
Review Article

Leveraging prior knowledge to infer gene regulatory
networks from single-cell RNA-sequencing data
Marco Stock1,2,3,4, Corinna Losert 2,5,7, Matteo Zambon 1,2,3,7, Niclas Popp1,2,3, Gabriele Lubatti1,2,3,

Eva Hörmanseder1, Matthias Heinig2,5,6 & Antonio Scialdone 1,2,3✉

Abstract

Many studies have used single-cell RNA sequencing (scRNA-seq)
to infer gene regulatory networks (GRNs), which are crucial for
understanding complex cellular regulation. However, the inherent
noise and sparsity of scRNA-seq data present significant chal-
lenges to accurate GRN inference. This review explores one pro-
mising approach that has been proposed to address these
challenges: integrating prior knowledge into the inference process
to enhance the reliability of the inferred networks. We categorize
common types of prior knowledge, such as experimental data and
curated databases, and discuss methods for representing priors,
particularly through graph structures. In addition, we classify
recent GRN inference algorithms based on their ability to incor-
porate these priors and assess their performance in different
contexts. Finally, we propose a standardized benchmarking fra-
mework to evaluate algorithms more fairly, ensuring biologically
meaningful comparisons. This review provides guidance for
researchers selecting GRN inference methods and offers insights
for developers looking to improve current approaches and foster
innovation in the field.
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Introduction

The increasing availability of large-scale single-cell RNA-
sequencing (scRNA-seq) datasets (Svensson et al, 2020) has driven
the development of numerous computational methods to infer gene
regulatory networks (GRNs). scRNA-seq data offer unique insights
into cell-to-cell variability that are obscured in bulk RNA-seq
datasets, making them particularly valuable for understanding the
intricate regulatory mechanisms underlying biological processes.

The identification of GRNs provides critical insights into the causal
relationships that govern gene interactions, revealing which genes
are pivotal in specific contexts. However, constructing GRNs from
scRNA-seq data is challenging for several reasons, including the
presence of biological (e.g., cell-cycle-related (Buettner et al, 2015;
Liu et al, 2021)) and technical confounding factors (e.g., high
sparsity and high level of intrinsic noise and dropouts (Qiu, 2020)),
as well as GRN properties, like the presence of feedback loops
(Atanackovic et al, 2023). Many algorithms have been proposed to
tackle this complex problem (Hawe et al, 2019; Pratapa et al, 2020).
Nevertheless, the consensus of recently published benchmarking
studies is that the performance of GRN inference algorithms is still
limited (Kang et al, 2021; McCalla et al, 2023; Pratapa et al, 2020;
Stock et al, 2024). (Pratapa et al, 2020) find highly variable and
overall poor performance of the algorithms across several datasets.
(Kang et al, 2021) highlight poor reproducibility of inferred GRNs,
even from independent datasets collected under the same biological
condition. (McCalla et al, 2023) demonstrate that advanced
approaches cannot consistently outperform simple linear correla-
tion in their analysis. (Stock et al, 2024) show that the available
algorithms include topological biases in their inferred GRNs.

A promising strategy to improve this is the incorporation of
prior knowledge into the inference process (Liu, 2018; McCalla
et al, 2023). For instance, prior knowledge could involve known
regulatory interactions between specific gene pairs, or the use of
multi-omic data, which can provide information on chromatin
accessibility, maps of DNA physical contacts, etc. Integrating such
information can enhance GRN inference, e.g., by constraining the
solution space or by providing labeled examples that the algorithms
can use for learning.

Numerous sources of prior knowledge are available, as well as
various approaches for incorporating them into the inference
process. This diversity has led to the rapid development of a wide
range of algorithms, each offering distinct combinations of
strategies. As a result, it has become increasingly challenging to
keep track of the available algorithms, the types of prior knowledge
they utilize, their computational methodologies, and their perfor-
mance across different datasets. For users, this complexity poses
challenges in selecting the most suitable algorithm for their needs,
while developers face obstacles in identifying weaknesses and areas
for improvement. These issues are further compounded by the lack
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of an objective and unbiased benchmarking framework for
evaluating GRN algorithms using prior knowledge, an inherently
difficult task given the algorithms’ variety and the heterogeneity of
their strategies.

Recent reviews on GRN inference have predominantly focused
on the use of single-cell multiomics data (e.g., Badia-i Mompel et al,
2023), a pivotal approach in this field. However, this represents just
one among many methodologies currently under development. A
broader and more versatile area of GRN inference involves
incorporating prior knowledge, which spans diverse strategies,
including data-type-independent methods such as the use of
topological priors and generalized graph priors (Nair, 2017; Stock
et al, 2024). While many algorithms have been designed to leverage
these approaches, a comprehensive review that systematically
presents and compares these strategies is still lacking.

In this review, we provide an overview of prior-knowledge-
informed GRN inference from scRNA-seq data from three
perspectives. First, we categorize the available sources of prior
knowledge and the strategies that algorithms use to incorporate
them into the inference process. Secondly, we classify the
algorithms based on their computational approaches, their ability
to incorporate flexible graph priors and their capability to handle
the specific features of scRNA-seq data. Based on this classification,
we propose a framework for benchmarking algorithms using graph
representations of prior knowledge, which offer flexibility in
utilizing diverse sources of priors. This framework aims to
disentangle the contributions of the prior knowledge and the
algorithm itself to the overall performance, addressing the
confounding factors present in current benchmarking studies. By
emphasizing these three aspects of GRN inference with prior
knowledge, this review is designed to address the needs of two
primary audiences: researchers applying GRN inference algorithms
and those interested in developing novel computational methodol-
ogies. For the former, we provide insights into the types of prior
knowledge that current algorithms can handle, and which
algorithms are most suitable based on their data. For the latter,
we offer a comprehensive overview of the available computational
strategies, emphasizing critical aspects and opportunities for
combining approaches to enhance performance. By balancing
practical application insights with detailed descriptions of algo-
rithmic strategies, the review aims to serve as a valuable resource
for both groups, reflecting its dual focus on application and
innovation.

