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Despite major advances in artificial 
intelligence (AI) research for 
healthcare, the deployment and 
adoption of AI technologies remain 
limited in clinical practice. This paper 
describes the FUTURE-AI framework, 
which provides guidance for the 
development and deployment of 
trustworthy AI tools in healthcare. The 
FUTURE-AI Consortium was founded in 
2021 and comprises 117 
interdisciplinary experts from 50 
countries representing all continents, 
including AI scientists, clinical 
researchers, biomedical ethicists, and 
social scientists. Over a two year 
period, the FUTURE-AI guideline was 

established through consensus based 
on six guiding principles—fairness, 
universality, traceability, usability, 
robustness, and explainability. To 
operationalise trustworthy AI in 
healthcare, a set of 30 best practices 
were defined, addressing technical, 
clinical, socioethical, and legal 
dimensions. The recommendations 
cover the entire lifecycle of healthcare 
AI, from design, development, and 
validation to regulation, deployment, 
and monitoring.

Introduction
In the field of healthcare, artificial intelligence (AI)—that 
is, algorithms with the ability to self-learn logic—and 
data interactions have been increasingly used to develop 
computer aided models, for example, disease diagnosis, 
prognosis, prediction of therapy response or survival, 
and patient stratification.1 Despite major advances, the 
deployment and adoption of AI technologies remain 
limited in real world clinical practice. In recent years, 
concerns have been raised about the technical, clinical, 
ethical, and societal risks associated with healthcare 
AI.2 3 In particular, existing research has shown that AI 
tools in healthcare can be prone to errors and patient 
harm, biases and increased health inequalities, lack of 
transparency and accountability, as well as data privacy 
and security breaches.4-8

To increase adoption in the real world, it is essential 
that AI tools are trusted and accepted by patients, 
clinicians, health organisations, and authorities. 
However, there is an absence of clear, widely accepted 
guidelines on how healthcare AI tools should be 
designed, developed, evaluated, and deployed to be 
trustworthy—that is, technically robust, clinically safe, 

SUMMARY POINTS
Despite major advances in medical artificial intelligence (AI) research, clinical 
adoption of emerging AI solutions remains challenging owing to limited trust and 
ethical concerns
The FUTURE-AI Consortium unites 117 experts from 50 countries to define 
international guidelines for trustworthy healthcare AI
The FUTURE-AI framework is structured around six guiding principles: fairness, 
universality, traceability, usability, robustness, and explainability
The guideline addresses the entire AI lifecycle, from design and development 
to validation and deployment, ensuring alignment with real world needs and 
ethical requirements
The framework includes 30 detailed recommendations for building trustworthy 
and deployable AI systems, emphasising multistakeholder collaboration
Continuous risk assessment and mitigation are fundamental, addressing biases, 
data variations, and evolving challenges during the AI lifecycle
FUTURE-AI is designed as a dynamic framework, which will evolve with 
technological advancements and stakeholder feedback
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ethically sound, and legally compliant (see glossary 
in appendix table 1).9 To have a real impact at scale, 
such guidelines for responsible and trustworthy AI 
must be obtained through wide consensus involving 
international and interdisciplinary experts.

In other domains, international consensus 
guidelines have made lasting impacts. For example, 
the FAIR guideline10 for data management has been 
widely adopted by researchers, organisations, and 
authorities, as the principles provide a structured 
framework for standardising and enhancing the 
tasks of data collection, curation, organisation, 
and storage. Although it can be argued that the 
FAIR principles do not cover every aspect of data 
management because they focus more on findability, 
accessibility, interoperability, and reusability of the 
data, and less on privacy and security, they delivered 
a code of practice that is now widely accepted and 
applied.

AI in healthcare has unique properties compared 
with other domains, such as the special trust relation 
between doctors and patients, because patients 
themselves generally do not have the opportunity 
to objectively assess the diagnosis and treatment 
decisions of doctors. This dynamic underscores the 
need for AI systems to be not only technically robust 
and clinically safe, but also ethically sound and 
transparent, ensuring that they complement the 
trust patients place in their healthcare providers. 
However, compared with non-AI tools, the highly 
complicated underlying data processing frequently 
comes with a lack of transparency into the exact 
working mechanisms. Unlike medical equipment, 
AI currently lacks universally accepted measures for 
quality assurance. Compared with chat assistants 
and synthetic image generators that receive increased 
public interaction, healthcare is a more sensitive 
domain where errors can have major consequences. 
Addressing these specific gaps for the healthcare 
domain is therefore crucial for trustworthy AI.

Initial efforts have focused on providing 
recommendations for the reporting of AI studies 
for different medical domains or clinical tasks (eg, 
TRIPOD+AI,11 CLAIM,12 CONSORT-AI,13 DECIDE-AI,14 
PROBAST-AI,15 CLEAR16). These guidelines do not 
provide best practices for the actual development and 
deployment of the AI tools, but promote standardised 
and complete reporting of their development and 
evaluation. Recently, several researchers have 
published promising ideas on possible best practices 
for healthcare AI.17-24 However, these proposals have 
not been established through wide international 
consensus and do not cover the whole lifecycle of 
healthcare AI (ie, from design, development, and 
validation to deployment, usage, and monitoring).

In other initiatives, the World Health Organization 
published a report focused on key ethical and legal 
challenges and considerations. Because it was 
intended for health ministries and governmental 
agencies, it did not explore the technical and clinical 
aspects of trustworthy AI.25 Likewise, Europe’s 
High-Level Expert Group on Artificial Intelligence 
established a comprehensive self-assessment checklist 
for AI developers. However, it covered AI in general 
and did not address the unique risks and challenges of 
AI in medicine and healthcare.26

This paper addresses an important gap in the field 
of healthcare AI by delivering the first structured and 
holistic guideline for trustworthy and ethical AI in 
healthcare, established through wide international 
consensus and covering the entire lifecycle of AI. 
The FUTURE-AI Consortium was started in 2021 
and currently comprises 117 international and 
interdisciplinary experts from 50 countries (fig 
1), representing all continents (Europe, North 
America, South America, Asia, Africa, and Oceania). 
Additionally, the members represent a variety of 
disciplines (eg, data science, medical research, clinical 
medicine, computer engineering, medical ethics, social 
sciences) and data domains (eg, radiology, genomics, 

Fig 1 | Geographical distribution of the multidisciplinary experts
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mobile health, electronic health records, surgery, 
pathology). To develop the FUTURE-AI framework, 
we drew inspiration from the FAIR principles for data 
management, and defined concise recommendations 
organised according to six guiding principles—fairness, 
universality, traceability, usability, robustness, and 
explainability (fig 2).

Methods
FUTURE-AI is a structured framework that provides 
guiding principles and step-by-step recommendations 
for operationalising trustworthy and ethical AI in 
healthcare. This guideline was established through 
international consensus over a 24 month period using 
a modified Delphi approach.27  28 The process began 
with the definition of the six core guiding principles, 
followed by an initial set of recommendations, which 
were then subjected to eight rounds of extensive 
feedback and iterative discussions aimed at reaching 
consensus. We used two complementary methods to 
aggregate the results: a quantitative approach, which 
involved analysing the voting patterns of the experts 
to identify areas of consensus and disagreement; and 
a qualitative approach, focusing on the synthesis of 
feedback and discussions based on recurring themes 
or new insights raised by several experts.

Definition of FUTURE-AI guiding principles: To 
develop a user friendly guideline for trustworthy AI 
in medicine, we used the same approach as in the 
FAIR guideline, based upon a minimal set of guiding 
principles. Defining overarching guiding principles 
facilitates streamlining and structuring of best 
practices, as well as implementation by future end 
users of the FUTURE-AI guideline.

To this end, we first reviewed the existing literature 
in healthcare AI, with a focus on trustworthy AI and 
related topics in healthcare, such as responsible AI, 
ethical AI, AI deployment, and terms relating to the 
six principles identified later. Additional searches were 
performed for related guidelines, for example, for AI 
reporting, AI evaluation, and guidelines or position 
statements from relevant (public) bodies such as the 
EU, the United States Food and Drug Administration 
(FDA), and WHO. This review enabled us to identify a 
wide range of requirements and dimensions often cited 
as essential for trustworthy AI.29  30 Throughout the 
following rounds, the literature review was iteratively 
expanded based on the advice by experts and widening 
of the scope, see round 3.

As table 1 shows, these requirements were then 
thematically grouped, leading to our definition of 
the six core principles (ie, fairness, universality, 
traceability, usability, robustness, and explainability), 
which were arranged to form an easy-to-remember 
acronym (FUTURE-AI).

