
S1 Supplementary Material
The supplementary material contains details on compositional data transformations (Supplementary Material S2) and the
applied instrumental variables methods (Supplementary Material S3) as well as a list of the packages that have been used in the
implementation (Supplementary Material S4). Further, the supplementary material provides additional results for the real data
example of [1] (Supplementary Material S5). Moreover for the synthetic settings it holds a detailed description of the data
generation (Supplementary Material S6), the parameter settings for the training of the methods (Supplementary Material S7) as
well as additional results and visualizations (Supplementary Material S8).

S2 Compositional Data Transformations
Given a compositional vector x ∈ Sp−1, the definitions of the log-transformations are given by the additive log-ratio transforma-
tion

alr(x) :=
(

log
x1

xp
, . . . , log

xp−1

xp

)
= x̃alr = log(x) ·


1 0 · · · 0
0 1 · · · 0
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...
. . .
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0 0 · · · 1
−1 −1 · · · −1

 (1)

with inverse

alr−1(x̃) =C(exp([x̃,0])), (2)

the centered log-ratio transformation

clr(x) :=
(

log
x1

g(x)
, . . . , log

xp

g(x)

)
= x̃clr =

log(x)
D

·


D−1 −1 · · · −1
−1 D−1 · · · −1

...
...

. . .
...

−1 −1 · · · D−1

 (3)

with g(x) := p
√x1 · . . . · xp and inverse

clr−1(x̃) =C(exp([x̃])), (4)

and the isometric log-ratio transformation

ilrV (x) = x̃ilr = clr(x) ·V (5)

for a matrix V ∈ Rp×p−1 such that V TV = Ip−1 providing an orthonormal basis of Rp−1 with inverse

ilr−1
V (x̃) =C(exp([x̃V T ])). (6)

For the ilr transformation, a typical choice for V T is the so-called Helmert matrix with the first row removed (see for example
http://scikit-bio.org/docs/0.4.1/generated/generated/skbio.stats.composition.ilr.html).

Additionally let us illustrate how log transformations impact the coordinates. The ternary plot in Fig. S1 shows different
levels of Shannon Diversity for a composition in S3 and its different log-transformations in R2 resp. R3.

S3 IV Methods
We consider three different approaches that gradually relax some of the common IV assumptions. In particular, the restrictions
on the function space of f are gradually relaxed in the different settings.

The Two-Stage Least Squares algorithm (2SLS) consists of two sequential OLS regressions [2]. 2SLS is one of the most
prominent approaches. It allows for unobserved confounding while still putting linear restrictions on the function space of f
and assuming additive noise:

Y = βX + εY (7)

1/31

http://scikit-bio.org/docs/0.4.1/generated/generated/skbio.stats.composition.ilr.html


0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4 2 0 2 4

4

2

0

2

4

alr-transformation
3 2 1 0 1 2 3

4

3

2

1

0

1

2

3

ilr-transformation

2
0

2 2
0

2

2

0

2

0.0

0.2

0.4

0.6

0.8

1.0

clr-transformation

Figure S1. The ternary plot shows different levels of Shannon diversity for a microbial composition in S3. The different
log-transformations convert the composition into R2 for ilr and alr-transformations resp. R3 for the clr-transformation.
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First, 2SLS fits a regression model based on Z to predict X . The second stage uses the estimated X̂ to predict Y . This results in
the following estimator for β :

β̂ =
(
XT PZX

)−1(XT PZy
)

(8)

with PZ = Z(ZT Z)−1ZT .
If p = q, the estimator reduces to the following form:

β̂ =
(
ZT X

)−1(ZT y
)

(9)

[3] relax the assumption of the linear setting in 2SLS towards a non-parametric generalization of the causal effect by
applying kernel ridge regression (KIV).

Y = f (X)+ εY , (10)

for a potentially non-linear f , maintaining the additive noise assumption for point-identifiability.
The OLS regressions are replaced by kernel ridge regressions and thus model the relationship of Z, X and Y by non-linear

functions in reproducing kernel Hilbert spaces (RKHSs). This method still requires additive noise models to produce consistent
results. Following the arguments in [3], this gives us a closed form solution for f :

W = KXX (KZZ +nλ Id)−1KZZ̃ (11)

α̂ = (WW T +mξ KXX )
−1Wỹ, (12)

f̂ m
ξ
(x) = (α̂)T KXx (13)

In the next step, we drop the assumption of additive noise, i.e., allowing f (X ,U) to depend on the treatment X and any
(potentially high-dimensional) confounder U in arbitrary ways (also non-linearly). This implies that the effect is only partially
identifiable, i.e., we can only put lower and upper bounds on E[Y | do(x)]. The authors in [4] employ the response function
framework to minimize (maximize) the average causal effect over all causal models that satisfy the structural IV assumptions
and simultaneously match the observed data to find the lower (upper) bound. We refer the reader to the original paper for the
details [4].

S4 Package References
Here, we briefly outline the software used in our empirical evaluation. Please note that the code and the requirements are all
available at https://github.com/EAiler/causal-compositions.

Python Packages
We use the following Python [5] packages: Plotly [6], Numpy [7], Scipy [8], scikit-learn [9], scikit-bio [10], rpy2 [11],
Matplotlib [12], Statsmodels [13], Pandas [14], Jax [15], Dirichlet [16], c-Lasso [17].

R Packages
We use the following R [18] packages: SpiecEasi [19], vegan [20], Compositional [21] and metaSparSim [22].
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S5 Case study on murine sub-therapeutic antibiotic treatment
In this part we turn to the analysis of the microbiome instead of the summary statistic as the cause. This is a more detailed
examination of the murine sub-therapeutic antibiotic treatment data given in the main part. We provide results on higher
aggregation levels, i.e., the taxonomic ranks ‘Order’ and ‘Family’, respectively. Moreover, we discretize the weight outcome Y
and replace the squared loss of the log-contrast regression by a Hinge loss (see Supplementary Material S7).

—Further Results on different Aggregation Levels: Naturally, for real data, we do not have ground truth labels available.
However, the importance of being able to draw causal and actionable conclusions becomes apparent. In the main part we
provide the results for the naive regression and the two-stage method ILR+LC on genus level. The methods did not agree on the
influential log-ratios, thus suggesting that Only LC might be subject to confounding. This result also holds true on family level.
However, on order level both methods detect one common log-ratio (see Figure S2).
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Figure S2. Influential Compositions on Order Level (left) and Family Level (right): On order level, both methods agree
on one influential log ratio. For the family level, there is a divide between the two-stage method and the naive regression. This
could suggest that Only LC is subject to confounding on the corresponding aggregation level.