Gene regulatory networks and
their inference

Gene regulatory networks

The deeper understanding of mechanistic processes in a cell is still a
focus of ongoing research in systems biology. These processes are
governed by a large network of interactions between the DNA,
proteins, different RNAs and small molecules. They control cell
proliferation and apoptosis, but can also help explain the stability of
cell fate and other processes in each cell (Mukhopadhyay et al,
2020). The entirety of these regulatory interactions can be
represented as a network (de Jong, 2002), which can be thought
of as the fundamental organizational scheme for a cellular system.

Due to the high complexity of networks that describe all DNA,
RNA, protein and small molecule interactions, the regulatory
network is often decomposed into several different layers. The most
fundamental one, based on gene expression, describes the binding
of regulating proteins, called transcription factors (TFs), to the
promoter of their regulated target genes (TGs) on the DNA. The
resulting networks are also called transcription regulation net-
works, or TF-TG-Networks (Vázquez et al, 2004). This approach
simplifies the perspective of understanding gene regulation by only
focusing on transcriptional regulation, which describes the levels of
transcription of a target gene depending on the regulation by a
transcription factor, compared to a broader definition of a network
that also includes other regulatory effects, such as epigenetic
modifications (Erbe et al, 2023; Tejada-Lapuerta et al, 2023). Such a
mechanistic model of regulatory interactions can, for instance, help
predict how cells react to perturbations, such as drug treatments,
which could be valuable for drug target identification and
understanding therapeutic effects (Park et al, 2022). In addition,
by identifying key regulators for specific cell types, it becomes
possible to reprogram cells into different types, a prospect of high
interest in regenerative medicine, where cell reprogramming could
aid in tissue repair or the treatment of degenerative diseases
(Aguirre et al, 2023). Other downstream analyses include identify-
ing functional modules from the GRN, comparative analysis
between multiple GRNs, and conducting in-silico perturbation
experiments aimed at simulating the effects of potential interven-
tions on cellular behavior (Badia-i Mompel et al, 2023). A TF-TG
GRN is usually not strictly bipartite since transcription factors can
also regulate other transcription factors. Therefore, we consider the
resulting GRN as a homogeneous graph of interactions between
different genes.

Recently, extended versions of GRNs that include regulatory
elements (RE) as nodes have been constructed (Bravo González-Blas
et al, 2023; Kamal et al, 2023). REs are regions on the DNA where TFs
bind and regulate the expression of the target gene, such as promoters,
enhancers, silencers, insulators and locus control regions. Since most
approaches mainly focus on the incorporation of enhancers into the
GRN, this kind of GRN is often called enhancer GRN (eGRN). It
introduces multiple types of edges to the network, namely those going
from transcription factors to the regulatory elements (TF-RE) and
edges going from regulatory elements to the target genes (RE-TG). To
compare them to other regular GRNs, a TF-TG network can be
extracted from the eGRN in a post-processing step. In both TF-TG and
eGRNs, the graph representation offers the advantage of leveraging
theoretical frameworks and the wide range of analytical methods
developed within the broader field of (biological) network science
(Hetzel et al, 2021).

There are further characteristics that distinguish different types
of GRNs. One example is resolution, where GRNs are either
inferred from multiple cell types or individuals (Cha and Lee, 2020;
Chasman and Roy, 2017), or at the highest resolution specifying
personalized and cell type-specific GRNs (Bafna et al, 2023).
Another feature is the size of the gene sets of interest, where some
GRNs span as little as 5 genes (Atanackovic et al, 2023), whereas
other GRNs include thousands of genes, which can be selected, for
example, based on their highly variable expression levels (McCalla
et al, 2023). In general, the larger the set of genes and the resolution
of the GRN, the harder the inference problem becomes. To
properly leverage the input scRNA-seq datasets, these should show
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high variability in the gene set of interest, which might, for
example, be caused by different external conditions or perturba-
tions (Aguirre et al, 2024; Saint-Antoine and Singh, 2023).
However, some work suggests that the heterogeneity within
scRNA-seq data from a single condition provides enough
variability to infer meaningful regulatory relationships (Gupta
et al, 2022). This review is not restricted to a specific resolution or
size but addresses the general task of GRN inference.

Types of inference algorithms

Various computational approaches have been applied to GRN
inference, each leveraging different strategies and techniques.
Broadly, GRN inference algorithms can be grouped into four
categories based on their computational approach: correlation-
based methods, regression methods, probabilistic graphical models,
and neural network-based approaches (see Fig. 1A). Each of these

categories offers unique strengths and limitations, depending on
the underlying assumptions and techniques employed.

Correlation- and mutual information-based methods rely on
statistical dependencies to infer regulatory relationships between
genes. FigR (Kartha et al, 2022) employs the non-parametric
Spearman’s rank correlation coefficient to detect monotonic
relationships between gene expression levels and chromatin
accessibility scores. In contrast, GRaNIE (Kamal et al, 2023) and
scMEGA (Li et al, 2023b) use the linear Pearson’s correlation
coefficient for the same purpose. While correlation-based
approaches are fast, scalable, and robust (Li et al, 2023b), they
have notable limitations, particularly in detecting more complex
non-linear relationships. To address this, NSCGRN (Liu et al, 2022)
utilizes mutual information, which, however, cannot distinguish
between positive and negative relationships. More generally, simple
statistical measures struggle to capture complex causal interactions,
often producing dense networks with numerous indirect edges that
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Figure 1. Overview of available GRN inference algorithms leveraging different types of transcriptomic data and representations of prior knowledge.