Round 1: Definition of an initial set of 
recommendations
Six working groups composed of three experts each 
(including clinicians, data scientists, and computer 
engineers) were created to explore the six guiding 
principles separately. The experts were recruited from 
five European projects (EuCanImage, ProCAncer-I, 
CHAIMELEON, PRIMAGE, INCISIVE), which together 
formed the AI for Health Imaging (AI4HI) network. By 
using “AI for medical imaging” as a common use case, 
each working group conducted a thorough literature 
review, then proposed a definition of the guiding 

Table 1 | Clustering of trustworthy artificial intelligence (AI) requirements and selection of FUTURE-AI guiding principles
Clusters of requirements Core principles
1. Fairness, diversity, inclusiveness, non-discrimination, unbiased AI, equity Fairness
2. Generalisability, adaptability, interoperability, applicability, universality Universality
3. Traceability, monitoring, continuous learning, auditing, accountability Traceability
4. Human centred AI, user engagement, usability, accessibility, efficiency Usability
5. Robustness, reliability, resilience, safety, security Robustness
6. Transparency, explainability, interpretability, understandability Explainability

F U T U R E
FAIR UNIVERSAL TRACEABLE USABLE

AI tools in healthcare should be:

ROBUST EXPLAINABLE

Fig 2 | Organisation of the FUTURE-AI framework for trustworthy artificial intelligence (AI) according to six guiding 
principles—fairness, universality, traceability, usability, robustness, and explainability
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principle in question, together with an initial list of 
best practices (between 6 and 10 for each guiding 
principle).

Subsequently, the working groups engaged in 
an iterative process of refining these preliminary 
recommendations through online meetings and by 
email exchanges. At this stage, a degree of overlap and 
redundancy was identified across recommendations. 
For example, a recommendation to report any identified 
bias was initially proposed under both the fairness and 
traceability principles, while a recommendation to train 
the AI models with representative datasets appeared 
under fairness and robustness. After removing the 
redundancies and refining the formulations, a set of 55 
preliminary recommendations was derived and then 
distributed to a broader panel of experts for further 
assessment, discussion, and refinement in the next 
round.

Round 2: Online survey
In this round, the FUTURE-AI Consortium was 
expanded to 72 members by recruiting new experts, 
including AI scientists, healthcare practitioners, 
ethicists, social scientists, legal experts, and industry 
professionals. The same original group took part 
in rounds 2–5. Experts were identified from the 
literature, through networks, and an online search, 
with selection focusing on underrepresented expertise 
or demographics. Most of the experts were recruited 
to complement the original consortium based on 
academic credentials, geographical location, and 
under-represented expertise, to ensure a representative 
consortium in terms of geography and (healthcare) 
disciplines. We then conducted an online survey to 
enable the experts to assess each recommendation 
using five voting options (absolutely essential, very 
important, of average importance, of little importance, 
not important at all). The participants were also able 
to rate the formulation of the recommendation (“I 
would keep it as it is,” “I would refine its definition”) 
and propose modifications. Furthermore, they were 
able to propose merging recommendations or adding 
new ones. The survey included a section for free 
text feedback on the core principles and the overall 
FUTURE-AI guideline.

The survey responses were quantitatively analysed 
to assess the consensus level. Recommendations 
that garnered a high level agreement (>90%) were 
selected for further discussion. Recommendations 
that attracted considerable negative feedback, 
which were particularly those that suggested specific 
methods over general guidelines, were discarded. 
The written feedback also prompted the merging 
of some recommendations, aiming to craft a more 
concise guideline for easier adoption by future users. 
Consequently, a revised list of 22 recommendations 
was derived, along with the identification of 16 
contentious points for further discussions.

As part of the survey, we also sought feedback from 
the experts on the adequacy of these guiding principles 
in capturing the diverse requirements for trustworthy AI 

in healthcare. While the consensus among experts was 
largely affirmative, it was suggested a seventh “general” 
category was introduced to cover broader issues such 
as data privacy, societal considerations, and regulatory 
compliance, and to produce a holistic framework. The 
best practices in this category are overarching, for 
example, multistakeholder engagement (general 1) is 
relevant for all six guiding principles, thereby avoiding 
repetition for each principle.

Round 3: Feedback on the reduced set of 
recommendations
The updated version of the guideline from round 2 was 
distributed to all experts for another round of feedback. 
This involved assessing both the adequacy and the 
phrasing of the recommendations. Additionally, we 
presented the points of contention identified in the 
survey, encouraging experts to offer their insights on 
these disagreements. Examples of contentious topics 
included the recommendation to perform multicentre 
versus local clinical evaluation, and the necessity (or 
not) to systematically evaluate the AI tools against 
adversarial attacks.

The feedback received from the experts played 
a crucial role in resolving several contentious 
issues, particularly through the refinement of the 
recommendations’ wording. Moreover, the scope 
was broadened from “AI in medical imaging” more 
generally to “AI in healthcare” because we realised 
most of the recommendations hold for healthcare 
in general, making the guideline more broadly 
applicable. As a result, this led to the expansion of the 
FUTURE-AI guideline to a total of 30 best practices, 
which included six new recommendations within 
the “general” category. Areas of disagreement that 
remained unresolved were carefully documented and 
summarised for future discussions.

Round 4: Further feedback and rating of the 
recommendations
The updated recommendations were sent out to the 
experts for additional feedback, this time in written 
form, to assess each recommendation’s clarity, 
feasibility, and relevance. This phase allowed for 
more precise phrasing of the recommendations. As 
an example, the original recommendation to train AI 
models with “diverse, heterogeneous data” was refined 
by using the term “representative data” because 
many experts argued that representative data more 
effectively capture the essential characteristics of the 
populations, while the term heterogeneous is more 
ambiguous.

Furthermore, we implemented a system to rate each 
best practice depending on the specific needs and 
goals of each AI project. A key focus was to make a 
distinction between healthcare AI tools at the research 
or proof-of-concept stage and those intended for 
clinical deployment because they require different 
levels of compliance. Healthcare AI tools in the 
research or proof-of-concept stage are typically in their 
experimental phase and require some flexibility as 

4� doi: 10.1136/bmj-2024-081554 | BMJ 2025;388:e081554 | the bmj

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies. 
.

at H
elm

h
o

ltz Z
en

tru
m

 M
u

en
ch

en
 

o
n

 4 A
p

ril 2025
 

h
ttp

s://w
w

w
.b

m
j.co

m
/

D
o

w
n

lo
ad

ed
 fro

m
 

5 F
eb

ru
ary 2025. 

10.1136/b
m

j-2024-081554 o
n

 
B

M
J: first p

u
b

lish
ed

 as 

https://www.bmj.com/


RESEARCH METHODS AND REPORTINGRESEARCH METHODS AND REPORTING

their capabilities are being explored and fine-tuned. In 
contrast, AI tools intended for clinical deployment will 
interact directly with patient care and therefore should 
need higher standards of compliance to ensure they are 
ethical, safe, and effective. At this point of the process, 
the consortium members were requested to assess all 
the recommendations separately for both proof-of-
concept and deployable AI tools, and categorise them 
as either “recommended” or “highly recommended.”

Round 5: Feedback on the manuscript
At this stage, with a well developed set of 30 
recommendations, the first and last authors of the 
study drafted the first version of the FUTURE-AI 
manuscript. The draft manuscript was circulated 
among the experts, starting a series of iterative feedback 
sessions to ensure that the FUTURE-AI guideline was 
articulated with precision and clarity. This process 
enabled incorporation of diverse perspectives, from 
clinical, technical, and non-technical experts, hence 
making the manuscript more reader friendly and 
accessible to a broad audience. Experts were also 
able to suggest additional resources or references to 
substantiate the recommendations further. At this 

stage, examples of methods were integrated to the 
manuscript where relevant, aiming to demonstrate the 
practical implementation of the best practices in real 
world scenarios.

Round 6: New “external” feedback
In round 6 we invited additional experts (n=44) 
who had not participated in the initial stages of 
the study to provide independent feedback. This 
group was carefully selected to ensure a more 
diverse representation across the experts (eg, patient 
advocates, social scientists, regulatory experts), as 
well as wider geographical diversity (especially across 
Africa, Latin America, and Asia).