—Categorical/Binary Outcome: In order to provide a more complete picture of the loss possibilities, we include results for
a categorical/binary Y . Originally, the real data includes weight measured in gram. To create a binary outcome, we split the
data by the mean of the outcome Y thus artificially generating an “underweight” population of 29 mice and an “overweight”
population of 28 mice. Again, we show the influential log-ratios for the naive regression Only LC and ILR+LC (see Figure S3).
While for ILR+LC the influential log-ratios stay the same for binary and continuous outcome, for the naive regression they are
not entirely consistent.

—Different Levels of Pseudo Counts: The choice of pseudo count can influence the outcome of downstream tasks [23].
As our focus is to identify the most influential species, the use of pseudo counts is justifiable. We show the results for Genus,
Family and Order with a pseudo count of 0.5 to 1.0 with 0.01 increments to showcase the sensitivity following [24], c.f.
Table S1 and Fig. S4.
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Figure S3. Influential Compositions on Genus Level (top left), Order Level (top right) and Family Level (bottom): In
general, the results stay the same for ILR+LC in the binary case and the continuous case. The influential log-ratios are slightly
shifting when simply applying a naive regression.
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Figure S4. The barplots show the most influential log-ratio for different pseudo counts for different aggregation levels.
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Genus Pseudo Count 0.5 Pseudo Count 1.0

Blautia 0.413595 0.479329
Anaerostipes -0.413595 - 0.479329

Order Pseudo Count 0.5 Pseudo Count 1.0

Lactobacillales 0.926113 0.942751
Bacteroidales -0.926113 - 0.942751

Family Pseudo Count 0.5 Pseudo Count 1.0

Enterococcaceae 0.544683 0.586421
S24-7 -0.544683 -0.586421

Table S1. The results for the two most commonly used pseudo counts 0.5 and 1.0 show that while the influential composition
does not change, the estimated influence does slightly increase with a higher pseudo count.

S6 Data Generation
This section describes the details of how we generate data for our empirical evaluation. Complementary to the real microbiome
data, we consider several approaches to generate data for the compositional instrumental variable setting. Since counterfactuals
are never observed in practice, we need a setup where the ground truth is known and can be controlled. We choose to simulate
data from two different data generating models, Setting A and Setting B. The first one will put (most of) our models in a
wellspecified setting, where we have strong expectations and theoretical guarantees on how they will behave. The other
approach simulates compositional data by a zero-inflated negative binomial. Thus, the first stage of all of our models will
be misspecified (except for potentially KIV assuming a proper choice of the kernels). This allows us to test our models for
robustness and probe their limitations.

Based on this motivation, we also describe two additional parameter settings within Setting A that will examine robustness
and limitations: a weak instrument scenario and a scenario with a non-linear second stage f . The first scenario will test the
necessity of a strong/valid instrument, the second scenario will further look into the issue of misspecification (now in the second
stage).

We describe the data generating model and the specific parameter settings. We also provide visualizations of the resulting
data distributions, which is rather tricky for compositional data with p > 3. We will then supplement the result section of the
main text with additional comments on the evaluation of the results and show the complete set of plots for Table 1 and Table 2.

Each generated dataset for p = 3 comprises n = 1000 samples, resp. 10,000 samples for p = 30 and p = 250, with an
additional nintervention = 250 interventional samples for evaluation of OOS MSE. Note that the examples in the figures show
only one of these datasets. To ensure reproducibility, we consistently chose the 10th dataset of the confidence runs for (a
representative) visualization.

Setting A
The following explanations refer to Setting A described in the main part.

Setting A generates data that enables us to assess our methods in a wellspecified setting. Instead of modeling X ∈ Sp−1

directly, we model ilr(X). The setting is strictly linear in ilr(X). This means that both g and f are linear functions of U and Z,
resp., U and ilr(X). The generative model is as follows:

Z j ∼ Uniform(0,1)
U ∼ N (µc,1)

ilr(X) = g(Z,U) = α0 +αZ + cXU

Y = f (X ,U) = β0 +β
T ilr(X)+ cYU (14)

Setting A with p = 3,q = 2
The main characteristics of this lower dimensional dataset are the presence of all microbes and relatively seldom zero values.
We choose the following parameters for the low-dimensional case:

µc =−3,α0 = [1,1],α =

[
0.5 −0.15
0.3 0.7

]
,cX = [0.5,0.5],β0 = 0.5,β = [4,1],cY = 4 (15)
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Figure S5. Setting A with p = 3, q = 2: The barplot shows the three-part composition of the first 100 samples. The
microbes are evenly distributed over the individual compositions.
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Figure S6. Setting A with p = 3, q = 2: The ternary plots are colored by first (left) and second (right) instrument value. The
influence of Z2 on the composition X is particularly pronounced and visually supports the assumption of Z being a valid
instrument.

The first stage F-test for the two components of ilr(X) gives (32.18,113.99) for the 10th data sample.
We remark that in higher dimensions, the F-test does not provide a strong theoretical justification for sufficient instrument

strength, but we still use it as a sensible heuristic that provides a relative measure between different settings, i.e., in which
scenario the instrument is stronger.

For the p = 3 case, we can visualize X by its compositional coordinates not only in a barplot (Figure S5) but also in an
arguably more informative ternary plot (Figure S6). To visualize the linear relationship between observed ilr(X) and Y as well
as the true effect Y | do(X), we transform the data X and visualize each component in a separate scatter plot (see Figure S7).

Setting A with p = 30,q = 10
Contrary to the previous example, we now analyze a slightly higher-dimensional setting with p = 30. In this scenario, it makes
sense to introduce sparsity in the data generation process from a practical viewpoint. We work with the data generation setting
given in Equation (14) and choose the following parameters:

µc = 5, α0 = [3,1,1,1,3,1,1,1,0, · · · ,0], αi j

{
0, for i ̸= j and i, j > 8,
1, for i ̸= j ≤ 8

,

cX = [−2,−1,−1,−1,2,1,1,1,0, · · · ,0], β0 = 5, βlog = [10,5,5,5,−10,−5,−5,−5,0, · · · ,0], β =V T ·βlog, cY = 5

for i ∈ {1, . . . , p− 1}, j ∈ {1, . . . ,q} and V providing the orthonormal basis for the ilr-transformation (see Supplementary
Material S2).
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and the true effect (orange). Due to the confounding, the observed and the causal effect do not overlap. However, we expect the
instrument Z to factor out the confounding effect and enable the two-stage methods to identify the causal effect.
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Figure S8. Setting A with p = 30, q = 10: The barplot shows the composition of the first 100 samples. The compositions
are dominated by a few species.

Since a visualization with a ternary plot is no longer feasible, we only show barplots of the data in Figure S8. However,
scatter plots showing individual ilr(X) coordinates versus the observed Y and the true causal effect are still informative. Since
the first components are the most influential ones in our setting, we show the first five ilr(X) components in Figure S9.