(A) Classification of GRN inference methods according to the type of algorithm they employ. (B) GRN inference algorithms that leverage prior knowledge were designed to
work on different types of gene expression data (first column). Methods tailored for scRNA-seq data are expected to perform better on this data type because they
address its unique challenges, such as sparsity and high intrinsic noise. (C) Schematic representation of the main steps of algorithms leveraging “graph-based" (left) or
“data-based" (right) priors. With graph-based priors, the algorithms distill all prior knowledge in a TF-TG prior graph, which is then combined with gene expression data to
generate a final GRN. The algorithms that use data-based priors, instead, combine prior knowledge and transcriptomic data directly during the inference to build a GRN,
without generating any prior graph. (D) Classification of GRN inference methods based on the type of integrated prior.
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can obscure true regulatory signals (Hawe et al, 2019). In addition,
these methods cannot establish directed edges without prior
knowledge of transcription factors.

Probabilistic graphical models (PGMs) use directed or undir-
ected graphs to denote probabilistic relationships between vari-
ables. PriorPC (Ghanbari et al, 2015), for example, utilizes Bayesian
networks, which encode conditional dependencies between vari-
ables as directed acyclic graphs, offering a more refined approach
that reduces the prevalence of indirect edges. However, the
assumption of acyclicity in Bayesian networks is a major limitation
since it prevents the representation of feedback loops, a common
feature in GRNs (Osella et al, 2011). Other PGM methods such as
BDgraph (Mohammadi and Wit, 2019) or Graphical Lasso
(Friedman et al, 2008), circumvent this issue by using undirected
graphs. Both are based on Gaussian graphical models, which
typically assume that the data follows a Gaussian distribution. This
does not hold for single-cell RNA-seq data, which are over-
dispersed and may be zero-inflated (Chen et al, 2018; Durif et al,
2019). To cope with this, BDgraph uses specific copula approaches
to handle non-Gaussian data (Choudhary and Satija, 2022).
Graphical Lasso (Friedman et al, 2008) focuses on sparsity, a
well-known feature of GRNs, by introducing an L1-regularization
penalty that enforces a sparser graph estimation. Importantly, both
methods can incorporate priors on the graph structure either
globally or for individual edges. Symphony (Burdziak et al, 2019)
leverages a Bayesian hierarchical multi-view mixture model that
allows the inference of cell type clusters and GRNs simultaneously.
D-SPIN (Jiang et al, 2024) leverages spin networks, a type of
maximum entropy model.

Regression-based approaches infer statistical relationships
between genes using feature selection techniques. These techniques
enable the detection of more complex dependencies and accom-
modate feedback loops and cycles, making them more versatile
compared to simple correlation methods. The ability to model non-
linear dependencies makes these methods particularly powerful for
GRN reconstruction. Pando (Fleck et al, 2023) showcases a basic
linear regression model. iRafNet (Petralia et al, 2015) employs
random forest regression, a tree-based machine learning strategy.
SCENIC+ (Bravo González-Blas et al, 2023) utilizes a gradient
boosting algorithm, another ensemble method using decision trees.
KiMONO (Ogris et al, 2021) applies LASSO-penalized regression
to enforce sparser predictions. Inferelator 3.0 (Gibbs et al, 2022)
tested three different regression approaches and achieved the best
results with Adaptive Multiple Sparse Regression, a multitask
learning approach that also enforces sparse predictions. CellOracle
(Kamimoto et al, 2023) uses ridge regression, which adds an L2-
regularization, either as Bayesian ridge regression or as Bagging
ridge regression.

Neural network-based approaches, particularly deep learning
models, leverage loss optimization via backpropagation to learn
complex relationships from large data. GRGNN (Wang et al, 2020)
employs Graph Neural Networks in a (semi-) supervised graph
classification setting. GENELink (Chen and Liu, 2022) utilizes a
Graph Autoencoder architecture in a self-supervised link prediction
setting. scGLUE (Cao and Gao, 2022) combines the Graph
Autoencoder with multiple variational autoencoders for the
different data types, and adds a discriminator to align the different

latent spaces. scPRINT (Kalfon et al, 2024) uses a transformer
architecture, training a foundation model on millions of single cells,
and relies on the learned attention heads to predict the final GRN.
One advantage of DL methods is that they do not rely on many
assumptions about the underlying graph structure, which allows for
improved performance compared to other methods (Shu et al,
2021; Yuan and Bar-Joseph, 2019). However, these approaches
typically require significant computational resources, making them
less practical for large-scale applications without extensive
computational infrastructure.

Each of these categories of algorithms offers distinct advantages
and challenges and requires specific strategies to incorporate prior
knowledge. The choice of algorithm depends on the specific
requirements of the GRN reconstruction task, such as data type,
scale, and the desired balance between accuracy and computational
efficiency.