These experts were requested to provide written 
feedback and express their opinion on each 
recommendation using a voting system (ie, agree, 
disagree, neutral, did not understand, no opinion). 
For most of the recommendations on which no clear 
agreement was reached, again using consensus 
level, the primary cause was misinterpretation or 
unclarity. Therefore, this stage was especially helpful 
in pinpointing any remaining areas of ambiguity or 
contention that required further discussions, as well as 

Table 2 | List of FUTURE-AI recommendations, together with the expected compliance for both research and deployable 
artificial intelligence (AI) tools (+: recommended, ++: highly recommended)
Recommendations Research Deployable
Fairness
1. Define any potential sources of bias from an early stage ++ ++
2. Collect information on individuals’ and data attributes + +
3. Evaluate potential biases and, when needed, bias correction measures + ++
Universality
1. Define intended clinical settings and cross setting variations ++ ++
2. Use community defined standards (eg, clinical definitions, technical standards) + +
3. Evaluate using external datasets and/or multiple sites ++ ++
4. Evaluate and demonstrate local clinical validity + ++
Traceability
1. Implement a risk management process throughout the AI lifecycle + ++
2. Provide documentation (eg, technical, clinical) ++ ++
3. Define mechanisms for quality control of the AI inputs and outputs + ++
4. Implement a system for periodic auditing and updating + ++
5. Implement a logging system for usage recording + ++
6. Establish mechanisms for AI governance + ++
Usability
1. Define intended use and user requirements from an early stage ++ ++
2. Establish mechanisms for human-AI interactions and oversight + ++
3. Provide training materials and activities (eg, tutorials, hands-on sessions) + ++
4. Evaluate user experience and acceptance with independent end users + ++
5. Evaluate clinical utility and safety (eg, effectiveness, harm, cost-benefit) + ++
Robustness
1. Define sources of data variation from an early stage ++ ++
2. Train with representative real world data ++ ++
3. Evaluate and optimise robustness against real world variations ++ ++
Explainability
1. Define the need and requirements for explainability with end users ++ ++
2. Evaluate explainability with end users (eg, correctness, impact on users) + +
General
1. Engage interdisciplinary stakeholders throughout the AI lifecycle ++ ++
2. Implement measures for data privacy and security ++ ++
3. Implement measures to address identified AI risks ++ ++
4. Define adequate evaluation plan (eg, datasets, metrics, reference methods) ++ ++
5. Identify and comply with applicable AI regulatory requirements + ++
6. Investigate and address application specific ethical issues + ++
7. Investigate and address social and societal issues + +
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in identifying the formulations that needed refinement 
to ensure the entire guideline is clear and accessible to 
a diverse audience within the medical AI community.

Round 7: Online consensus meetings
Based on the feedback from previous rounds, we 
identified a few topics that continued to evoke a degree 
of contention among experts, particularly concerning 
the exact wording of certain recommendations. 
Hence, we convened four online meetings in June 
2023 specifically aimed at deepening the discussions 
around the remaining contentious areas and reaching 
a final consensus on both the recommendations and 
their formulations.

These discussions resolved outstanding issues, such 
as the recommendation to systematically validate 
AI tools against adversarial attacks, which was 
considered by many experts as a cybersecurity concern 
and thus grouped with other related concerns; or the 
recommendation that the clinical evaluations should 
be conducted by third parties, which was deemed 
impractical at scale, especially in resource limited 
settings. As a result of these consensus meetings, 
the final list of FUTURE-AI recommendations was 
established, and their formulations were completed as 
detailed in table 2.

Round 8: Final consensus vote
The very last step of the process involved a final vote 
on the derived recommendations, which took place 
through an online survey. At this stage, the final 
consortium consisted of 117 experts as more replied 
to the above recruitments: the original 72 experts from 
round 2, some of the 44 experts who provided feedback 
in round 6, and several additional experts. By the end 
of this process, all the recommendations were approved 
with less than 5% disagreement among all FUTURE-AI 
members. The little remaining disagreement mostly 
originated from whether recommendations should 
be “recommended” or “highly recommended” for 
research and deployable tools.

FUTURE-AI guideline
In this section, we provide definitions and justifications 
for each of the six guiding principles and give an 
overview of the FUTURE-AI recommendations. Table 
2 provides a summary of the recommendations, 
together with the proposed level of compliance (ie, 
recommended v highly recommended). Note that 
supplementary table 1 in the appendix presents a 
glossary of the main terms used in this paper, while 
supplementary table 2 lists the main stakeholders of 
relevance to the FUTURE-AI framework.

Fairness
The fairness principle states that AI tools in 
healthcare should maintain the same performance 
across individuals and groups of individuals 
(including under-represented and disadvantaged 
groups). AI driven medical care should be provided 
equally for all citizens. Biases in healthcare AI can be 

due to differences in the attributes of the individuals 
(eg, sex, gender, age, ethnicity, socioeconomic status, 
medical conditions) or the data (eg, acquisition site, 
machines, operators, annotators). As, in practice, 
perfect fairness might be impossible to achieve, fair 
AI tools should be developed such that potential 
AI biases are identified, reported, and minimised 
as much as possible to achieve ideally the same 
but at least highly similar performance across 
subgroups to be considered fair.31 To this end, three 
recommendations for fairness are defined in the 
FUTURE-AI framework.

Fairness 1: Define sources of bias
Bias in healthcare AI is application specific.32 At the 
design phase, the interdisciplinary AI development 
team (see glossary) should identify possible types and 
sources of bias for their AI tool.33 These might include 
group attributes (eg, sex, gender, age, ethnicity, 
socioeconomic, geography), the medical profiles of 
the individuals (eg, with comorbidities or disability), 
as well as human and technical biases during data 
acquisition, labelling, data curation, or the selection of 
the input features.

Fairness 2: Collect information on individual and 
data attributes
To identify biases and apply measures for increased 
fairness, relevant attributes of the individuals, such as 
sex, gender, age, ethnicity, risk factors, comorbidities, 
or disabilities, should be collected. This should 
be subject to informed consent and approval by 
ethics committees to ensure an appropriate balance 
between the benefits of non-discrimination and 
the risks of reidentification. Measuring similarity of 
medical profiles should also be included to verify 
equal treatment (eg, risk factors, comorbidities, 
biomarkers, anatomical properties34). Furthermore, 
relevant information about the datasets, such as the 
centres where they were acquired, the machine used, 
the preprocessing and annotation processes, should 
be systematically collected to address technical and 
human biases. When complete data collection is 
logistically challenging, two alternative approaches 
can be considered: imputing missing attributes or 
removing samples with incomplete data. The choice 
between these methods should be evaluated on a case-
by-case basis, considering the specific context and 
requirements of the AI system.

Fairness 3: Evaluate fairness
When possible—that is, the individuals’ and data 
attributes are available—bias detection methods 
should be applied by using fairness metrics such as 
true positive rates, statistical parity, group fairness, 
and equalised odds.31  35 To correct for any identified 
biases, mitigation measures should be tested, such 
as data resampling, bias free representations, and 
equalised odds postprocessing,36-40 to verify their 
impact on both the tool’s fairness and the model’s 
accuracy. Importantly, any remaining bias should be 
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documented and reported to inform the end users and 
citizens (see traceability 2).

Universality
The universality principle emphasises that a healthcare 
AI tool should be generalisable outside the controlled 
environment where it was built. Specifically, the AI 
tool should be able to generalise to new patients and 
new users (eg, new clinicians), and when applicable, 
to new clinical sites. Depending on the intended 
radius of application, healthcare AI tools should be as 
interoperable and as transferable as possible so they 
can benefit citizens and clinicians at scale. To this end, 
four recommendations for universality are defined in 
the FUTURE-AI framework.

Universality 1: Define clinical settings
At the design phase, the development team should 
specify the clinical settings in which the AI tool will 
be applied (eg, primary healthcare centres, hospitals, 
home care, low versus high resource settings, one or 
several countries), and anticipate potential obstacles 
to universality (eg, differences in end users, clinical 
definitions, medical equipment or IT infrastructures 
across settings).

Universality 2: Use existing standards
To ensure the quality and interoperability of the 
AI tool, it should be developed based on existing 
community defined standards. These might include 
clinical definitions of diseases by medical societies, 
medical ontologies (eg, Systematized Nomenclature 
of Medicine Clinical Terms (SNOMED CT)41), data 
models (eg, Observational Medical Outcomes 
Partnership (OMOP)42), interface standards (eg, 
Digital Imaging and Communications in Medicine 
(DICOM), Fast Healthcare Interoperability Resources 
(FHIR) Health Level Seven (HL7)), data annotation 
protocols, evaluation criteria,21 and technical 
standards (eg, Institute of Electrical and Electronics 
Engineers (IEEE)43 or International Organisation for 
Standardization (ISO)44).21 41-44

Universality 3: Evaluate using external data
To assess generalisability, technical validation of the 
AI tools should be performed with external datasets 
that are distinct from those used for model training.45 
These might include reference or benchmarking 
datasets that are representative for the task in question 
(ie, approximating the expected real world variations). 
Except for AI tools intended for single centres, the 
clinical evaluation studies should be performed at 
several sites to assess performance and interoperability 
across clinical workflows.46 If the tool’s generalisability 
is limited, mitigation measures (eg, transfer learning or 
domain adaptation) should be applied and tested.

Universality 4: Evaluate local clinical validity
Clinical settings vary in many aspects, such as 
populations, equipment, clinical workflows, and 
end users. Therefore, to ensure trust at each site, the 

AI tools should be evaluated for their local clinical 
validity.17 In particular, the AI tool should fit the 
local clinical workflows and perform well on the local 
populations. If the performance is decreased when 
evaluated locally, recalibration of the AI model should 
be performed and tested (eg, through model fine 
tuning).