Setting A with p = 250,q = 10
We now analyze the second high-dimensional setting with p = 250. As in the scenario of p = 30, it makes sense to introduce
sparsity in the data generation process from a practical viewpoint. We work with the data generation setting given in
Equation (14) and choose the following parameters:

µc = 3, α0 = [1,1,3,1,1,1,3,1,1,1,3,1,0, · · · ,0], αi j

{
0, for i ̸= j and i, j > 8,
1, for i ̸= j ≤ 8

,

cX = [−1,2,−1,2,−1,2,−2,1,−2,1,−2,1,0, · · · ,0], β0 = 5, βlog = [10,5,5,5,−10,−5,−5,−5,0, · · · ,0],
β =V T ·βlog, cY = 5

for i ∈ {1, . . . , p− 1}, j ∈ {1, . . . ,q} and V providing the orthonormal basis for the ilr-transformation (see Supplementary
Material S2). Since a visualization with a ternary plot is no longer feasible, we only show barplots of the data in Figure S10.
However, scatter plots showing individual ilr(X) coordinates versus the observed Y and the true causal effect are still informative.
Since the first components are the most influential ones in our setting, we show the first five ilr(X) components in Figure S11.

Setting B
The following explanations refer to Setting B described in the main part.

Setting B serves three main purposes: (i) to assess our methods on a dataset that closely resembles real-world data in terms
of its distribution, (ii) to assess our methods when the first stage is misspecified, and (iii) to allow for sparsity in the first stage
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Figure S9. Setting A with p = 30, q = 10 : Both plots show one component of ilr(X) ∈ R29 vs. the confounded outcome
(blue) and the true effect (orange). Due to the confounding, the observed and the causal effect do not overlap. However, we
expect the instrument Z to factor out the confounding effect and enable the two-stage methods to identify the causal effect.
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Figure S10. Setting A with p = 250, q = 10: The barplot shows the composition of the first 100 samples. The compositions
are dominated by a few species.
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Figure S11. Setting A with p = 250, q = 10: Both plots show one component of ilr(X) ∈ R249 vs. the confounded outcome
(blue) and the true effect (orange). Due to the confounding, the observed and the causal effect do not overlap. However, we
expect the instrument Z to factor out the confounding effect and enable the two-stage methods to identify the causal effect.
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Figure S12. Setting B with p = 3, q = 2: The barplot shows the three-part composition of the first 100 samples. The data
sample shows some dominating species in the individual compositions while having more variation between the samples
compared to Setting A.

of the data generating process, resembling the real data in [1]. The sparsity of the compositional data can be accomplished by a
zero-inflated negative binomial distribution. As ZINegBinomial is a frequently used distribution in modeling microbiome data,
we assume a closer resemblance to real world sparsity than the resemblance we achieve in Setting A for p = 30 and p = 250.

The data is generated according to the following model with the parameter µ of the negative binomial as µ = α0 +αZ:

Z j ∼ Uniform(Zmin,Zmax),

U ∼ Uniform(Umin,Umax),

X = g(Z,U)∼C(ZINegBinomial(µ,Σ,θ ,η))⊕ (ΩC ⊙U),

Y = f (X ,U) = β0 +β
T log(X)+ cT

Y log(ΩC ⊙U) (16)

We fix Zmin = 1,Zmax = 10 and Umin = 0.2,Umax = 3 throughout. For the negative binomial distribution we set Σ = Ip, i.e.,
assuming no additional correlation within the different components of the composition for simplicity.

Setting B with p = 3,q = 2
The parameter setting with p = 3 does not yet contain sparse data due to its low-dimensionality. It serves the purpose to
compare the performance of the two-stage methods in a misspecified setting and a wellspecified setting (except for DIR+LC
which is misspecified in both Setting A and Setting B).

Here, we consider the following generative model based on Equation (16). We fix Zmin = 0,Zmax = 10,Umin = 0.2,Umax = 3.

We chose α0 to be [7,9,8] and α =

5 0 0
0 5 0
0 0 5

 to guarantee for valid instruments. We set the dispersion to θ = 2 and keep the

zero probability at η = [0,0,0] to get valid compositions for this low-dimensional scenario. For the confounding composition
ΩC, we set it to [0.7,0.1,0.2]. For the second stage, we fix ground truth parameters β0 = 1, βlog = [−5,3,2], which results in
β =V T βlog and the confounding parameter cY = [2,−10,−10].

The first stage F-test for the two components of ilr(X) gives (41.38,14.08) for the 10th data sample. We remark that in
higher dimensions, the F-test does not provide a strong theoretical justification for sufficient instrument strength, but we still
use it as a sensible heuristic that provides a relative measure between different settings, i.e., in which scenario the instrument is
stronger.

For the p = 3 case, we can visualize X by its compositional coordinates not only in a barplot (Figure S12) but also in an
arguably more informative ternary plot (Figure S13). To visualize the relationship between observed ilr(X) and Y as well as the
true effect Y | do(X), we transform the data X and visualize each component in a separate scatter plot (see Figure S14).

Setting B with p = 30,q = 10
In the higher-dimensional scenarios we will make us of the sparsity ability of the ZINegBinom distribution.

The parameters were chosen to generate a suitable dataset that still conveys typical compositional data properties (sparsity,
high variance within the composition, similar means to real data) and significant instruments. Here, we consider the following
generative model based on Equation (16). We fix Zmin = 0,Zmax = 10,Umin = 0.2,Umax = 3. To ensure a handful of components

11/31



0

0.2

0.4

0.6

0.8

1

1 0.8 0.6 0.4 0.2 0
1

0.8

0.6

0.4

0.2

0

2

4

6

8

Instrument value
Microbe 1

Microbe 2 Microbe 3
0

0.2

0.4

0.6

0.8

1

1 0.8 0.6 0.4 0.2 0
1

0.8

0.6

0.4

0.2

0

2

4

6

8

Instrument value
Microbe 1

Microbe 2 Microbe 3

Figure S13. Setting B with p = 3, q = 2: The ternary plots are colored by first (left) and second (right) instrument value.
Due to the data generation process, the influence of Z1 and Z2 on the composition X is less visually obvious than for Setting A.
Nevertheless, Z can be assumed to be a valid instrument.