All algorithms included in this review use gene expression data
(Fig. 1B) combined with prior knowledge to infer GRNs. However,
not all of them have been designed specifically for scRNA-seq data.
Reconstructing GRNs from scRNA-seq data can potentially
uncover new insights by modeling and exploiting the single-cell
level heterogeneity. By modeling GRNs on a high-resolution cell
type level or even per individual, it is possible to investigate
context-specific differences in regulation between cell types or
individuals. McCalla et al (McCalla et al, 2023) outline that GRN
inference from one scRNA-seq dataset can reach the same
performance as the GRN inference from multiple collected bulk
RNA-seq datasets. At the same time, this data type poses new
challenges, for example, due to its sparsity and noise (Akers and
Murali, 2021). As a result, an algorithm designed for bulk
sequencing data might need to be revised to work as efficiently
on scRNA-seq data. A careful preprocessing of scRNA-seq data is
also essential for its use in GRN inference. The raw output of RNA-
seq experiments is read sequences that have to be aligned to the
respective genome, resulting in a count score per annotated gene.
Standard preprocessing steps include quality control and count
normalization, followed by feature selection, batch integration and
potentially further dimensionality reduction (Heumos et al, 2023).
The quality control includes the correction for ambient RNA, the
filtering of low-quality libraries, and the detection and removal of
doublets. Recommended normalization techniques depend on the
downstream task; an overview of different methods is available in a
recent comparison of Ahlmann-Eltze and Huber (2023). The
feature selection is usually done by subsetting the genes of interest
to the highly variable genes. For batch integration, several
algorithms including linear-embedding models like Harmony
(Korsunsky et al, 2019) and Scanorama (Hie et al, 2019), and
deep-learning approaches such as scANVI (Xu et al, 2021), scVI
(Lopez et al, 2018), and scGen (Lotfollahi et al, 2019) were recently
benchmarked by (Luecken et al, 2022). Finally, dimensionality
reduction techniques like Principal Components Analysis, t-SNE
(van der Maaten and Hinton, 2008), UMAP (McInnes et al, 2020)
and PHATE (Moon et al, 2019) can be applied for visualization
purposes. Algorithms presented in this study assume already
preprocessed scRNA-seq data as an input since the exact choice of
preprocessing depends on the specific dataset and thus cannot be
easily automated.
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Leveraging prior knowledge for
GRN inference

As discussed above, GRN inference typically relies on measured
gene expression data obtained from bulk RNA-seq or scRNA-seq
experiments. When additional data beyond gene expression is
incorporated to support the inference process, the algorithms are
regarded as leveraging prior knowledge. Below, we detail the
various types of prior knowledge, the sources from which they can
be derived, and the algorithms capable of integrating these different
types of priors.

Transcription factor databases

One commonly available source of additional information is the list
of transcription factors in the model organism. This information
can be used to filter out interactions that do not involve at least one
TF and to infer the directionality of regulation based on co-
expression patterns. Lists of TFs can be obtained from various
resources, depending on the organism under study. For example,
TF lists can be derived from gene annotation databases such as
Ensembl (Harrison et al, 2024) or Uniprot (The UniProt
Consortium, 2023), where genes annotated as TFs or associated
with the relevant Gene Ontology terms can be identified. Dedicated
TF databases, like PlantTFDB (Jin et al, 2017) for plants or
AnimalTFDB (Shen et al, 2022) for animals, provide organism-
specific collections of TFs. Alternatively, experimental evidence-
based databases, such as JASPAR (Rauluseviciute et al, 2024) or the
Encyclopedia of DNA elements (The ENCODE project consortium,
2012), often include ChIP-seq data and other experimental
evidence of TF binding. These resources not only supply TF lists
but also additional regulatory information that can be leveraged by
GRN inference algorithms, as described below in further detail. A
simple TF list, classifying genes as TFs, is widely used by many
state-of-the-art algorithms, such as GENIE3 (Huynh-Thu et al,
2010). This review focuses exclusively on algorithms that
incorporate at least one additional source of prior knowledge,
leveraging these resources to enhance the inference process.

Experimental sources of prior knowledge

Most of the prior knowledge that can be integrated into the GRN
inference process is derived from biological experiments. Here, we
outline the different types of experimental prior knowledge, the
experimental protocols with which those priors are built, the
computational strategies that are applied to incorporate them and
their specific characteristics and limitations. In Table 1, we
summarize the most common sources of experimental prior
knowledge.

Very often, the algorithms leverage multiple prior sources
together. The most common combination is to use chromatin
accessibility data from (single-cell) ATAC-seq and TF-binding
motif enrichment. In this case, the regulatory elements inferred
from accessibility peaks are then linked with matching TF motif
enrichment. Methods that leverage both accessibility and motif
enrichment data are Inferelator 3.0, FigR, SCENIC+, GRaNIE,
scMEGA, Pando, Symphony, and CellOracle. Other algorithms,
instead, leverage data from knockout experiments and
protein–protein interaction data (iRafNet) from binding motifs,

knockout experiments and ChIP-seq data (NetREX-CF), or from an
arbitrary number of unpaired data modalities, like scGLUE or
KiMONO. Hawe et al (2022) construct a prior network from a
combination of protein–protein interactions, transcription factor
and histone ChIP-seq, eQTL and SNP data to then run BDgraph,
Graphical Lasso and iRafNet with the prior network.

As often there is no ground truth available for validating the
resulting GRNs, experimental data that can be integrated as prior
knowledge is also, at the same time, the best resource for validating
inferred links. For example, data from knockout experiments is
used for prior construction in some methods (iRafNet, NetREX-
CF), whereas it is used for validation of inferred GRN links in
others (SCENIC+, GRaNIE).

In this section, we discuss each experimental source by first
outlining the primary goal of the experiment, such as identifying
regulatory elements or specific types of interactions. This is
followed by a brief explanation of the experiment and its resulting
data output. We then describe how this data is currently utilized in
published GRN inference algorithms. Lastly, we highlight any
limitations or provide additional insights where relevant.

Chromatin accessibility data (ATAC-seq)
Chromatin accessibility can provide information on transcription
factor binding sites and the regulatory potential of a genetic locus.
Therefore, it can help identify regulatory elements (mainly
enhancers) as GRN nodes that, in turn, link the transcription
factors to their target genes.

Bulk or single-cell ATAC-seq (Buenrostro et al, 2015) is one of
the most commonly used experimental techniques to quantify
chromatin accessibility, even though other assays like DNase-seq or
FAIRE-seq could also be used. In an ATAC-seq (Assay for
Transposase-Accessible Chromatin using sequencing) experiment,
nuclei are treated with a transposase enzyme (e.g., hyperactive Tn5
transposase), which inserts sequencing adapters into accessible
DNA regions. This is followed by sequencing. The locations with a
high amount of sequencing reads (peaks) represent the regions of
increased accessibility.