Traceability
The traceability principle states that medical AI tools 
should be developed together with mechanisms 
for documenting and monitoring the complete 
trajectory of the AI tool, from development and 
validation to deployment and usage. This will increase 
transparency and accountability by providing detailed 
and continuous information on the AI tools during 
their lifetime to clinicians, healthcare organisations, 
citizens and patients, AI developers, and relevant 
authorities. AI traceability will also enable continuous 
auditing of AI models,47 identify risks and limitations, 
and update the AI models when needed.

Traceability 1: Implement risk management
Throughout the AI tool’s lifecycle, the multidisciplinary 
development team shall analyse potential risks, 
assess each risk’s likelihood, effects and risk-benefit 
balance, define risk mitigation measures, monitor the 
risks and mitigations continuously, and maintain a 
risk management file. The risks might include those 
explicitly covered by the FUTURE-AI guiding principles 
(eg, bias, harm, data breach), but also application 
specific risks. Other risks to consider include human 
factors that might lead to misuse of the AI tool (eg, 
not following the instructions, receiving insufficient 
training), application of the AI tool to individuals who 
are not within the target population, use of the tool 
by others than the target end users (eg, technician 
instead of physician), hardware failure, incorrect data 
annotations or input values, and adversarial attacks. 
Mitigation measures might include warnings to the 
users, system shutdown, reprocessing of the input 
data, the acquisition of new input data, or the use of 
an alternative procedure or human judgment only. 
Monitoring and reassessment of risk might involve the 
use of various feedback channels, such as customer 
feedback and complaints, as well as logged real world 
performance and issues (see traceability 5).

Traceability 2: Provide documentation
To increase transparency, traceability, and account
ability, adequate documentation should be created 
and maintained for the AI tool,48 which might include 
(a) an AI information leaflet to inform citizens and 
healthcare professionals about the tool’s intended 
use, risks (eg, biases) and instructions for use; (b) a 
technical document to inform AI developers, health 
organisations, and regulators about the AI model’s 
properties (eg, hyperparameters), training and testing 
data, evaluation criteria and results, biases and other 
limitations, and periodic audits and updates49-51; 
(c) a publication based on existing AI reporting 
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standards13  15  52; and (d) a risk management file (see 
traceability 1).

Traceability 3: Implement continuous quality control
The AI tool should be developed and deployed with 
mechanisms for continuous monitoring and quality 
control of the AI inputs and outputs,47 such as to 
identify missing or out-of-range input variables, 
inconsistent data formats or units, incorrect 
annotations or data preprocessing, and erroneous or 
implausible AI outputs. For quality control of the AI 
decisions, uncertainty estimates should be provided 
(and calibrated53) to inform the end users about the 
degree of confidence in the results.54

Traceability 4: Implement periodic auditing and 
updating
The AI tool should be developed and deployed 
with a configurable system for periodic auditing,47 
which should define the datasets and timelines for 
periodic evaluations (eg, every year). The periodic 
auditing should enable the identification of data or 
concept drifts, newly occurring biases, performance 
degradation or changes in the decision making of the 
end users.55 Accordingly, necessary updates to the AI 
models or AI tools should be applied.56

Traceability 5: Implement AI logging
To increase traceability and accountability, an AI logging 
system should be implemented to trace the user’s main 
actions in a privacy preserving manner, specify the data 
that are accessed and used, record the AI predictions 
and clinical decisions, and log any encountered issues. 
Time series statistics and visualisations should be used 
to inspect the usage of the AI tool over time.

Traceability 6: Implement AI governance
After deployment, the governance of the AI tool should 
be specified. In particular, the roles of risk management, 
periodic auditing, maintenance, and supervision 
should be assigned, such as to IT teams or healthcare 
administrators. Furthermore, responsibilities for 
AI related errors should be clearly specified among 
clinicians, healthcare centres, AI developers, and 
manufacturers. Accountability mechanisms should 
be established, incorporating both individual and 
collective liability, alongside compensation and 
support structures for patients affected by AI errors.

Usability
The usability principle states that the end users should 
be able to use an AI tool to achieve a clinical goal 
efficiently and safely in their real world environment. 
On one hand, this means that end users should be able 
to use the AI tool’s functionalities and interfaces easily 
and with minimal errors. On the other hand, the AI 
tool should be clinically useful and safe, for example, 
improve the clinicians’ productivity and/or lead to 
better health outcomes for the patients and avoid 
harm. To this end, five recommendations for usability 
are defined in the FUTURE-AI framework.

Usability 1: Define user requirements
The AI developers should engage clinical experts, end 
users (eg, patients, physicians), and other relevant 
stakeholders (eg, data managers, administrators) 
from an early stage to compile information on the AI 
tool’s intended use and end user requirements (eg, 
human-AI interfaces), as well as on human factors 
that might affect the usage of the AI tool57 (eg, digital 
literacy level, age group, ergonomics, automation 
bias). Special attention should be paid to the fit with 
the current clinical workflow, including system level 
implementation of AI and interactions with other (AI) 
support tools. Using a majority voting strategy among 
diverse stakeholders to identify the most relevant 
clinical issues might help to ensure that solutions are 
broadly applicable rather than tailored to individual 
preferences.

Usability 2: Define human-AI interactions and 
oversight
Based on the user requirements, the AI developers 
should implement interfaces to enable end users to 
effectively use the AI model, annotate the input data 
in a standardised manner, and verify the AI inputs 
and results. Given the high stakes nature of medical 
AI, human oversight is essential and increasingly 
required by policy makers and regulators.17 26 Human-
in-the-loop mechanisms should be designed and 
implemented to perform specific quality checks (eg, 
to flag biases, errors, or implausible explanations), 
and to overrule the AI predictions when necessary. 
Regulations, the benefits of automation, and patient 
preferences regarding AI autonomy might vary per 
use case and over time,58 therefore requiring use case 
specific human oversight mechanisms and periodic 
auditing and updates (see traceability 4).

Usability 3: Provide training
To facilitate best usage of the AI tool, minimise errors 
and harm, and increase AI literacy, the developers 
should provide training materials (eg, tutorials, 
manuals, examples) and/or training activities (eg, 
hands-on sessions) in an accessible format and 
language, taking into account the diversity of end 
users (eg, specialists, nurses, technicians, citizens, or 
administrators).

Usability 4: Evaluate clinical usability
To facilitate adoption, the usability of the AI tool 
within the local clinical workflows should be evaluated 
in real world settings with representative and diverse 
end users (eg, with respect to sex, gender, age, clinical 
role, digital proficiency, and disability). The usability 
tests should gather evidence on the user’s satisfaction, 
performance and productivity, and assess human 
factors that might affect the usage of the AI tool57 (eg, 
confidence, learnability, automation bias).

Usability 5: Evaluate clinical utility
The AI tool should be evaluated for its clinical utility 
and safety. The clinical evaluations of the AI tool 
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should show benefits for the patient (eg, earlier 
diagnosis, better outcomes), for the clinician (eg, 
increased productivity, improved care), and/or for the 
healthcare organisation (eg, reduced costs, optimised 
workflows) compared with the current standard of 
care. Additionally, it is important to show that the AI 
tool is safe and does not cause harm to individuals 
(or specific groups), such as through a randomised 
clinical trial.59

Robustness
The robustness principle refers to the ability of a 
medical AI tool to maintain its performance and 
accuracy under expected or unexpected variations in 
the input data. Existing research has shown that even 
small, imperceptible variations in the input data might 
lead AI models into incorrect decisions.60 Biomedical 
and health data can be subject to major variations in 
the real world (both expected and unexpected), which 
can affect the performance of AI tools. Therefore, it is 
important that healthcare AI tools are designed and 
developed to be robust against real world variations, 
and evaluated and optimised accordingly. To this end, 
three recommendations for robustness are defined in 
the FUTURE-AI framework.

Robustness 1: Define sources of data variations
At the design phase, the development team should 
first define robustness requirements for the AI tool 
in question by making an inventory of the sources of 
variation that might affect the AI tool’s robustness 
in the real world. These might include differences 
in equipment, technical fault of a machine, data 
heterogeneities during data acquisition or annotation, 
and/or adversarial attacks.60

Robustness 2: Train with representative data
Clinicians, citizens, and other stakeholders are more 
likely to trust the AI tool if it is trained on data that 
adequately represent the variations encountered in 
real world clinical practice.61 Therefore, the training 
datasets should be carefully selected, analysed, 
and enriched according to the sources of variation 
identified at the design phase (see robustness 1). 
Training with representative datasets also allows for 
improvement of other principles, for example, more 
representative bias estimation and mitigation for 
fairness.