−1 0 1 2 3 4 5 6
0

10
20
30
40
50
60
70
80

−1 0 1 2 3 4 5 6 7
0

10
20
30
40
50
60
70
80 Simulated data

True Effect

ilr(X) ilr(X)

Y

Figure S14. Setting B with p = 3, q = 2: Both plots show one component of ilr(X) ∈ R2 vs. the confounded outcome (blue)
and the true effect (orange). Due to the confounding, the observed and the causal effect do not overlap. However, we expect the
instrument Z to factor out the confounding effect and enable the two-stage methods to identify the causal effect.
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Figure S15. Setting B with p = 30, q = 10: The barplot shows the different compositions of the first 100 samples in the
dataset. We observe some dominating components and many small components with an overall high variability.
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Figure S16. Setting B with p = 30, q = 10: Each plot shows one of the first five components of ilr(X) ∈ R29 vs. the
confounded outcome (blue) and the true effect (orange). The dataset shows strong confounding in some of the components as
the true effect and the observed effect actually contradict each other. We expect the two-stage methods to perform better than
the naive regression in such scenarios. We can thus check if the two-stage methods are still able to make use of the instrument
Z despite the misspecified first stage.

dominating the composition, we fix the first 8 entries of α0 to be [1,1,2,1,4,4,2,1,4,4,2,1] and randomly sample the remaining
ones from UniformChoice([1,2,2]). For α , which mainly controls the instrument strength, we use a deterministic value to
guarantee valid instruments:

αi j

{
0, for i ̸= j and i, j > 8,
1, for i ̸= j ≤ 8

(17)

We set the dispersion to θ = 2 and the zero probability value η = [0, . . . ,0,0.8, . . . ,0.8]. For the confounding composition ΩC,
we fix the first components to [0.2,0.3,0.2,0.1], to ensure that the most dominating parts of the composition are also more
strongly influenced by confounding. Then we sample the remaining components of ΩC from UniformChoice([0.01,0.05])
and eventually apply the closure operator C to ensure ΩC is a composition. For the second stage, we fix ground truth
parameters β0 = 1, βlog = [−10,−5,−5,−5,10,5,5,5,0, . . . ,0], which results in β =V T βlog and the confounding parameter
cY = [10,10,5,15,−5,−5,−5,−5,−5,−5,−5,−5,0, . . . ,0].

For a brief overview, we visualize the first five components of the ilr(X) coordinates versus the observed Y and the true
causal effect in Figure S16 and show barplots of the generated data in Figure S15.

Setting B with p = 250,q = 10
We consider now the second high-dimensional scenario for Setting B with p = 250. The parameters for Setting B with p = 250
are very close to the parameters for Setting B with p = 30.

Again, we consider the following generative model based on Equation (16). We fix Zmin = 0,Zmax = 10,Umin = 0.2,Umax = 3.
To ensure a handful of components dominating the composition, we fix the first 8 entries of α0 to be [1,1,2,1,4,4,2,1,4,4,2,1]
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Figure S17. Setting B with p = 250, q = 10: The barplot shows the different compositions of the first 100 samples in the
dataset. We still observe a few dominating components and many small components with an overall high variability.
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Figure S18. Setting B with p = 250, q = 10: Each plot shows one of the first five components of ilr(X) ∈ R249 vs. the
confounded outcome (blue) and the true effect (orange). The dataset shows strong confounding in some of the components as
the true effect and the observed effect actually contradict each other. We expect the two-stage methods to perform better than
the naive regression in such scenarios. We can thus check if the two-stage methods are still able to make use of the instrument
Z despite the misspecified first stage.

and randomly sample the remaining ones from UniformChoice([1,2,2]). For α , which mainly controls the instrument strength,
we use a deterministic value to guarantee valid instruments:

αi j

{
0, for i ̸= j and i, j > 8,
1, for i ̸= j ≤ 8

(18)

We set the dispersion to θ = 2 and the zero probability value η = [0, . . . ,0,0.8, . . . ,0.8]. For the confounding composition ΩC,
we fix the first components to [0.2,0.3,0.2,0.1], to ensure that the most dominating parts of the composition are also more
strongly influenced by confounding. Then we sample the remaining components of ΩC from UniformChoice([0.01,0.05])
and eventually apply the closure operator C to ensure ΩC is a composition. For the second stage, we fix ground truth
parameters β0 = 1, βlog = [−10,−5,−5,−5,10,5,5,5,0, . . . ,0], which results in β =V T βlog and the confounding parameter
cY = [10,10,5,15,−5,−5,−5,−5,−5,−5,−5,−5,0, . . . ,0].

For a brief overview, we visualize the first five components of the ilr(X) coordinates versus the observed Y and the true
causal effect in Figure S18 and show barplots of the generated data in Figure S17.

Further Settings for Robustness Evaluation
By assuming a misspecified first stage in Setting B via the ZINegBinom distribution, we already started to evaluate the
robustness of our methods. Nevertheless, we will further relax different requirements within Setting A. We evaluate the
robustness via two additional scenarios

1. We relax the assumption of a valid instrument and test the sensitivity of the methods with respect to weak instruments.
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Figure S19. Setting A with q = 2, p = 3 and weak instruments: The barplot shows the different composition in each
sample (plotted here for the first 100 samples). Microbe 2 has a relatively small value whereas microbe 1 and microbe 3
dominate the composition by high variation.

2. We assume a non-linear ground truth relationship f for the second stage, a scenario for which all the considered models
are misspecified.

Weak Instrument
“Strong instruments” resp. “valid instruments” are a prerequisite for successful two-stage estimation and one of the key
discussion points in applications of two-stage instrumental variable estimation. Instrument strength for p = 1 is typically
measured via the first-stage F-statistic with a value > 10 being considered sufficient to avoid weak instrument bias in 2SLS [25].
For p > 1, measuring instrument strength is not as straightforward [26] and we thus report F-statistics for each dimension of the
treatment (either X ∈ Sp−1 or ilr(X) ∈Rp−1) separately. Theoretically, the estimation bias can become arbitrarily large (even in
the large data limit) for weak instruments. To quantitatively assess the effect of weak instruments in our specific applications,
we provide an additional simulation scenario and its results (see Supplementary Material S8) for a weak instrument settings.

Setting A with p = 3,q = 2 and weak instruments For testing in a weak instrument setting, we return to Setting A. We
mostly control the instrument strength via α and use higher or lower α values to obtain a strong or weak instrument setting. We
choose the following parameters for a weak instrument:

µc =−2,α0 = [4,1],α =

[
0.05 0.01
0.2 0

]
,cX = [1,1],β0 = 2,β = [6,2],cY = 4 (19)

The first stage F-test for the two components of ilr(X) gives (6.9,4.7), much weaker than the previous settings. Again we show
a barplot (Figure S19) and a ternary plot (Figure S20) of the generated data. The observed data as well as the true causal effect
are shown in Figure S21.

Nonlinear Second Stage
Contrary to the previous scenarios, we now consider a non-linear f , resulting in a misspecified second stage for most of our
methods. Note that in this scenario all two-stage methods as well as the naive regression will be misspecified in the second
stage.

