L: Sambarey et al, 10 genes [25]. Figure 4M: Singhania et 
al, 20 genes [26]. Figure 4N: Suliman et al, 4 genes [27]. Figure 4O: Sutherland et al, 4 genes [28]. Figure 
4P: Sweeney et al, 3 genes [30]. Figure 4Q: Thompson et al, 16 genes [29]. Figure 4R: Thompson et al, 32 
genes [29]. Figure 4S: Thompson et al, 9 genes [29]. Figure 4T: Zak et al, 16 genes [14].

Table 2.  Performance Comparison of Different TB-Associated RNA Signature Models for 
Predicting Time Left Until Culture Conversion

Signature Number of genes R² Correlation coefficient
TB27 27 0.982 0.98
TB22 [17] 22 0.173 0.66
Anderson [18] 44 0.276 0.38
Berry [19] 83 0.348 0.44
Blankley [20] 4 0.187 0.60
Kaforou [21] 27 0.213 0.49
Kaforou [21] 44 0.323 0.214
Kaforou [21] 53 0.286 -0.01
Laux da Costa [22] 5 0.187 0.59
Maertzdorf [24] 3 0.137 0.50
RISK6 [23] 6 0.166 0.56
Sambarey [25] 10 0.104 0.38
Singhania [26] 20 0.201 0.54
Suliman [27] 4 0.200 0.43
Sutherland [28] 4 0.008 0.39
Sweeney [30] 3 0.169 0.61
Thompson [29] 9 0.167 0.51
Thompson [29] 16 0.069 0.39
Thomspon [29] 32 0.248 0.41
Zak [14] 16 0.229 0.47

DISCUSSION 
The point in time when M. tuberculosis becomes undetectable by culture-based methods during 
the course of anti-TB therapy is a critical milestone because subsequently the patient is no longer 
considered contagious, and further monitoring of the treatment response is significantly reduced. 
In this study, we identified and validated a TB-specific whole blood-based AI RNA-signature 
biomarker algorithm consisting of 27 genes to monitor treatment response by pathogen-free 
modeling of the time remaining to culture conversion. The algorithm was trained on a therapy 
monitoring variable and thus, allows conclusions about the therapy response. 
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Previous studies on treatment monitoring by RNA signatures focused on the discrimination between 
patients with good and poor treatment outcomes based on WHO definitions [32], or distinguished 
between active TB and latent M. tuberculosis infection or healthy controls [15]. Due to these indirect 
reference values, these signatures are primarily suitable for additional assessment of therapy response. 
Nevertheless, they cannot replace culture as a marker for viable bacteria. Another study also deals with 
therapy monitoring in connection with the end of therapy, but the score slopes are very low in the early 
therapy stage and are therefore not suitable as a monitoring tool in the first weeks of therapy [17]. 

The genes identified and validated in our work cover a broad spectrum of physiological and patho-
logical functions. CD83, KIR2DS4, and IGHA1 show a direct immune system association [33–35], 
and guanylate-binding proteins (GBPs) notably model disease susceptibility and inflammatory 
processes [36]. This is specifically illustrated by the transcriptional differences found in the expres-
sion of GBPs in neutrophils matured by IFN-γ [37]. High concentrations of IGHA1 in plasma cells 
resulting from the activation of B cells by M. tuberculosis were also observed [35, 38]. CNTNAP3b 
correlates with CD8 T-cells with cytolytic activity to kill M. tuberculosis-infected cells via gran-
ule-mediated function [39, 40]. Upregulation of CYB5R1 has been found in TB-infected macro-
phages [41]. FAM20A has already been described in the context of TB-specific therapy response 
[17]. FCGR1B transcripts appear to have diagnostic relevance through correlation with bacterial 
load [42]. COL9A2 has previously been described to distinguish between LTBI and active TB [43]. 

A strength of this study is the relative size of n=149 of the identification cohort. Furthermore, the 
genetic information was compressed into scores to minimize overfitting. Finally, to the best of 
our knowledge, this is the first study to use culture data as a reference and thus, a direct surrogate 
for therapy monitoring. The weekly culture data of the patients in the German cohorts are, to our 
knowledge, also unique as a data basis. 

This study also has certain limitations. We present findings of a single validation cohort. Further 
validation in a larger, independent cohort is necessary. Ideally, future prospective studies should be 
conducted to verify the practical prognostic applicability of the algorithm. The results presented here 
are based on a multi-step procedure, minimizing the risk of overfitting and increasing the likelihood 
of transferability to other patients. Furthermore, in comparison with other published TB signatures, 
TB27 showed the best fit with the time remaining until culture conversion and the presence of cavities.

Several RNA signatures have been developed and described specifically for different purposes in 
the context of tuberculosis, some of which have been used for comparison in this work. The al-
gorithm described here has been developed for the dynamic evolution of the host response to the 
changing bacterial load during the course of therapy. It is important to note that the signatures 
used for comparison were designed for different purposes; in some cases not even for dynamic 
evolution but for differentiation between different disease states, outcomes, or similar. The differ-
ent initial questions must be considered when evaluating the results of the comparisons. Based 
on this premise, it can also be assumed that the TB27 signature falls short of other signatures 
designed for other TB-specific questions, especially with regard to specific status differentiation. 
However, this work is based on the idea that a “one-signature-fits-all” approach neglects this 
contextual dependency, may result in lower specificity and sensitivity, and may miss important 
information about individual disease dynamics. Tailored signatures allow for more precise and 
clinically relevant decisions [44].
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TB27 is an algorithm that represents a momentary impression of a dynamic development. In our 
cohorts, there were few cases of treatment failure, primarily characterised by prolonged time to 
culture conversion rather than relapse. In addition, relapses in both groups (MDR and non-MDR 
tuberculosis) may have been partially minimized by individual physician decisions to prolong 
treatment. The significance of this will need to be investigated in further studies.

In this study, only results from European cohorts were presented; the applicability to cohorts in 
other regions still needs to be assessed. The validation cohort was also significantly older than the 
patients in the identification cohort (P=0.036). Also, the proportion of patients with MDR-TB 
was significantly smaller in the validation cohort (n=16, 47.1%) than in the identification cohort 
(P=0.046). In addition, as a feasibility study, the cohorts did not include people living with HIV, 
children, or patients with solely extrapulmonary TB. Hence, broad applicability of our signature 
in certain patient groups must be verified in future studies. Notably the cohort of n=149 contrib-
utes to the robustness of the findings. RNA sequencing is currently a cost-intensive technology 
that requires trained personnel and can therefore only be used to a small extent in resource-lim-
ited settings. However, sequencing platforms and associated technologies are evolving rapidly, 
leading to increasing availability of high-throughput sequencing systems and advances in porta-
ble devices as well as bioinformatic processing, which could enable wider application even in re-
source-limited areas [45]. Furthermore, when using a gene signature based on 27 genes, targeted 
sequencing would be sufficient, which also leads to a better cost efficacy [46].

In conclusion, we identified and validated a whole blood-based AI RNA-biosignature algorithm 
containing 27 genes (TB27) that accurately predicts the remaining time until culture conversion 
during TB therapy. After further validation, this algorithm could become a valuable tool to moni-
tor TB treatment responses and to predict non-contagiousness in individual patients. Technologi-
cal advances in recent years have allowed a continued increase in RNA sequencing, opening up its 
future use in medical applications to a wider field, which also gives TB27 a chance of being useful 
in the medical treatment of TB patients.
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