Robustness 3: Evaluate robustness
Evaluation studies should be implemented to evaluate 
the AI tool’s robustness (eg, stress tests, repeatability 
tests62) under conditions that reflect the variations 
of real world clinical practice. These might include 
data, equipment, technician, clinician, patient, and 
centre related variations. Depending on the results, 
mitigation measures should be implemented and 
tested to optimise the robustness of the AI model, 
such as regularisation,63 data augmentation,64 data 
harmonisation,65 or domain adaptation.66

Explainability
The explainability principle states that medical 
AI tools should provide clinically meaningful 
information about the logic behind the AI decisions. 
Although medicine is a high stake discipline that 
requires transparency, reliability and accountability, 
machine learning techniques often produce complex 
models that are black box in nature. Explainability is 
considered desirable from a technological, medical, 
ethical, legal, and patient perspective.67 It enables 
end users to interpret the AI model and outputs, 
understand the capacities and limitations of the AI 
tool, and intervene when necessary, such as to decide 
to use it or not. However, explainability is a complex 
task that has challenges that need to be carefully 
addressed during AI development and evaluation to 
ensure that AI explanations are clinically meaningful 
and beneficial to end users.68 Two recommendations 
for explainability are defined in the FUTURE-AI 
framework.

Explainability 1: Define explainability needs
At the design phase, it should be established with end 
users and domain experts if explainability is required 
for the AI tool. If so, the specific requirements for 
explainability should be defined with representative 
experts and end users, including (a) the goal of the 
explanations (eg, global description of the model’s 
behaviour v local explanation of each AI decision); (b) 
the most suitable approach for AI explainability69; and 
(c) the potential limitations to anticipate and monitor 
(eg, over-reliance of the end users on the AI decision68).

Explainability 2: Evaluate explainability
The explainable AI methods should be evaluated, 
first quantitatively by using computational methods 
to assess the correctness of the explanations,70  71 
then qualitatively with end users to assess their 
impact on user satisfaction, confidence, and clinical 
performance.72 The evaluations should also identify 
any limitations of the AI explanations (eg, they 
are clinically incoherent73 or sensitive to noise or 
adversarial attacks,74 they unreasonably increase the 
confidence in the AI generated results75).

General recommendations
Finally, seven general recommendations are defined 
in the FUTURE-AI framework, which apply across all 
principles of trustworthy AI in healthcare.

General 1: Engage stakeholders continuously
Throughout the AI tool’s lifecycle, the AI developers 
should continuously engage with interdisciplinary 
stakeholders, such as healthcare professionals, 
citizens, patient representatives, expert ethicists, data 
managers, and legal experts. This interaction will 
facilitate the understanding and anticipation of the 
needs, obstacles, and pathways towards acceptance 
and adoption. Methods to engage stakeholders might 
include working groups, advisory boards, one-to-one 
interviews, cocreation meetings, and surveys.
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General 2: Ensure data protection
Adequate measures to ensure data privacy and 
security should be put in place throughout the AI 
lifecycle. These might include privacy enhancing 
techniques (eg, differential privacy, encryption), data 
protection impact assessment, and appropriate data 
governance after deployment (eg, logging system for 
data access, see traceability 5). If deidentification is 
implemented (eg, pseudonymisation, k-anonymity), 
the balance between the health benefits for 
citizens and the risks for reidentification should be 
carefully assessed and considered. Furthermore, the 
manufacturers and deployers should implement and 
regularly evaluate measures for protecting the AI 
tool against malicious or adversarial attacks, such 
as by using system level cybersecurity solutions or 
application specific defence mechanisms (eg, attack 
detection or mitigation).76

General 3: Implement measures to address AI risks
At the development stage, the development team 
should define an AI modelling plan that is aligned 
with the application specific requirements. After 
implementing and testing a baseline AI model, the AI 
modelling plan should include mitigation measures 
to address the challenges and risks identified at 
the design stage (see fairness 1 to explainability 
1). These might include measures to enhance 
robustness to real world variations (eg, regularisation, 
data augmentation, data harmonisation, domain 
adaptation), ensure generalisability across settings 
(eg, transfer learning, knowledge distillation), 
and correct for biases across subgroups (eg, data 
resampling, bias free representation, equalised odds 
post processing).

General 4: Define an adequate AI evaluation plan
To increase trust and adoption, an appropriate 
evaluation plan should be defined, including test 
data, metrics, and reference methods. First, adequate 
test data should be selected to assess each dimension 
of trustworthy AI. In particular, the test data should 
be well separated from the training to prevent data 
leakage.77 Furthermore, adequate evaluation metrics 
should be carefully selected, taking into account their 
benefits and potential flaws.78 Finally, benchmarking 
with respect to reference AI tools or standard practice 
should be performed to enable comparative assessment 
of model performance.

General 5: Comply with AI regulations
The development team should identify the applicable 
AI regulations, which vary by jurisdiction and over 
time. For example, in the EU, the recent AI Act classifies 
all AI tools in healthcare as high risk, hence they 
must comply with safety, transparency and quality 
obligations, and undergo conformity assessments. 
Identifying the applicable regulations at an early stage 
enables regulatory obligations to be anticipated based 
on the AI tool’s intended classification and risks.

General 6: Investigate application specific ethical 
issues
In addition to the well known ethical issues that 
arise in medical AI (eg, privacy, transparency, equity, 
autonomy), AI developers, domain specialists, and 
professional ethicists should identify, discuss, and 
address all application specific ethical, social, and 
societal issues as an integral part of the development 
and deployment of the AI tool.79

General 7: Investigate social and environmental 
issues
In addition to clinical, technical, legal, and ethical 
implications, a healthcare AI tool might have specific 
social and environmental issues. These will need to 
be considered and addressed to ensure a positive 
impact for the AI tool on citizens and society. 
Regulatory agencies or independent organisations 
could provide certifications or marks for AI tools that 
meet certain sustainability criteria. This approach can 
encourage transparency, give insight on an AI tool’s 
environmental impact, and highlight those that adopt 
environmentally friendly practices. Relevant issues 
might include the impact of the AI tool on the working 
conditions and power relations, on the new skills 
(or deskilling) of the healthcare professionals and 
citizens,80 and on future interactions between citizens, 
health professionals, and social careers. Furthermore, 
for environmental sustainability, AI developers should 
consider strategies to reduce the carbon footprint of the 
AI tool.81 To enable the implementation of the FUTURE-
AI framework in practice, we provide a step-by-step 
guide by embedding the recommended best practices 
in chronological order across the key phases of an AI 
tool’s lifecycle, as shown in figure 3 and as follows:

•	 The design phase is initiated with a human centred, 
risk aware strategy by engaging all relevant 
stakeholders and conducting a comprehensive 
analysis of clinical, technical, ethical, and social 
requirements, leading to a list of specifications 
and a list of risks to monitor (eg, potential 
biases, lack of robustness, generalisability, and 
transparency).

•	 Accordingly, the development phase prioritises 
the collection of representative datasets for 
effective training and testing, ensuring they 
reflect variations across the intended settings, 
equipment, protocols, and populations as 
identified previously. Furthermore, an adequate 
AI development plan is defined and implemented 
given the identified requirements and risks, 
including mitigation strategies and human 
centred mechanisms to meet the initial design’s 
functional and ethical requirements.

•	 Subsequently, the validation phase 
comprehensively examines all dimensions of 
trustworthy AI, including system performance but 
also robustness, fairness, generalisability, and 
explainability, and concludes with the generation 
of all necessary documentation.
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•	 Finally, the deployment phase is dedicated 
to ensuring local validity, providing training, 
implementing monitoring mechanisms, and 
ensuring regulatory compliance for adoption in 
real world healthcare practice.

