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Supplementary Materials and methods 

Patient cohort and tissue samples 

Tumor samples were obtained from 106 LUSC patients (Table 1) diagnosed at the Institute of Pathology, 

University of Bern, excluding cases with prior or concurrent LUSC in other organs. A tissue microarray 

(TMA) was constructed from formalin-fixed and paraffin-embedded (FFPE) tissue blocks [1]. The TMA, with 

digital annotation of scanned slides and automatic transferal of the punches was constructed from formalin-

fixed and paraffin-embedded (FFPE) tissue blocks archived in the Institute of Pathology, University Bern, 

Switzerland. One representative tissue block was selected for each tumor after reviewing all available slides 

per case (H&E staining stained), and two tumor cores were randomly selected from the block for 

measurement and analysis. The histology of all cases was reevaluated according to the current World 

Health Organization guidelines for the diagnosis of LUSC [2]. All tumors were restaged according to the 

Union for International Cancer Control (UICC) 2017, 8th edition, tumor-node-metastasis (TNM) 

classification [3]. OS was defined as the time from resection to death of any cause. PFS was defined as 

the time from the first day of adjuvant therapy to the date of objective disease progression or death of any 

cause. 

High mass resolution MALDI fourier-transform ion cyclotron resonance (FT-ICR) MSI 

High mass resolution MALDI FT-ICR MSI was performed as previously described [4]. Briefly, the FFPE 

section (4 μm) was mounted onto indium tin oxide-coated glass slides (Bruker Daltonik, Bremen, Germany). 

The air-dried tissue section was spray-coated with 10 mg/mL 9-aminoacridine (9-AA) hydrochloride 

monohydrate matrix (Sigma-Aldrich, Munich, Germany) in methanol (70%) using the SunCollect™ sprayer 

(Sunchrom, Friedrichsdorf, Germany). Prior to matrix application, the FFPE tissue section was additionally 

incubated for 1 h at 70°C and deparaffinized in xylene (2 × 8 min). Spray-coating of the matrix was 

performed in eight passes, utilizing 2 mm line distance and a spray velocity of 900 mm/min. Metabolite 

detection was performed in negative ion mode on a 7 T Solarix XR FT-ICR mass spectrometer (Bruker 

Daltonik). Mass spectra were acquired in the range of m/z 50-1,100 with a lateral resolution of 50 µm. 

Metabolites were annotated using HMDB Database (http://www.hmdb.ca/) with a mass tolerance of 4 ppm.  

Immunohistochemistry (IHC)  

Immunohistochemical staining for CD3, CD8, and PD-L1 was performed as previously described [1] on 

consecutive sections. Briefly, an automated immunostainer (Bond III, Leica Bio-systems, Muttenz, 

Switzerland) with anti-CD3 (Abcam Cambridge, UK, clone SP7, 1:400, RRID: AB_443425), anti-CD8 (Dako, 

clone C8/144B, 1:100, RRID: AB_2075537), and anti-PD-L1 (Cell Signaling Technology, clone E1L3N, 

1:400, RRID: AB_2687655) was used. The counts of CD8+ and CD3+ TILs were determined using image 

analysis (Aperio Image Scope) and adjusted for core completeness. PD-L1 expression was assessed as 

the intensity of membranous staining by a pathologist (S. Berezowska).  
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Hematoxylin and eosin staining (H&E) 

After MALDI MSI, the 9-AA matrix was removed from the tissue section surface using 70% ethanol (Carl 

Roth) for 5 minutes, followed by H&E staining of the very same tissue section. The H&E-stained tissue 

section was cover-slipped and scanned with an AxioScan.Z1 digital slide scanner (Carl Zeiss) equipped 

with a 20× magnification objective. The visualization and export of the images to TIFF was done with the 

software ZEN 2.3 blue edition (Carl Zeiss). 

Immunofluorescence (IF) 

Double staining of the TMA was performed using pan-cytokeratin (monoclonal mouse pan-cytokeratin plus 

[AE1/AE3+8/18], 1:75, catalogue no. CM162, Biocare Medical, US, RRID: AB_10582491) and vimentin 

(abcam, clone ab92547, 1:500, RRID: AB_10562134). Regions positive for pan-cytokeratin were defined 

as tumor. Regions negative for pan-cytokeratin but positive for vimentin were defined as stroma. Multi-

images were exported as TIF files in assistance with tumor-only regions of interest (ROIs) annotation in 

QuPath (version 0.3.2). 

Unsupervised pixel-wise k-means segmentation and metabolic tumor subpopulation determination 

Using the segmentation tool in SCiLS Lab software (Version 2023a Pro, Bruker Daltonics), unsupervised 

k-means clustering was performed pixel-wisely containing overall resolved MS peaks within ROIs where 

only tumor regions of LUSC samples were annotated. Due to uncertainty regarding the extent of 

heterogeneity, the segmentation algorithm was run with k range from 2 to 15. The created segmentation 

maps were then used to identify the spatial distribution of clusters having similar spectra occur across the 

patients. 