The candidate REs identified from peaks in ATAC-seq data are
usually linked to potential target genes by calculating whether the
peak overlaps with a pre-specified region around the target gene
(see the section “Genomic distance”). If paired data is available,
where RNA-seq and ATAC-seq are performed on the same single
cells (Chen, 2019; Ma et al, 2020), the peaks might be associated
with target genes by computing the correlation between chromatin
accessibility at the peak and target gene expression or by more
sophisticated methods like tree-based regression or others (e.g.,
GRaNIE, Pando, SCENIC+, FigR, scMEGA). For the RE-TG links
based on the correlation of chromatin accessibility and RNA
expression, GRaNIE filters for positive correlation, since negative
correlation does not have a biological explanation and thus is
considered noise (Kamal et al, 2023). In the same way, TFs also
might be linked to the regulatory regions by associating the
transcription factor expression to the peak accessibility (e.g., FigR,
GRaNIE). Another way to link TFs to REs is to combine the
chromatin accessibility data with binding motif data, which will be
outlined in more detail in the next section “TF-Motif Enrichment”.

As especially single-cell ATAC data is usually very sparse, most
GRN inference methods pre-process the data to reduce sparsity
(e.g., by aggregating the data at the cell-type level) before
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computing the correlation between chromatin accessibility and
gene expression. With the recent emergence of paired scATAC-
and scRNA-seq datasets, the performance of these methods could
be further improved compared to computationally paired GRN
reconstruction. SCENIC+, scMEGA and scGLUE already showcase
the application on a 10x Genomics multiome dataset, where RNA
expression and chromatin accessibility are simultaneously assessed.

While leveraging chromatin accessibility data has been shown to
improve GRN inference (Alanis-Lobato et al, 2023; Argelaguet et al,
2022), one major limitation to consider is that chromatin
accessibility does not always imply activity. Thus, it can be
misleading when used to derive information about TFs, REs, and
TGs interactions (Kamal et al, 2023).

TF-Motif Enrichment
The use of transcription factor binding motifs is another potential
prior that can be used to build links between TFs and TGs via REs.

The binding motifs of TFs are usually collected in motif-binding
databases. Those databases differ by whether they include binding
motifs based only on experimental data from ChIP-seq, DNase-seq,

or SELEX (e.g., JASPAR (Rauluseviciute et al, 2024), TRANFAC
(Matys et al, 2006)) or whether they also include computational
predictions of motif-binding sites (e.g., HOCOMOCO (Kulakovs-
kiy et al, 2018)). Usually, they contain position frequency matrices
that summarize the occurrence of each nucleotide at each position
in a set of experimentally observed TF-DNA interactions. Those
position frequency matrices can then be transformed into position
weight matrices (PWMs) via probabilistic or energistic models.

To link TFs to TGs via motif databases, in the first step, a set of
candidate REs needs to be identified. This can be done, for example,
by choosing a fixed region upstream and downstream of the
transcription start site of the target genes (see the section “Genomic
distance”), as in Inferelator 3.0 or NetREX-CF. Alternatively, REs
can be inferred first from other types of data (e.g., ATAC-seq,
DNase-seq, ChIP-seq, Hi-C), or from databases, like ENCODE
(Fleck et al, 2023; Gibbs et al, 2022; The ENCODE project
consortium, 2012). Once the candidate REs are identified, a motif
enrichment analysis is performed to infer potential links between
them and TFs. In many GRN inference algorithms, this is done by
using the R package motifmatchr (Schep, 2024) in combination

Table 1. Overview of experimental data (“Source”) from which prior knowledge (“Prior”) useful for GRN inference can be extracted.

Source

Prior
knowledge
extracted Input Validation

Chromatin accessibility
(sc/bulk ATAC-seq)

RE RE-TG TF-
RE

Inferelator 3.0, scGLUE, CellOracle,
Symphony GRaNIE, Pando, SCENIC+,
FigR, scMEGA FigR, GRaNIE

TF-Motif enrichment
(DNA sequencing)

TF-RE Inferelator 3.0, CellOracle, scMEGA,
Pando, scMEGA, SCENIC+, GRaNIE,
FigR,Symphony, NetREX-CF

Protein-DNA binding (TF
ChIP-sequencing)

TF-RE scGLUE, NetREX-CF SCENIC+,scPRINT,GRaNIE,FigR,GRGNN,iRafNet,GENELink,D-SPIN,CellOracle

Perturbation/Knockout
Experiments (sc/bulk
RNA expression)

TF-TG iRafNet, NetREX-CF, D-SPIN SCENIC+,GRaNIE,scPRINT,GENELink

Protein–protein
interaction networks

TF-TG iRafNet

Protein-DNA binding
(Histone modification
ChIP-sequencing)

RE RE-TG TF-
RE

GRaNIE SCENIC+,Pando

Enhancer activity essays
(STARR-seq)

RE SCENIC+

DNA sequence
conservation

RE Pando GRGNN,iRafNet

Genomic distance RE-TG scMEGA, NetREX-CF, scGLUE,
Symphony,KiMONO, SCENIC+,
CellOracle, Pando, GRaNIE, Inferelator
3.0, FigR

Chromatin interaction
(Hi-C)

RE-TG GRaNIE, scGLUE SCENIC+

Expression quantitative
trait loci (eQTLs)

RE-TG scGLUE KiMONO,GRaNIE

Intrinsic feature
extraction (sc/bulk RNA
expression)