Operationalisation of FUTURE-AI
In this section, we provide a detailed list of practical 
steps for each recommendation, accompanied by 
specific examples of approaches and methods that 
can be applied to operationalise each step towards 

1. Design phase
G1:
Us1:
Un1:
R1:
F1:
E1:
G6:
G7:
Un2:
T1:

Engage interdisciplinary stakeholders
Define intended use and user requirements
Define clinical settings and related variations
Define all sources of data heterogeniety
Define all sources of bias
Define explainability needs
Investigate application specific ethical issues
Investigate social and societal issues
Use community defined standards
Implement risk management process

3. Evaluation phase
G4:
Un3:
F3:
Us4:
Us5:
R3:
E2:
T2:

Define adequate evaluation plan
Evaluate using external and/or multisite data
Evaluate fairness and debiasing measures
Evaluate user experience and acceptance
Evaluate clinical utility and safety
Evaluate robustness against real variations
Evaluate explainability with end users
Document AI tool including evaluations

2. Development phase
Collect representative real world data
Collect data on individuals’ attributes
Implement measures for privacy and security
Implement measures against identified AI risks
Implement human-AI interaction mechanisms

4. Deployment phase
Evaluate local clinical validity
Define mechanisms for quality control
Implement periodic auditing system
Implement logging system
Provide training materials and activities
Comply with AI regulatory requirements
Establish mechanism for AI governance

R2:
F2:
G2:
G3:
Us2:

Un4:
T3:
T4:
T5:
Us3:
G5:
T6:

Fig 3 | Embedding the FUTURE-AI best practices into an agile process throughout the artificial intelligence (AI) 
lifecycle. E=explainability; F=fairness; G=general; R=robustness; T=traceability; Un=universality; Us=usability

Table 3 | Practical steps and examples to implement FUTURE-AI recommendations during design phase
Recommendations Operations Examples
Engage interdisciplinary 
stakeholders (general 1)

Identify all relevant stakeholders Patients, GPs, nurses, ethicists, data managers82 83

Provide information on the AI tool and AI Educational seminars, training materials, webinars84

Set up communication channels with stakeholders Regular group meetings, one-to-one interviews, virtual platform85

Organise cocreation consensus meetings One day cocreation workshop with n=15 multidisciplinary stakeholders86

Use qualitative methods to gather feedback Online surveys, focus groups, narrative interviews87

Define intended use 
and user requirements 
(usability 1)

Define the clinical need and AI tool’s goal Risk prediction, disease detection, image quantification
Define the AI tool’s end users Patients, cardiologists, radiologists, nurses
Define the AI model’s inputs Symptoms, heart rate, blood pressure, ECG, image scan, genetic test
Define the AI tool’s functionalities and interfaces Data upload, AI prediction, AI explainability, uncertainty estimation88

Define requirements for human oversight Visual quality control, manual corrections89 90

Adjust user requirements for all end user subgroups According to role, age group, digital literacy level91

Define intended clinical 
settings and cross setting 
variations (universality 1)

Define the AI tool’s healthcare setting(s) Primary care, hospital, remote care facility, home care
Define the resources needed at each setting Personnel (experience, digital literacy), medical equipment (eg, >1.5 T MRI scanner),  

IT infrastructure
Specify if the AI tool is intended for high end and/or low 
resource settings

Facilities with MRI scanners >1.5 T v low field MRIs (eg, 0.5 T), high end v low cost 
portable ultrasound92 93

Identify all cross settings variations Data formats, medical equipment, data protocols, IT infrastructure94

Define sources of data 
heterogeneity  
(robustness 1)

Engage relevant stakeholders to assess data heterogeneity Clinicians, technicians, data managers, IT managers, radiologists, device vendors
Identify equipment related data variations Differences in medical devices, manufacturers, calibrations, machine ranges (from low 

cost to high end)95

Identify protocol related data variations Differences in image sequences, data acquisition protocols,96 data annotation 
methods, sampling rates, preprocessing standards

Identify operator related data variations Different in experience and proficiency, operator fatigue, subjective judgment, 
technique variability

Identify sources of artefacts and noises Image noise, motion artefacts, signal dropout, sensor malfunction
Identify context specific data variations Lower data quality acquisition in emergency units, during high patient volume times

(Continued)
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Table 3 | Continued
Recommendations Operations Examples
Define any potential 
sources of bias (fairness 
1)

Engage relevant stakeholders to define the sources of bias Patients, clinicians, epidemiologists, ethicists, social carers97 98

Define standard attributes that might affect the AI tool’s 
fairness

Sex, age, socioeconomic status99

Identify application specific sources of bias beyond 
standard attributes

Skin colour for skin cancer detection,100 101 breast density for breast cancer detection34

Identify all possible human biases Data labelling, data curation99

Define the need and 
requirements for 
explainability with end 
users (explainability 1)

Engage end users to define explainability requirements Clinicians, technicians, patients102

Specify if explainability is necessary Not necessary for AI enabled image segmentation part, critical for AI enabled  
diagnosis

Specify the objectives of AI explainability (if it is needed) Understanding AI model, aiding diagnostic reasoning, justifying treatment 
recommendations103

Define suitable explainability approaches Visual explanations, feature importance, counterfactuals104

Adjust the design of the AI explanations for all end user 
subgroup

Heatmaps for clinicians, feature importance for patients105 106

Investigate ethical issues 
(general 6)

Consult ethicists on ethical considerations Ethicists specialised in medical AI and/or in the application domain (eg, 
paediatrics)107

Assess if the AI tool’s design is aligned with relevant ethical 
values

Right to autonomy, information, consent, confidentiality, equity107

Identify application specific ethical issues Ethical risks for a paediatric AI tool (eg, emotional impact on children)108 109

Comply with local ethical AI frameworks AI ethical guidelines from Europe,2 United Kingdom,110 111 United Sates,112 Canada,113 
China,114 India,115 Japan,116 117 Australia,118 etc

Investigate social and 
environmental issues 
(general 7)

Investigate AI tool’s social and environmental impact Workforce displacement, worsened working conditions and relations, deskilling,80 
dehumanisation of care, reduced health literacy, increased carbon footprint,119 
negative public perception107 120

Define mitigations to enhance the AI tool’s social and 
environmental impact

Interfaces for physician-patient communication, workforce training, educational 
programmes, energy efficient computing practices, public engagement initiatives

Optimise algorithms, energy efficiency Develop and use energy efficient algorithms that minimise computational demands. 
Techniques like model pruning, quantisation, and edge computing can reduce the 
energy required for AI tasks

Promote responsible data usage Focus on collecting and processing only the necessary amount of data. Implement 
federated learning techniques to minimise data transfers. This approach keeps data 
localised, reducing need for extensive data movement, which consumes energy

Monitor and report the environmental impact of the AI tool Regularly monitor and report on the environmental impact of AI systems used in 
healthcare, including energy usage, carbon emissions, and waste generation

Use community defined 
standards (universality 2)

Use a standard definition for the clinical task Definition of heart failure by the American Academy of Cardiology121

Use a standard method for data labelling BI-RADS for breast imaging122

Use a standard ontology for the AI inputs DICOM for imaging data,123 SNOMED for clinical data41

Adopt technical standards IEEE 2801-2022 for medical AI software43

Use standard evaluation criteria See Maier-Hein et al21 for medical imaging applications, Barocas et al31 and Bellamy  
et al35 for fairness evaluation

Implement a risk 
management process 
(traceability 1)

Identify all possible clinical, technical, ethical, and societal 
risks

Bias against under-represented subgroups, limited generalisability to low  
resource facilities, data drift, lack of acceptance by end users, sensitivity to noisy 
inputs124

Identify all possible operational risks Misuse of the AI tool (owing to insufficient training or not following the instructions), 
application of the AI tool outside of the target population (eg, individuals with 
implants), use of the tool by others than the target end users (eg, technician instead of 
physician), hardware failure, incorrect data annotations, adversarial attacks76 125

Assess the likelihood of each risk Very likely, likely, possible, rare
Assess the consequences of each risk Patient harm, discrimination, lack of transparency, loss of autonomy, patient 

reidentification126

Prioritise all the risks depending on their likelihood and 
consequences

Risk of bias (if no personal attributes are included in the model) v risk of patient 
reidentification (if personal attributes are collected)

Define mitigation measures to be applied during AI 
development

Data enhancement, data augmentation,127 bias correction techniques, domain 
adaptation,66 transfer learning,128 continuous learning129

Define mitigation measures to be applied after deployment Warnings to the users, system shutdown, reprocessing of the input data, acquisition of 
new input data, use of an alternative procedure, or human judgment only

Set up a mechanism to monitor and manage risks over time Periodic risk assessment every six months
Create a comprehensive risk management file Including all risks, their likelihood and consequences, risk mitigation measures, risk 

monitoring strategy
AI=artificial intelligence; BI-RADS=breast imaging reporting and data system; DI-COM=Digital Imaging and Communications in Medicine; ECG=electrocardiogram; GP=general practitioner; 
IEEE=Institute of Electrical and Electronics Engineers; MRI=magnetic resonance imaging; SNOMED=Systematized Nomenclature of Medicine.

trustworthy AI, as shown in table 3, table 4, table 5, 
and table 6. This approach offers easy-to-use, step-
by-step guidance for all end users of the FUTURE-AI 
framework when designing, developing, validating 
and deploying new AI tools for healthcare.

Discussion
Despite the tremendous amount of research in medical 
AI in recent years, currently only a limited number of 
AI tools have made the transition to clinical practice. 
Although many studies have shown the huge potential 
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of AI to improve healthcare, major clinical, technical, 
socioethical, and legal challenges persist.