Setting A with p = 3,q = 2 and non-linear f Specifically, we replace the linear function for Y in Equation (14) with

Y = β0 +
1

100
111T (ilr(X)+1)3 +10 ·111T sin(ilr(X))+ cYU. (20)

The remaining parameters are chosen to yield a strong instrument, ensuring that any performance differences are not (in
addition) due to weak instrument bias:

µc =−1,α0 = [1,1],α =

[
4 1
−1 3

]
,cX = [2,2]β0 = 5,β = [6,2],cY = 4 (21)

Note that in this setting β cannot be interpreted directly as the causal parameters, since the true causal effect also has a
non-linear dependence on ilr(X). Since the first stage remains unchanged, we can still use an F-test to assess instrument
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Figure S20. Setting A with q = 2, p = 3 and weak instruments: The ternary plots are colored by first (left) and second
(right) instrument. The composition of the instrument is barely influenced by the value of Z.
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Figure S21. Setting A with q = 2, p = 3 and weak instruments: Both plots show one component of ilr(X) ∈ R2 vs. the
confounded outcome (blue) and the true effect (orange). Due to the confounding, both effects do not overlap. As we are in the
weaker instrument setting, we expect the methods to perform not as stable as in the previous cases where we had a stronger
instrument available.
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Figure S22. Setting A with p = 3, q = 2 and a non-linear function form of f : The barplot shows the different
composition for each sample (for the 100 first data points). Microbe 1 and 2 dominate the composition with high variance.
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Figure S23. Setting A with p = 3, q = 2 and a non-linear function form of f : The ternary plots for the non-linear setup
with q = 2, colored by first (left) and second (right) instrument. Note that the first stage is still linear in ilr(X). Thus, the
generation of the X values is not affected by the change in f .

strength, which results in (164.7,76.4), a solid indicator for a strong instrument. Again we show a barplot (Figure S22) and a
ternary plot (Figure S23) of the generated data. The observed data as well as the true causal effect are shown in Figure S24.

Scarce Data Example p ≫ n
We return to Setting A with linear dependencies in both stages. However, in the scenarios before, we assumed a large dataset
(n = 10,000) for the methods to work on. In many real applications, this might not be the case. Thus we choose to include an
additional robustness aspect concentrating on the scenario p ≫ n. In this particular case we chose p = 250 and n = 100.

Setting A with p = 250,q = 10 and n = 100 The choice of parameter is the same to Setting A with n = 10,000, however we
only include the first 100 samples for the estimation:

µc = 3, α0 = [1,1,3,1,1,1,3,1,1,1,3,1,0, · · · ,0], αi j

{
0, for i ̸= j and i, j > 8,
1, for i ̸= j ≤ 8

,

cX = [−1,2,−1,2,−1,2,−2,1,−2,1,−2,1,0, · · · ,0], β0 = 5, βlog = [10,5,5,5,−10,−5,−5,−5,0, · · · ,0],
β =V T ·βlog, cY = 5

for i ∈ {1, . . . , p− 1}, j ∈ {1, . . . ,q} and V providing the orthonormal basis for the ilr-transformation (see Supplementary
Material S2).

For the sake of completeness, we show a barplot (Figure S25) of the generated data. We note that the samples are the first
100 samples of the larger dataset of the original Setting A with p = 250,q = 10 and n = 10,000. The observed data as well as
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Figure S24. Setting A with p = 3, q = 2 and a non-linear function form of f : Both plots show one component of
ilr(X) ∈ R2 vs. the confounded outcome (blue) and the true effect (orange). The effect both of the confounded outcome and the
true effect show a non-linear dependency towards the individual ilr(X) components.
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Figure S25. Setting A with n = 100, p = 250, q = 10: The barplot shows the composition of the 100 samples. The
compositions are dominated by a few species.

the true causal effect are shown in Figure S26.

S7 Method Training
Dirichlet Regression
The mean of the Dirichlet distribution is given by µDiri =

α j

∑
p
j=1 α j

. Here, we consider the following model for the mean
components

E[Xi j] =
α j

∑
p
j=1 α j

=
α j(Zi)

∑
p
j=1 α j(Zi)

(22)

log(α j(Zi)) = ω0 j +ω jZ j. (23)

The maximum likelihood function is then given by

l(α;X ,Z) =
1
n

n

∑
i=1

logΓ

( p

∑
j=1

exp{ω0 j +ω jZi}
)

(24)

+
1
n

n

∑
i=1

p

∑
j=1

(
log(Xi j)

(
exp{ω0 j +ω jZi}−1

)
− logΓ

(
exp{ω0 j +ω jZi}

))
. (25)

Additionally, we introduce a sparsity enforcing regularization term to arrive at the following objective function

min
ω

−l(α;X ,Z)+λdirichlet

p

∑
j=1

|ω j| (26)
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Figure S26. Setting A with n = 100, p = 250, q = 10: Both plots show one component of ilr(X) ∈ R249 vs. the confounded
outcome (blue) and the true effect (orange). Due to the confounding, the observed and the causal effect do not overlap.
However, we expect the instrument Z to factor out the confounding effect and enable the two-stage methods to identify the
causal effect. Note that now we consider a sample size of n = 100.

with λdirichlet ≥ 0. For each Dirichlet regression, we pick λdirichlet from the set {0.1,1,2,5,10} by model selection via the
Bayesian Information Criterion (BIC = q · log(n)−2 · (L̂), with L̂ being the likelihood value). We train the model for each
available λ value in the set and choose the model with minimal BIC. For the starting point αstart we fit a Dirichlet distribution
on those X for which all |Z|< 0.2 by maximum likelihood estimation.

Log-contrast Regression
The log-contrast regression is enforcing sparsity via an ℓ1 penalty on the β parameters.

min
β

n

∑
i=1

L (xi,yi,β )+λ∥β∥1 s.t.
p

∑
i=1

βi = 0 . (27)

This estimation respects the compositional nature of x while retaining the association between the entry βi and the relative
abundance of the individual component xi.

In our examples, we focus mainly on continuous y ∈ R and the squared loss L (x,y,β ) = (y−β T log(x))2. However, the
framework also supports different loss functions.

For robust Lasso regression, the Huber loss can be applied.

L (xi,yi,β ) = Hδ (xi,yi,β ) =

{
1
2 (yi −β T log(xi))

2 for |yi −β T log(xi)|< δ

δ (|yi −β T log(xi)|− 1
2 δ ), otherwise.

(28)

The Huber Loss combines the squared loss and the absolute loss. It is less sensitive to outliers than the squared loss, but remains
differentiable at 0 in contrast to the absolute loss.