TF-TG GRGNN, iRafNet, NetREX-CF

The prior knowledge can consist of a list of regulatory elements (RE), links between regulatory elements and target genes (RE-TG), links between transcription
factors and regulatory elements (TF-RE), and links between transcription factors and target genes (TF-TG). The table also includes a list of algorithms that
leverage each type of prior extracted from a given type of data. These algorithms can then utilize this information either as input (“Input” column) to enhance
GRN inference or as a way to evaluate their results ("Validation").
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with chromVar (Schep et al, 2017) to calculate the enrichment
scores of motifs in accessible regions (e.g., Pando, scMEGA, FigR).
The Inferelator 3.0 method (Gibbs et al, 2022) was tested with
different motif databases (CisBP, JASPAR, TRANSFAC) and it was
shown that the employed motif library significantly affects the
network output, but none of the databases was shown to
outperform the others. In the SCENIC+ (Bravo González-Blas
et al, 2023) method, this ambiguity is addressed by building a
consensus position weight matrix from more than 40,000 PWMs
from 29 collections of binding motifs to generate the most extensive
TF binding motif database to date containing about 1.5k human,
1.3k mouse, and 467 drosophila TFs. The authors showed that
keeping the diversity of different motifs for a TF results in a higher
accuracy than having only one archetype motif per TF. The
evaluation of three different motif enrichment methods further
showed that cisTarget and DEM outperform Homer.

Leveraging TF binding motifs knowledge for refining TF-TG
links can help distinguish direct from indirect targets and define the
directionality of gene-gene interactions for GRN inference.
However, TF motifs can also be very similar across TFs, and in
general, motif-derived prior knowledge GRNs are noisy and
influenced by choice of the motif library (Gibbs et al, 2022).

Protein-DNA binding assays (TF ChIP-seq)
Similarly to ATAC-seq data, ChIP-seq data can reveal potential
interactions between TFs and REs by identifying potential TF
binding sites.

With ChIP-seq (Chromatin Immunoprecipitation followed by
sequencing) experiments, it is possible to identify DNA regions
bound by specific proteins, such as transcription factors or histones.
In these experiments, chromatin is cross-linked in the cell to
stabilize the interactions between the TF and the DNA. Then the
DNA is fragmented and a specific antibody that binds to the TF is
added. Subsequently, the antibody-TF-DNA complexes are immu-
noprecipitated, the DNA is purified and the bound DNA fragments
are sequenced. By analyzing the sequencing data, regions in the
DNA where the TF was binding can be identified (ChIP-seq peaks).
From this, TF-RE links can be inferred. Databases like ENCODE
(The ENCODE project consortium, 2012), Remap (Hammal et al,
2022) or Unibind (Puig et al, 2021) collect and process information
from ChIP-seq experiments to provide transcription factor binding
sites predictions.

ChIP-seq data can be used as prior in different ways. NetREX-
CF (Wang et al, 2022) generates TF-TG priors by combining TF-RE
connections from TF ChIP-seq with RE-TG connections from a
genomic distance prior (see the section “Genomic distance”), by
assuming that a RE-TG link occurs whenever the RE falls within a
gene body or up to 1 kb upstream of the gene. scGlUE (Cao and
Gao, 2022) leverages ChIP-seq data from ENCODE in combination
with ATAC-seq data to establish a ranking of the most likely target
genes for each TF by overlapping ChIP-seq peaks with ATAC-
peaks. Methods like GRaNIE (Kamal et al, 2023) and PriorPC
(Ghanbari et al, 2015) outline the possibility of using ChIP-seq data
priors as an input to the algorithm to identify regulatory regions,
but do not showcase it in their applications.

TF ChIP-seq data was also used to build curated ground truth
GRNs, as in the DREAM5 challenge yeast dataset (Marbach et al,
2012), which is used by GRGNN (Wang et al, 2020) and iRafNet
(Petralia et al, 2015), and the curated ground truths included in the

benchmarking analysis BEELINE (Pratapa et al, 2020), which are
used, for example, by GENELink (Chen and Liu, 2022). Such
curated ground truth networks are split by GRGNN and GENELink
into a training part that serves as a prior and a validation part that
is used to validate the predictions. Similarly, scPRINT (Kalfon et al,
2024) uses an intersection of perturbation- and ChIP-seq-based
ground truth network from McCalla et al. (McCalla et al, 2023) for
validation. Also in FigR, GRaNIE, CellOracle, D-SPIN and SCENIC
+, ChIP-seq data is used for validating the results of the GRN
inference.

The use of ChIP-seq to identify TF binding sites is limited by the
lack of high-quality antibodies for some TFs, and the need for large
amounts of homogeneous cells (e.g., cell lines, bulk tissues).
Experimentally mapping TF binding sites on tissues with a high
diversity like, for example, the brain, remains challenging (Bravo
González-Blas et al, 2023).

Knockout/perturbation experiments
Knockout and, more in general, perturbation experiments enable
the discovery of TF-TG interactions by screening for genes that are
affected following the perturbation of specific transcription factors
(Petralia et al, 2015).

One example of such experiments is CRISPR-based Perturb-seq
assays (Replogle et al, 2022), as used by D-SPIN (Jiang et al, 2024).
In these experiments, a library of guide RNAs is designed to target
specific genes (in this case TFs) to knockout (CRISPR/Cas9),
knockdown (CRISPRi) or activate (CRISPRa) the transcription of
the gene. These guide RNAs are then inserted into the single cells,
which subsequently leads to a cellular response to the perturbation.
Subsequently, scRNA-seq is utilized to measure the impact of the
perturbation on gene expression. By performing differential
expression analysis between perturbed and unperturbed cells, the
TGs influenced by the perturbation of the TF can be identified.
Notably, perturbations are not restricted to genetic mutations; they
can also involve drug-based interventions that disrupt diverse
cellular mechanisms (Peidli et al, 2024). Simulations have
demonstrated that perturbation data enhance the ability to
distinguish direct gene-gene interactions more effectively. In
addition, these perturbations introduce extra variability into
expression data, which can be harnessed to improve the accuracy
of GRN inference (Aguirre et al, 2024; Saint-Antoine and Singh,
2023). A large amount of knockdown experiment data is, for
example, provided by ENCODE (The ENCODE project consor-
tium, 2012).