In this paper, we presented the results of an 
international effort to establish a consensus guideline 
for developing trustworthy and deployable AI tools in 
healthcare. To this end, the FUTURE-AI Consortium 
was established, which provided knowledge and 
expertise across a wide range of disciplines and 
stakeholders, resulting in consensus and wide 
support, both geographically and across domains. 
Through an iterative process that lasted 24 months, the 
FUTURE-AI framework was established, comprising 
a comprehensive and self-contained set of 30 
recommendations, which covers the whole lifecycle of 
medical AI. By dividing the recommendations across six 
guiding principles, the pathways towards responsible 
and trustworthy AI are clearly characterised. Because 
of its broad coverage, the FUTURE-AI guideline can 
benefit a wide range of stakeholders in healthcare, as 
detailed in table 2 in the appendix.

FUTURE-AI is a risk informed framework, proposing 
to assess application specific risks and challenges 
early in the process (eg, risk of discrimination, lack 
of generalisability, data drifts over time, lack of 
acceptance by end users, potential harm for patients, 
lack of transparency, data security vulnerabilities, 

ethical risks), followed by implementing tailored 
measures to reduce these risks (eg, collect data on 
individuals’ attributes to assess and mitigate bias). As 
the specific measures to be implemented have benefits 
and potential weaknesses that the developers need 
to assess and take into consideration, a risk-benefit 
balancing trade-off has to be made. For example, 
collecting data on individuals’ attributes might increase 
the risk of reidentification, but can enable the risk of 
bias and discrimination to be reduced. Therefore, in 
FUTURE-AI, risk management (as recommended in 
traceability 1) must be a continuous and transparent 
process throughout the AI tool’s lifecycle.

FUTURE-AI is also an assumption-free, highly 
collaborative framework, recommending to 
continuously engage with multidisciplinary 
stakeholders to understand application specific 
needs, risks, and solutions (general 1). This is crucial 
to investigate all possible risks and factors that might 
reduce trust in a specific AI tool. For example, instead 
of making any assumptions on possible sources of 
bias, FUTURE-AI recommends that AI developers 
engage with healthcare professionals, domain experts, 
representative citizens, and/or ethicists early in the 
process to form interdisciplinary AI development 
teams and investigate in-depth the application specific 

Table 4 | Practical steps and examples to implement FUTURE-AI recommendations during development phase
Recommendations Operations Examples
Collect representative training dataset 
(robustness 2)

Collect training data that reflect the demographic 
variations

According to age, sex, ethnicity, socioeconomics

Collect training data that reflect the clinical variations Disease subgroups, treatment protocols, clinical outcomes, rare 
cases

Collect training data that reflect variations in real world 
practice

Data acquisition protocols, data annotations, medical equipment, 
operational variations (eg, patient motion during scanning)125

Artificially enhance the training data to mimic real world 
conditions

Data augmentation,127 data synthesis (eg, low quality data, noise 
addition),130 data harmonisation,131 132 data homogenisation133

Collect information on individuals’ and data 
attributes (fairness 2)

Request approval for collecting data on personal attributes Sex, age, ethnicity, socioeconomic status134

Collect information on standard attributes of the individuals 
(if available and allowed)

Sex, age, nationality, education135

Include application specific information relevant for  
fairness analysis

Skin colour, breast density,34 presence of implants, comorbidity136

Estimate data distributions across subgroups Male v female, across ethnic groups
Collect information on data provenance Data centres, equipment characteristics, data preprocessing, 

annotation processes
Implement measures for data privacy and 
security (general 2)

Implement measures to ensure data privacy and security Data deidentification, federated learning,137 138 differential privacy, 
encryption139

Implement measures against malicious attacks Firewalls, intrusion detection systems, regular security audits139

Adhere to applicable data protection regulations General Data Protection Regulation,140 Health Insurance Portability 
and Accountability Act141

Define suitable data governance mechanisms Access control, logging system
Implement measures against identified AI 
risks (general 3)

Implement a baseline AI model and identify its limitations Bias, lack of generalisability142

Implement methods to enhance robustness to real world 
variations (if needed)

Regularisation,143 data augmentation,127 data harmonisation,131 
domain adaptation66

Implement methods to enhance generalisability across 
settings (if needed)

Regularisation, transfer learning,144 knowledge distillation145

Implement methods to enhance fairness across subgroups 
(if needed)

Data resampling, bias free representation,36 equalised odds 
postprocessing37 38 146

Establish mechanisms for human-AI 
interactions (usability 2)

Implement mechanisms to standardise data preprocessing 
and labelling

Data preprocessing pipeline, data labelling plugin

Implement an interface for using the AI model Application programming interface
Implement interfaces for explainable AI Visual explanations, heatmaps, feature importance bars105 106

Implement mechanisms for user centred quality control of 
the AI results

Visual quality control, uncertainty estimation147

Implement mechanism for user feedback Feedback interface148

AI=artificial intelligence.
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Table 5 | Practical steps and examples to implement FUTURE-AI recommendations during evaluation phase
Recommendations Operations Examples
Define adequate evaluation 
plan (general 4)

Identify the dimensions of trustworthy AI to be evaluated Robustness, clinical safety, fairness, data drifts, usability, explainability
Select appropriate testing datasets External dataset from a new hospital, public benchmarking dataset148

Compare the AI tool against standard of care Conventional risk predictors, visual assessment by radiologist, decision by 
clinician149 150

Select adequate evaluation metrics F1 score for classification, concordance index for survival,21 statistical parity 
for fairness151

Evaluate using external 
datasets and/or multiple sites 
(universality 3)

Identify relevant public datasets Cancer Imaging Archive,152 UK Biobank,153 M&Ms,154 MAMA-MIA,155 BRATS156

Identify external private datasets New prospective dataset from same site or from different clinical centre157 158

Select multiple evaluation sites Three sites in same country, five sites in two different countries
Verify that evaluation data and sites reflect real world variations Variations in demographics, clinicians, equipment
Confirm that no evaluation data were used during training Yes/no

Evaluate fairness and bias 
correction measures  
(fairness 3)

Select attributes and factors for fairness evaluation Sex, age, skin colour, comorbidity
Define fairness metrics and criteria Statistical parity difference defined fairness between −0.1 and 0.135

Evaluate fairness and identify biases Fair with respect to age, biased with respect to sex
Evaluate bias mitigation measures Training data resampling,159 equalised odds postprocessing37 38 146

Evaluate impact of mitigation measures on model performance Data resampling removed sex bias but reduced model performance160

Report identified and uncorrected biases In AI information leaflet and technical documentation161 (see traceability 2).
Evaluate user experience 
(usability 4) 

Evaluate usability with diverse end users According to sex, age, digital proficiency level, role, clinical profile162 163

Evaluate user satisfaction using usability questionnaires System usability scale164

Evaluate user performance and productivity Diagnosis time with and without AI tool, image quantification time165

Assess training of new end users Average time to reach competency, training difficulties166

Evaluate clinical utility and  
safety (usability 5)

Define clinical evaluation plan Randomised control trial,59 167 in silico trial168

Evaluate if AI tool improves patient outcomes Better risk prevention, earlier diagnosis, more personalised treatment169

Evaluate if AI tool enhances productivity or quality of care Enhanced patient triage, shorter waiting times, faster diagnosis, higher patient 
intake169

Evaluate if AI tool results in cost savings Reduction in diagnosis costs,170 171 reduction in overtreatment172

Evaluate AI tool’s safety Side effects or major adverse events in randomised control trials173 174

Evaluate robustness  
(robustness 3)

Evaluate robustness under real world variations Using test-retest datasets,175 176 multivendor datasets177

Evaluate robustness under simulated variations Using simulated repeatability tests,148 synthetic noise and artefacts  
(eg, image blurring)178

Evaluate robustness against variations in end users Different technicians or annotators
Evaluate mitigation measures for robustness enhancement Regularisation,63 data augmentation,64 127 noise addition, normalisation,179 

resampling, domain adaptation66

Evaluate explainability 
(explainability 2)

Assess if explanations are clinically meaningful Reviewing by expert panels, alignment to current clinical guidelines, 
explanations not pointing to shortcuts73

Assess explainability quantitatively using objective measures Fidelity, consistency, completeness, sensitivity to noise180-182

Assess explainability qualitatively with end users Using user tests or questionnaires to measure confidence and affect clinical 
decision making183 184

Evaluate if explanations cause end user overconfidence or 
overreliance

Measure changes in clinician confidence,185 186 performance with and without 
AI tool187

Evaluate if explanations are sensitive to input data variations Stress tests under perturbations to evaluate the stability of explanations74 188

Provide documentation 
(traceability 2)

Report evaluation results in publication using AI reporting 
guidelines

Peer reviewed scientific publication using TRIPOD-AI reporting guideline15

Create technical documentation for AI tool AI passport,189 model cards49 (including model hyperparameters, training and 
testing data, evaluations, limitations, etc)

Create clinical documentation for AI tool Guidelines for clinical use, AI information leaflet (including intended use, 
conditions and diseases, targeted populations, instructions, potential benefits, 
contraindications)

Provide risk management file Including identified risks, mitigation measures, monitoring measures
Create user and training documentation User manuals, training materials, troubleshooting, FAQs (see usability 2)
Identify and provide all locally required documentation Compliance documents and certifications (see general 5)

AI=artificial intelligence; FAQ=frequently asked questions.

sources of bias, which might include domain specific 
attributes (eg, breast density for AI applications in 
breast cancer).