Moreover, for classification tasks with yi ∈ {−1,1}, we can directly use the squared Hinge loss for L with:

L (xi,yi,β ) = l(xi,yi,β ) with l(xi,yi,β ) =

{
(1− (yiβ

T log(xi))
2, if yiβ

T log(xi)≤ 1
0, if yiβ

T log(xi)> 1
(29)

or a “Huberized” version thereof:

L (xi,yi,β ) = lδ (xi,yi,β ) with lδ (xi,yi,β ) =


(1− (yiβ

T log(xi))
2, if δ ≤ yiβ

T log(xi)≤ 1
(1−δ )(1+δ −2yiβ

T log(xi)), if yiβ
T log(xi)≤ δ

0, if yiβ
T log(xi)> 1

(30)

We refer to [17] for further loss functions and a more detailed overview.
We now continue with the description of the setup used in the following result section. The results on the synthetic data and

the real data in Supplementary Material S8 are based on the squared loss:

min
β

n

∑
i=1

∥yi −β
T log(xi)∥2

2 +λ∥β∥1 subject to
p

∑
i=1

βi = 0 . (31)
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Figure S27. Stability profiles for sparse log contrast regression with c-lasso: The barplots show the model selection
probability of the β coefficients. The upper panel shows the example for the naive regression. The lower panel shows the
results for the same setting for ILR+LC regression. Both models are fairly certain about the main drivers.

Furthermore, for the real data we also show the results for a binary outcome yi ∈ {−1,1} based on the squared Hinge loss
(Equation (29)).

We solve the underlying optimization problems with the c-lasso package, a Python package for constrained sparse regression
[17]. The c-lasso packages comprises several model selection schemes, including a theoretically-derived λ0 parameter, k-fold
cross-validation, and stability selection.

Here, we consider stability selection for tuning λ . The method comprises the hyperparameter tthreshold which determines the
number of coefficients included in the final model. In our training, we set the same tthreshold for the naive regression as well as
the two-stage methods to have a fair comparison. In all our training scenarios with generated data we find tthreshold = 0.7 to be a
reasonable default value. For the real data scenario we found tthreshold = 0.65 to be more sensible.

We use Setting B with p = 30 and q = 10 as a representative example to illustrate the impact of the threshold value.
Figure S27 shows the stability profile of the β coefficients and their attributed probability of entering the model. The threshold
value tthreshold = 0.7 works as a cut off for the relevant coefficients. The upper panel shows the results for the naive regression,
whereas the lower panel shows the results for the ILR+LC regression (working on the exact same data).

Moreover, the method also returns the coefficient values across the λ -path, i.e., the entry of coefficients into the model for
the corresponding λ (see Figure S28). Further improvements may be achieved by taking the path and individual analysis into
account instead of proposing a general tthreshold, however, this simple yet effective approach was sufficient for our purposes in
this work.

S8 Method Results
For the comparison of the different methods, we make use of three approaches:

1. β̂ -MSE: As long as the second stage is wellspecified and linear, we can compare the estimated causal parameters β̂ for
the various approaches (where applicable).

2. FZ/FNZ: As long as the second stage is wellspecified and linear, we can additionally compare the number of false zero
values and false non-zero values to quantify support recovery.
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Figure S28. Corresponding λ -path for β coefficients: The plots show the individual coefficients for the different λ values.
The upper plot shows the β coefficients for the naive regression, the lower plot presents the coefficients for the two-stage
method ILR+LC.
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Figure S29. Setting A with p = 3, q = 2: The boxplots show the OOS MSE of 50 runs. The naive regression Only LC and
2SLS (left) perform way worse compared to the other approaches. When we adjust the y-scale (right), DIR+LC also shows a
higher OOS MSE than ILR+LC etc. DIR+LC possibly suffers from the misspecified first stage. Note that ALR+LC,ILR+LC,
2SLSILR are equivalent in the low-dimensional case.

3. OOS MSE: In the general case, the causal performance measure is measured by an “out of sample error”(OOS MSE) which
denotes the mean squared error between the true value of Y under an intervention do(X = x) and the predicted causal
effect E[Y | do(X)] of our model, given by f̂ (x). For the interventional X , we simulate 250 additional compositional data
points according to the underlying model, but using a different seed and thus disconnecting them from the instrument Z
and the confounder U . Thus, we receive a true interventional X which still preserves data characteristics.

For each data generating setup, we provide confidence intervals for the methods’ results by performing the data generation
and the method evaluation 50 times on different random seeds. In each run, we sample n = 1000 datapoints in the p = 3
scenario and 10,000 datapoints in the p = 30 and p = 250 scenario. We compute the OOS MSE as well as the β̂ -MSE and
FZ/FNZ (if applicable). Some of the figures in this section are extended or more complete versions of the numbers given in the
table in the main body (see ????), where some less relevant results have been omitted for readability.

Setting A
Setting A with p = 3,q = 2
This setting is a wellspecified setting for ALR+LC, 2SLSILR and ILR+LC. Moreover, confounding is present (see Figure S7)
which additionally gives us reason to expect a much better performance of the two-stage methods than the naive regression
X → Y in terms of OOS MSE. The results in Figure S29, largely verify this expectation. The naive regression has a clear
disadvantage due to confounding and picks up on spurious correlations as an effect coming from X . Two-stage methods
work well when relying on a strong instrument, helping the methods to factor out the confounding and identifying the true
casual effect. Figure S30 shows the causal parameter estimates β̂ and further corroborates our claims that two-stage methods
significantly outperform naive regression. The effects found via naive regression overestimate the direct causal effect strength
from X , whereas all two-stage methods recover the true causal parameters β well. Only DIR+LC suffers slightly from the
misspecified first stage compared to the other wellspecified two-stage approaches. It is noteworthy that DIR+LC works
reasonably well despite our manual two-stage procedure with a “forbidden” non-linear regression in the first stage. Since we are
in the low-dimensional setting with no sparsity regularization, the results of ILR+LC, ALR+LC and 2SLSILR are equivalent.

Setting A with p = 30,q = 10
Microbiome compositional data is typically high-dimensional and comprises many zero values. Moreover, it is often assumed
that only a few microbial compositions (and hence β parameters) influence an outcome of interest Y . Thus, in the following,
we aim to be close to such a scenario by assuming a sparse β as ground truth and by simulating X with a few dominating
compositions in the data generating process (see Supplementary Material S6).

Note that for higher-dimensional approaches, we omit results for DIR+LC due to computational issues stemming from the
maximum likelihood estimation of the α0 and α parameters in the first stage. 2SLS, which ignores the compositionality of X
altogether, is not able to converge at all.