Several algorithms utilize perturbation data to construct priors
that are incorporated into GRN inference. iRafNet (Petralia et al,
2015) integrates the information of knockdown experiments
provided within the DREAM5 (Marbach et al, 2012) challenge as
prior knowledge by calculating a weight for each transcription
factor to target interaction based on the p-value resulting from a
t-test run on the expression levels of a given gene before and after
the TF knockout. Similarly, NetREX-CF (Wang et al, 2022) also
infers prior information on network edges by considering as
potential target genes only those with a statistically significant
difference in expression level between the control and the perturbed
condition.

Other methods use the results of perturbation experiments to
validate the inferred interactions (GRaNIE, SCENIC+). SCENIC+
calculates the gene set enrichment of the inferred targets for each
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TF in relation to the differentially expressed genes observed in
perturbation experiments of the same TF, using perturbation data
from the ENCODE (The ENCODE project consortium, 2012)
database. As mentioned already in the TF ChIP-seq section,
scPRINT (Kalfon et al, 2024) validates the predicted GRN against
the intersection of ChIP-seq- and perturbation-based ground truth
provided by (McCalla et al, 2023). By leveraging the curated ground
truths by BEELINE (Pratapa et al, 2020), GENELink (Chen and Liu,
2022) also makes use of loss-of-function experiments.

While perturbation experiments provide valuable insights into
gene regulation, the availability of such data remains limited due to
the high cost, time investment, and cell-type specificity of these
experiments.

Protein–protein interaction networks
Protein–protein interaction (PPI) networks represent another type
of experimentally derived prior, with many potential TF-TG
interactions curated in large databases. These databases typically
report physical interactions between protein pairs and sometimes
functional interactions as well. A notable example is the Bioplex
interactome (Huttlin et al, 2021), which was generated using
Affinity-Purification Mass Spectrometry on human cell proteins.
Another widely used example is HuRI (Luck et al, 2020), a
reference interactome map comprising approximately 53,000
human binary protein interactions, created through systematic
yeast two-hybrid assays.

iRafNet (Petralia et al, 2015) incorporates TF-TG interactions
included in PPI networks as priors, applying a diffusion kernel
transformation to pre-process the PPI data. While PriorPC
(Ghanbari et al, 2015) also acknowledges the potential of PPIs as
priors, it does not showcase any application. (Hawe et al, 2022) uses
PPIs from BioGrid (Oughtred et al, 2019) to construct gene-gene
edges that are then used as an input to the BDgraph (Mohammadi
and Wit, 2019) and Graphical Lasso (Friedman et al, 2008)
algorithms.

Protein-DNA binding assays (histone modification ChIP-seq)
Histone modifications such as H3K27ac are well-established
markers of active regulatory elements (Creyghton et al, 2010).
Consequently, assessing the presence of this modification via ChIP-
seq serves as a valuable prior for selecting potential REs. In this
case, in the ChIP-seq experiment, the fragmented chromatin is
incubated with an antibody specific to H3K27ac (see ChIP-seq
section “Protein-DNA binding assays (TF ChIP-seq)”) to identify
the regions with high levels of this histone modification.

For example, the authors of GRaNIE (Kamal et al, 2023) suggest
using this kind of data as an alternative to ATAC-seq. By
correlating the H3K27ac mark with RNA expression data, GRaNIE
infers TF-RE and RE-TG interactions. Similarly, SCENIC+ (Bravo
González-Blas et al, 2023) employs H3K27ac ChIP-seq for
validating identified active regulatory regions. The authors of
Pando (Fleck et al, 2023) also used a related method (Cut&Tag;
(Kaya-Okur et al, 2019)) to validate their inferred regulatory
regions by assessing the levels of H3K27ac modifications.

Enhancer activity assays
Another method to identify REs like active enhancers is massively
parallel reporter assays (MPRAs). MPRAs are a powerful tool used
to evaluate how DNA sequences, particularly regulatory elements

like enhancers and promoters, influence gene expression. In an
MPRA experiment, a library of DNA sequences is designed to
include candidate REs, mutated variants, and randomized controls,
each tagged with a unique barcode for identification. These
sequences are cloned into reporter constructs that contain a
minimal promoter and a reporter gene, and then introduced into
cells. Inside the cells, the regulatory sequences drive the expression
of the reporter gene. RNA sequencing is subsequently performed to
quantify the barcode abundance, providing a direct link between
the activity of each sequence and its influence on gene expression.
The STARR-seq protocol, a specific type of MPRA (Arnold et al,
2013) designed for enhancer identification, utilizes high-
throughput sequencing to quantify the activity of candidate
enhancers. SCENIC+ (Bravo González-Blas et al, 2023) uses
STARR-seq data to validate the regulatory regions identified by the
algorithm.

Conservation of DNA sequences
After an initial list of candidate REs is identified, for instance
through chromatin accessibility data, further filtering can be
performed based on the evolutionary conservation of DNA
sequences. This approach, as used by Pando (Fleck et al, 2023),
involves overlapping the candidate REs with a set of highly
conserved DNA regions across 30 mammalian species. The
resulting list of candidate REs is considered more reliable due to
their conservation over evolution.

Similarly, the curated yeast network used for the DREAM5
challenge (Marbach et al, 2012) applies evolutionary conservation
as a key criterion to refine the list of TF binding sites derived from
ChIP-seq data. This curated network serves as a benchmark for
validating the iRafNet algorithm (Petralia et al, 2015) and is also
utilized by GRGNN (Wang et al, 2020), both as a prior and for
validation purposes.