The FUTURE-AI guideline was defined in a 
generic manner to ensure it can be applied across a 
variety of domains (eg, radiology, genomics, mobile 
health, electronic health records). However, for 
many recommendations, their applicability varies 
across medical use cases, even within domains. To 
this end, the first recommendation in each of the 
guiding principles is to identify the specificities to be 
addressed, such as the types of biases (fairness 1), 
the clinical settings (universality 1), or the need and 

approaches for explainable AI (explainability 1). This 
facilitates generalisability across domains, but also 
ensures sustainability for future use. Furthermore, 
we recognise that a one-size-fits-all approach is not 
feasible, as addressal of many of the recommendations 
is use case specific, and standards do not exist yet 
or are subject to change. Therefore, we focused 
on developing best practices for enhancing the 
trustworthiness of medical AI tools, while consciously 
avoiding the imposition of specific techniques 
for the implementation of each recommendation. 
This flexibility also acknowledges the diversity of 
methods for tackling challenges and mitigating risks 
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in medical AI. For example, the recommendation 
to protect personal data during AI training can be 
implemented through data deidentification, federated 
learning, differential privacy or encryption, among 
other methods. While such concrete examples are 
listed in this article, especially in table 3, table 4, 
table 5, and table 6, the most adequate techniques 
for implementing each recommendation should be 
ultimately selected by the AI development team as a 
function of the application domain, clinical use case, 
and data characteristics, as well as the advantages and 

limitations of each method. Similarly, all stakeholders 
of the AI development team are together responsible 
for addressing the recommendations, where the role 
of each party might vary per application, method, 
domain, project setup, and use case.

While the FUTURE-AI framework offers insights 
for regulating medical AI, future work is needed to 
incorporate these recommendations into regulatory 
procedures. For example, we propose mechanisms 
to enhance traceability and governance, such as 
logging. However, the crucial issue of liability is yet 

Table 6 | Practical steps and examples to implement FUTURE-AI recommendations during deployment phase
Recommendations Operations Examples
Evaluate and demonstrate local 
clinical validity (universality 4)

Test AI model using local data Data from local clinical registry
Identify factors that could affect AI tool’s local validity Local operators, equipment, clinical workflows, acquisition protocols
Assess AI tool’s integration within local clinical workflows AI tool’s interface aligns with hospital IT system148 or disrupts routine 

practice
Assess AI tool’s local practical utility and identify any operational 
challenges

Time to operate, clinician satisfaction, disruption of existing 
operations148 190

Implement adjustments for local validity Model calibration, fine-tuning,191 transfer learning192-194

Compare performance of AI tool with that of local clinicians Side-by-side comparison, in silico trial
Define mechanisms for quality 
control of AI inputs and outputs 
(traceability 3)

Implement mechanisms to identify erroneous input data Missing value or out-of-distribution detector,195 automated image 
quality assessment73 196 197

Implement mechanisms to detect implausible AI outputs Postprocessing sanity checks, anomaly detection algorithm198

Provide calibrated uncertainty estimates to inform on AI tool’s 
confidence

Calibrated uncertainty estimates per patient or data point53 54 199

Implement system for continuous quality monitoring Real time dashboard tracking data quality and performance metrics200

Implement feedback mechanism for users to report issues Feedback portal enabling clinicians to report discrepancies or 
anomalies

Implement system for periodic 
auditing and updating  
(traceability 4)

Define schedule for periodic audits Biannual or annual
Define audit criteria and metrics Accuracy, consistency, fairness, data security148

Define datasets for periodic audits Newly acquired prospective dataset from local hospital
Implement mechanisms to detect data or concept drifts Detecting shifts in input data distributions148 190

Assign role of auditor(s) for AI tool Internal auditing team, third party company190

Update AI tool based on audit results Updating AI model,56 re-evaluating AI model,148 adjusting operational 
protocols, continuous learning201-204

Implement reporting system from audits and subsequent updates Automatic sharing of detailed reports to healthcare managers and 
clinicians

Monitor impact of AI updates Impact on system performance and user satisfaction56

Implement logging system for 
usage recording (traceability 5)

Implement logging framework capturing all interactions User actions, AI inputs, AI outputs, clinical decisions
Define data to be logged Timestamp, user ID, patient ID (anonymised), action details, results
Implement mechanisms for data capture Software to automatically record every data and operation
Implement mechanisms for data security Encrypted log files, privacy preserving techniques205

Provide access to logs for auditing and troubleshooting By defining authorised personnel, eg, healthcare or IT managers
Implement mechanism for end users to log any issues A user interface to enter information about operational anomalies
Implement log analysis Time series statistics and visualisations to detect unusual activities and 

alert administrators
Provide training (usability 3) Create user manuals User instructions, capabilities, limitations, troubleshooting steps, 

examples, and case studies
Develop training materials and activities Online courses, workshops, hands-on sessions
Use formats and languages accessible to intended end users Multiple formats (text, video, audio) and languages (English, Chinese, 

Swahili)
Customise training to all end user groups Role specific modules for specialists, nurses, and patients
Include training to enhance AI and health literacy On application specific AI concepts (eg, radiomics, explainability), AI 

driven clinical decision making
Identify and comply with 
applicable AI regulatory 
requirements (general 5)

Engage regulatory experts to investigate regulatory requirements Regulatory consultants from intended local settings
Identify specific regulations based on AI tool’s intended markets FDA’s SaMD in the United States,206 MDR and AI Act207 in the EU
Identify specific requirements based on AI tool’s purpose De Novo classification (Class III)208

Define list of milestones towards regulatory compliance MDR certification: technical verification, pivotal clinical trial, risk and 
quality management, postmarket follow-up

Establish mechanisms for AI 
governance (traceability 6)

Assign roles for AI tool’s governance For periodic auditing, maintenance, supervision (eg, healthcare 
manager)

Define responsibilities for AI related errors Responsibilities of clinicians, healthcare centres, AI developers, and 
manufacturers

Define mechanisms for accountability Individual v collective accountability/liability,25 compensations, 
support for patients

AI=artificial intelligence; FDA=United States Food and Drug Administration; MDR=medical device regulation; SaMD= Software as a Medical Device.
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to be addressed, for example, who should perform 
the audits and who should be accountable for errors. 
Furthermore, we recommend continuous evaluation 
and fine tuning of AI models over time. However, current 
regulations prevent post release modifications because 
they would formally invalidate the manufacturer’s 
initial validation. Future regulations should address 
the possibility of local adaptations within predefined 
acceptance criteria.

On one hand, implementation of the FUTURE-AI 
guideline might involve substantial costs, which could 
affect both AI developers and healthcare systems. 
These financial considerations could potentially 
exacerbate disparities in AI adoption, particularly 
affecting smaller developers and resource limited 
health systems. Collaborative efforts involving 
stakeholders from various sectors could help to 
distribute the financial burden and support equitable 
access to advanced AI tools. On the other hand, early 
adoption of the FUTURE-AI guideline might save 
costs. Instead of developing AI tools that do not have 
clinical added value or having to address various of 
the outlined principles after developing a tool, early 
adoption will result in a trustworthy and deployable 
AI tool by design and can be more cost effective than 
post development adoption, which, in practice, often 
requires costly change requests that affect large parts 
of a tool’s solution architecture.

Finally, progressive development and adoption 
of medical AI tools will lead to new requirements, 
challenges, and opportunities. For some of the 
recommendations, no clear standard on how these 
should be addressed yet exists. Aware of this reality, we 
propose FUTURE-AI as a dynamic, living framework. 
To refine the FUTURE-AI guideline and learn from 
other voices, we set up a dedicated webpage (www.
future-ai.eu) through which we invite the community 
to join the FUTURE-AI network and provide feedback 
based on their own experience and perspective. On 
the website we include a FUTURE-AI self-assessment 
checklist, which comprises a set of questions and 
examples to facilitate and illustrate the use of the 
FUTURE-AI recommendations. Additionally, we plan to 
organise regular outreach events such as webinars and 
workshops to exchange with medical AI researchers, 
manufacturers, evaluators, end users, and regulators. 
Future research includes more in-depth studies of the 
operationalisation of FUTURE-AI in specific healthcare 
domains, leading to domain specific methods on the 
addressal of the recommendations, and of each principle 
as these have become rapidly evolving fields of their 
own, for example, Fair ML and Explainable AI (XAI).
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