For higher dimensions, the lack of regularization in the ILR methods becomes obvious (Figure S31), both for 2SLSILR and
KIVILR. The methods become more volatile and 2SLSILR is unable to detect any zero values in β (see Figure S32). On the other
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Figure S30. Setting A with p = 3, q = 2: The boxplots show the β̂ values for the 50 runs for each of the 3 β coefficients
(dashed lines). The two-stage methods, except 2SLS, are able to recover the causal effect on average. The naive regression
method overestimates the effect. Moreover, it does so with a high degree of confidence as there is barely any variation in the β̂

estimates (left). When we adjust the y-scale (right), DIR+LC shows a notable bias towards the solution of the naive regression
(left). This might suggest that DIR+LC indeed suffers from the misspecified first stage and thus is not able to make use of the
instrument Z as efficiently.

hand, the naive regression is able to identify zero β s correctly, but suffers from confounding and thus over- or underestimates
the true influential β s. Only the regularized two-stage approaches are able to recover the true causal β s, both the influential
coefficients as well as the zero values.

Setting A with p = 250,q = 10
To further test the approaches, we use another high-dimensional setup with p = 250. Again, we make use of the common
assumption that only a few microbial compositions (and hence β parameters) influence an outcome of interest Y . We assume a
sparse β as ground truth and run the models on X which has a few dominating species.

Note that for higher-dimensional approaches, we omit results for DIR+LC due to computational issues stemming from the
maximum likelihood estimation of the α0 and α parameters in the first stage. 2SLS, which ignores the compositionality of X
altogether, is not able to converge at all.

For p = 250, the problem of missing regularization in the ILR methods (2SLSILR and KIVILR) becomes even more
pronounced (Figure S33). For readability we thus omitted 2SLSILR from the β plots. Moreover, the naive regression is not even
able to recover the full support, as it only identifies most, but not all, of the zero and non-zero β s correctly (see Figure S32).
Only the regularized two-stage approaches are able to recover the true causal β s.

Setting B
In this part we will examine the methods for Setting B ??. Note that the first stage is misspecified for the two-stage approaches,
whereas the second stage is wellspecified for all methods.

Setting B with p = 3,q = 2
Even in this low-dimensional scenario, DIR+LC suffers substantially from the misspecified second stage. It is not able to produce
sensible estimates. We argue that this might be due to the “forbidden regression” issue. Furthermore, the naive regression
is highly influenced by confounding. It even flips the estimated effect of two components, see Figure S36. Nevertheless the
remaining two-stage methods, except 2SLS which ignores compositionality, perform reasonably well in recovering the true
causal effect (see Figure S35).

Setting B with p = 30,q = 10
Microbiome compositional data is typically high-dimensional and comprises many zero values. Moreover, it is often assumed
that only a few microbial compositions (and hence β parameters) influence an outcome of interest Y . Thus, in the following,
we will emulate such a scenario and assume a sparse β as ground truth and additionally—as ZINegBinom can incorporate
sparsity also on X—run the models on relatively sparse X (see Supplementary Material S6).

Note that for higher-dimensional approaches, we omit results for DIR+LC due to computational issues stemming from the
maximum likelihood estimation of the α0 and α parameters in the first stage.
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Figure S31. Setting A with p = 30, q = 10: The boxplots show the OOS MSE of 50 runs. 2SLSILR and KIVILR are volatile
and lack sensible regularization (left). When we adjust the y-scale, we see that Only LC (right) performs also way worse
compared to the regularized two-stage approaches.
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Figure S32. Setting A with p = 30, q = 10: The boxplots show the β̂ values for the 50 runs for each of the 8 non-zero β

coefficients (dashed lines, left) and the 22 zero β coefficients (dashed line, right). The two-stage methods are able to recover
the causal effect on average, whereas the naive regression methods overestimate the effect (left). Moreover, Only LC does so
with a high degree of confidence as there is barely any variation in the β̂ estimates. 2SLSILR does not produce sensible
estimates due to the missing regularization.
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Figure S33. Setting A with p = 250, q = 10: The boxplots show the OOS MSE of 50 runs. 2SLSILR and KIVILR are
volatile and lack sensible regularization (left). This problem is more pressing as the dimensionality grows. When we adjust the
y-scale, we see that also Only LC (right) performs worse compared to the regularized two-stage approaches.
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Figure S34. Setting A with p = 250, q = 10: The boxplots show the β̂ values for the 50 runs for each of the 8 non-zero β

coefficients (dashed lines, left) and the 242 zero β coefficients (dashed line, right). The two-stage methods are able to recover
the causal effect on average, whereas the naive regression method is not able to recover the true support. 2SLSILR does not
produce sensible estimates due to the missing regularization and is omitted for better readability.
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Figure S35. Setting B with p = 3, q = 2: The boxplots show the OOS MSE of 20 runs. 2SLS and DIR+LC perform way
worse as compared to the two-stage approaches (left). When we adjust the y-scale (right), Only LC also cannot compare to the
remaining two-stage approaches. ALR+LC, ILR+LC, 2SLSILR are equivalent in the low-dimensional case.
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Figure S36. Setting B with p = 3, q = 2: The boxplots show the β̂ values for the 20 runs for each of the 3 β coefficients.
The two-stage methods (except for DIR+LC and 2SLS) are able to recover the true causal β s on average. However, when we
adjust the y-scale (right), the problem of confounding becomes apparent: Only LC flips the sign of two of the non-zero β

values.
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Figure S37. Setting B with p = 30, q = 10: The boxplots show the OOS MSE of 20 runs. 2SLSILR is only reasonable in
low-dimensions (left). When we adjust the y-scale (right), we see that the remaining two-stage approaches outperform the
naive regression.
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Figure S38. Setting B with p = 30, q = 10: The boxplots show the β̂ values for the 20 runs for each of the 8 non-zero β

coefficients (dashed lines, left) and the 22 zero β coefficients (dashed line, right). The naive regression Only LC is not able to
recover the β values at all. ILR+LC and ALR+LC are better suited to recover the causal parameters when confounding is
present. Despite the misspecified first stage, they are able to recover the causal β values on average.

Moreover, for p = 30, 2SLSILR already is unfit to capture the causal effect due to missing regularization. Due to its high
OOS MSE value, we omitted 2SLSILR in Figure S38 for better readability. 2SLS, which ignores the compositionality of X
altogether, is able to converge, but does not produce reasonable estimates.

For KIVILR, the difficulty of tuning the method in higher dimensions remains an issue (see Figure S37). The remaining
two-stage approaches, however, benefit substantially from the instrumentation of X by Z. They outperform the naive regression
both on OOS MSE (see Figure S37), as well as on the recovery of the true β values (see Figure S38). While the naive regression
not only fails to recover the true β values, it also produces quite volatile estimates (see Figure S38).

Setting B with p = 250,q = 10
Microbiome compositional data is typically high-dimensional and comprises many zero values. Moreover, it is often assumed
that only a few microbial compositions (and hence β parameters) influence an outcome of interest Y . Thus, in the following,
we will emulate such a scenario and assume a sparse β as ground truth and additionally—as ZINegBinom can incorporate
sparsity also on X—run the models on relatively sparse X (see Supplementary Material S6).