For further statistical analysis, we linked the survival data of patients to the presence of specific clusters 

and consequently determined the metabolic tumor subpopulations. In this process, a patient was assigned 

to a cluster if the cluster was sufficiently present in that patient’s ROI (i.e., if the cluster contained a fraction 

of pixels above a particular threshold). A single patient could be assigned to more than one cluster if it 

contained significant tumor heterogeneity. The effect of choosing different thresholds on survival was 

investigated using Cox proportional hazards regression model as previously described [5]. Specifically, an 

iterative loop was created with thresholds ranging from 4% to 50%. A binary variable was created at each 

threshold by applying the threshold to the cluster ratio. Cox proportional hazards regression model was 

then built using the thresholded data. The fitness of the model at each k was assessed using the Akaike 

information criterion (AIC) involving patients overall survival; the model with the lowest AIC value was 

presumed to most closely fit the data [5]. The calculation was performed in Python (version 3.9). Applying 

the k value and threshold of pixels fraction corresponding to the lowest AIC value, patients were assigned 

to certain clusters, so called metabolic tumor subpopulations (MTSs). 

Simpson’s diversity index as heterogeneity score 
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The Simpson diversity index [6] measures the diversity and equals the probability that two randomly chosen 

pixels are from different types. The calculation formular in our study is defined as follows: 

𝐷 = 1 −∑ 𝑝𝑖
2𝑘

𝑖=1
, where 𝑝𝑖 is the share of pixels in cluster 𝑖 and 𝑘 is the number of clusters.  

The formular is built considering the spatial locations of pixels for each patient in each cluster. Each pixel 

is located by x and y coordinates which were extracted from SCiLS Lab software (Version 2023a Pro, 

Bruker Daltonics). The within sum of squares of the coordinates x and y in each cluster is calculated for 

each patient. Summing up these within sum of squares for all clusters leads to the total within sum of 

squares of the patients. By using the within sum of squares, the spatial distribution of the pixels in one 

patient is measured, i.e. how heterogeneous and therefore far apart are the pixels within one cluster. The 

index can have values between 0 and 1. A value of 0 means that all the pixels from one patient are in one 

cluster. A higher value of the index, therefore, indicates higher diversity of the pixels in the different clusters 

for a patient. As the heterogeneity score for each patient, the Simpson index to measure the metabolic 

heterogeneity of the patients is calculated using the within sum of squares as entries 𝑝𝑖. The calculation 

was performed in R (version 4.2.2). 

Survival analyses  

To define the high and low metabolic heterogeneity, we Iterate over each heterogeneity score as cutoffs to 

evaluate the association between cutoff-optimized patients’ metabolic heterogeneity levels and their OS. 

With a minimum p-value of 0.029 in the log-rank test, the cutoff of 0.436 was chosen to distinguish between 

low and high metabolic heterogeneity levels. Following the separation, the difference in PFS was evaluated 

between high and low metabolic heterogeneity levels. Among MTSs, Kaplan-Meier survival curve analyses 

involving both OS and PFS were performed based on AIC-thresholded determination. Multivariate Cox 

proportional hazards model was performed to evaluate the effect of metabolic heterogeneity levels and 

tumor subpopulations on survival, respectively together with UICC stage, sex, age, tumor size, distant 

metastases, and primary resection status. To manage the possibility that some patients belonged to more 

than one MTS, an extended Cox regression model [7] was incorporated into algorithms to evaluate the 

statistical differences with the Wald test. Kaplan-Meier survival curve analyses for TILs were performed 

with the R packages survival v3.5-3 and survminer v0.4.9. 

Bioinformatics 

Metabolic pathway enrichment analysis and associated genes identification were achieved by mapping 

correlated metabolites to KEGG pathway library via MetaboAnalyst v5.0 (https://www.metaboanalyst.ca/). 

The results of pathway enrichment were evaluated by Fisher’s exact test and visualized the pathways with 

at least 2 hits. The association of genes with CD8+ TIL immune infiltrating level by tumor purity adjustment 

and the survival impact of genes were investigated integrated TCGA-LUSC cohort via TIMER [8]. The 

correlation model between genes with TILs immune infiltrating levels was built using LASSO regression. 
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The associations of metabolites to immune processes were investigated by the Immunometabolic Atlas 

(IMA), a public web application and library of R functions [9]. The action and metabolism pathways of anti-

cancer drugs as well as the resistance information were obtained from Small Molecule Pathway Database 

2.0 (SMPDB, https://www.smpdb.ca/) and DRESIS [10] (https://idrblab.org/dresis/). All the networks were 

built in Cytoscape (v3.8.2).  

Statistics 

The significance of differences in clinicopathological characteristics between high and low heterogeneity 

levels was evaluated by Chi-squared test or Fisher’s exact test. Kruskal–Wallis test was used to calculate 

the differences of Simpson’s diversity index distributions among MTSs. A p-value < 0.05 was considered 

statistically significant in all results. 
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Supplementary Fig. 1A. High resolution IHC images of immunological markers. 

 

 

Supplementary Fig. 1B. Metabolites distribution. 
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Supplementary Fig. 2. CD8+ TIL associated genes in validation LUSC cohort. 
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Supplementary Fig. 3. Distribution of the certain TILs-correlated metabolites in each MTS. 

 

 