Note that for higher-dimensional approaches, we omit results for DIR+LC due to computational issues stemming from the
maximum likelihood estimation of the α0 and α parameters in the first stage.

Both high-dimensional scenarios generally agree in their outcomes; for p= 250 the shortcomings of the different approaches
only get more enhanced.
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Figure S39. Setting B with p = 250, q = 10: The boxplots show the OOS MSE of 20 runs. 2SLSILR is only reasonable in
low-dimensions and KIVILR is difficult to tune in higher dimensions (left). When we adjust the y-scale (right), we see that
ILR+LC and ALR+LC outperform the naive regression.
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Figure S40. Setting B with p = 250, q = 10: The boxplots show the β̂ values for the 20 runs for each of the 8 non-zero β

coefficients (dashed lines, left) and the 242 zero β coefficients (dashed line, right). Only LC is not able to recover the β values
at all. ILR+LC and ALR+LC are better suited to recover the causal parameters even when confounding is present. Despite the
misspecified first stage, they are able to recover the causal β values on average.

While 2SLS, which ignores the compositionality of X altogether, is also able to converge for p = 250, it does not produce
reasonable estimates. Further, the regularized two-stage methods still perform reasonably well, while 2SLSILR and KIVILR
cannot match that performance (see Figure S39) due to the lack of sensible regularization. The naive approach can capture
neither the causal effect nor the causal β values (see Figures S39 and S40).

Further Settings for Robustness Estimation
We will analyze the results form our “robustness” scenarios including a weak instrument setting and a setting with a nonlinear
functional relationship in the second stage.

Weak Instrument
Setting A with p = 3,q = 2 and weak instruments In a strong/valid instrument setting, two-stage methods have a clear
advantage. To test the limitations of our methods, we now analyze an equivalent setting with a comparatively weak instrument.
In this setting, confounding is still noticeable (see Figure S21) but the first stage F-statistic is much lower, indicating that we
may suffer from weak instrument bias.

The two-stage methods have a higher variation in their estimates, both for OOS MSE and β̂ (see Figures S41 and S42),
whereas the naive regression does not change at all (since only the first stage data generation has changed). Nevertheless, the
wellspecified two-stage methods (ALR+LC, ILR+LC, 2SLSILR) still recover the causal effects better than the naive regression.
Only the DIR+LC regression runs into problems due to two misspecified stages. We thus conclude that the “forbidden

27/31



ILR+LC
ALR+LC

DIR+LC
Only LC

KIV(ILR)

2SLS(ILR)

2SLS

0

50

100

150

O
O

S 
M

SE

ILR+LC
ALR+LC

Only LC
KIV(ILR)

2SLS(ILR)

0

5

10

15

O
O

S 
M

SE

Figure S41. Setting A with p = 3, q = 2 and weak instruments: The boxplots show the OOS MSE of 50 runs. The
DIR+LC performs considerably worse than all the other methods. The problem might stem from the “forbidden regression”
issue coming from two misspecified stages. On the right hand side we adjusted the y-scale. The graph shows that the other
wellspecified methods still outperform the naive regression in terms of OOS MSE in the weak instrument setting. We observe a
higher variance in performance than in the stronger instrument setting.

regression” is not necessarily detrimental to cause-effect estimation when the instrument is strong, but can indeed result in
unreliable results for weaker instruments.

Non-linear Second Stage
Setting A with p = 3,q = 2 and a non-linear function form of f The two-stage methods perform well if they are in a
wellspecified setting. With the DIR+LC method, however, it becomes obvious that misspecification can become problematic.
Furthermore, wellspecification is typically impossible to ascertain in practice and most real-world examples are likely not
perfectly linear. Thus, we add a polynomial X dependency term in the second stage to evaluate ALR+LC, ILR+LC and 2SLSILR
on a partly misspecified setting.

Note that we can only look at the OOS MSE as the β values do not carry any causal interpretation (see Figure S43). The
DIR+LC still suffers from two misspecified stages and performs worst. When only the second stage is misspecified, ALR+LC,
ILR+LC and 2SLSILR still outperform the naive regressions. However, we are not able to capture the true causal effect because
of the misspecification in the second stage. The overall error thus grows in all methods.

Scarce Data Example p ≫ n
Setting A with p = 250,q = 10 and n = 100 Also for n = 100, the same problem of the lack of regularization persist. 2SLSILR
and KIVILR)do not perform well at all (Figure S44). For readability we thus omitted 2SLSILR from the β plots.

As against the large dataset example, the two-stage methods naturally show much larger confidence interval around their
estimates, whereas the naive regression does not suffer at the same scale. However the naive regression has troubles to recover
the full support (see Figure S45). Thus, even with a much larger uncertainty, the regularized two-stage approaches are able to
recover the true causal β s.
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Figure S42. Setting A with p = 3, q = 2 and weak instruments: The boxplots show the β̂ values for the 50 runs for each
of the 3 β coefficients (dashed lines). In the weaker instrument setting, we are able to recover the true β values for the
wellspecified two-stage methods, even though the variance of the β̂ is higher while the naive regression is still subject to
confounding (right, zoomed in plot). Only the DIR+LC is not able to recover the causal effect and seems biased toward the
naive regression (left). This might be due to two misspecified stages.
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Figure S43. Setting A with p = 3, q = 2 and a non-linear function form of f : The boxplots show the OOS MSE of 50
runs. DIR+LC and 2SLS perform worst (left). The other two-stage approaches are able to recover the causal effect better than
the naive regression. The correctly specified first stage helps in filtering out the confounding effect in the two-stage methods.
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Figure S44. Setting A with n = 100, p = 250, q = 10: The boxplots show the OOS MSE of 50 runs. 2SLSILR and KIVILR
are volatile and lack sensible regularization (left). This problem is more pressing as the dimensionality grows and the number
of data samples decreases. When we adjust the y-scale, we see that also Only LC (right) performs worse compared to the
regularized two-stage approaches. Note however, that the width of the confidence intervals of the two-stage approaches has
increased compared to the larger dataset.
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Figure S45. Setting A with n = 100, p = 250, q = 10: The boxplots show the β̂ values for the 50 runs for each of the 8
non-zero β coefficients (dashed lines, left) and the 242 zero β coefficients (dashed line, right). The two-stage methods are able
to recover the causal effect on average, whereas the naive regression method is not able to recover the true support. 2SLSILR
does not produce sensible estimates due to the missing regularization and is omitted for better readability. Note however, that
the width of the confidence intervals of the two-stage approaches has increased compared to the larger dataset.
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