Genomic distance
Genomic distance is a widely used and readily available metric for
constructing priors on the relationships between candidate REs and
TGs. REs, often identified from ATAC-seq data, are typically
associated with regions around the transcription start site (TSS) of
target genes. Depending on the method, the overlap window for
linking REs to TGs ranges from 1 kb upstream of the TSS (Wang et al,
2022) to 250 kb (Kamal et al, 2023), covering potential cis-regulatory
elements. Inferelator defines the regulatory region as 200 bp upstream
and 50 bp downstream of the TSS, while Symphony (Burdziak et al,
2019) simply assigns each ATAC-seq peak to the nearest gene. Several
methods that link regulatory regions to target genes include scGLUE,
GRaNIE, SCENIC+, FigR, Pando, scMEGA, and CellOracle. NetREX-
CF (Wang et al, 2022) associates candidate transcription factor binding
sites and TF ChIP peaks with target genes by considering the
gene body plus 1 kb upstream of the TSS. KiMONO (Ogris et al, 2021)
uses genomic distance to link SNPs to methylation peaks and
methylation peaks to genes. In addition, scGLUE (Cao and Gao, 2022)
integrates genomic distance with Hi-C data, as discussed in the
following section.

Chromatin interactions (Hi-C)
Another source of experimental data that can be used to derive
potential links between REs and TGs is data from Hi-C
experiments.
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This chromosome conformation capture technology measures
the frequency at which two DNA fragments physically interact in
the 3D space and can be valuable for detecting long-range gene
regulation.

The scGLUE algorithm (Cao and Gao, 2022) integrates data
from promoter capture Hi-C (pcHi-C), along with other priors,
measured in 17 human primary blood cell types to calculate a
weight defining pcHi-C-supported interactions between REs
(peaks) and TGs. In this application, pcHi-C support for a
candidate RE-TG pair was determined based on three criteria: (1)
the gene promoter must be located within 1 kb of a bait fragment;
(2) the peaks must be located within 1 kb of another-end fragment;
and (3) significant contact between the bait and other-end fragment
must be observed. In addition to scGLUE (Cao and Gao, 2022), the
integration of chromatin conformation data for prior construction
is also supported by GRaNIE (Kamal et al, 2023), which uses this
data to define RE-TG pairs for further testing, although no specific
application is provided in the paper. SCENIC+ (Bravo González-
Blas et al, 2023) employs this data to validate inferred RE-TG links.

Expression quantitative trait loci (eQTLs)
eQTL data is a valuable resource for identifying potential links
between REs and TGs. eQTL data is typically obtained from
experiments that measure both gene expression (e.g., via RNA-seq)
and genomic variation. These studies assess the impact of single
nucleotide polymorphisms (SNPs) on gene expression, often
employing statistical models such as linear regression, where gene
expression serves as the dependent variable and SNP genotype as
the independent variable. When an SNP shows a statistically
significant association with expression variation, it is classified as
an eQTL, establishing a link between specific REs and their TGs.
This approach helps identify genetic variants that influence gene
expression through regulatory mechanisms. One resource that
collects eQTL data across multiple human tissues is the Genotype-
Tissue Expression (GTEx) project (The GTEx Consortium, 2020).
With the increasing availability of single-cell data, recent efforts
have focused on mapping cell-type-specific eQTLs, which could
serve as valuable prior knowledge (Perez et al, 2022; van der Wijst
et al, 2018; Yazar et al, 2022). The sc-eQTLGen Consortium (van
der Wijst et al, 2020) was established to perform large-scale,
systematic eQTL mapping across a wide range of single-cell
datasets. In addition to mapping potential RE-TG links, a specific
type of eQTL mapping, known as co-expression QTL mapping, can
reveal potential TF-TG relationships by linking upstream TF
regulators to downstream TGs (Li et al, 2023a).

The links between REs and TGs identified by eQTL mapping
can be integrated as prior for RE-TG interactions. For instance,
scGLUE (Cao and Gao, 2022) leverages eQTL data to identify peak-
target gene interactions by verifying whether a peak derived from
ATAC-seq data overlaps with an eQTL locus, and that locus is
associated with the expression of the target gene. The eQTL data
utilized by scGLUE is from the GTEx project (The GTEx
Consortium, 2020). Other algorithms such as KiMONO (Ogris
et al, 2021) and GRaNIE (Kamal et al, 2023) use eQTL data to
validate predictions.

Intrinsic feature extraction (RNA-seq)
Besides using additional data in combination with gene expression
data, which we consider leveraging prior knowledge in this review,

there is also the possibility to enrich the inference by using
algorithms to extract additional information from the same
expression data. This process can also be seen as a kind of feature
crafting from the expression data. An example of this approach is
applying existing non-prior-based GRN inference methods, such as
mutual information, Pearson correlation, Spearman Rank, or
GENIE3 (Huynh-Thu et al, 2010), to gene expression data. The
resulting graphs are then utilized as prior knowledge for GRN
inference on either the same or a different set of gene expression
data. This strategy is exemplified by the GRGNN algorithm (Wang
et al, 2020), which constructs a ’noisy starting skeleton’ using
mutual information or correlation metrics to represent the
relationships between gene expression profiles. NetREX-CF (Wang
et al, 2022) constructs a co-expression network in order to extend
the prior network to span more of the transcription factors.
Another example is the use of multiple RNA-seq datasets as a time
series, or the inference of pseudo-time (Matsumoto et al, 2017; Qiu
et al, 2020; Singh et al, 2024) or RNA velocity (Singh et al, 2024)
from the expression data, which can then be used as a prior. For
example, iRafNet (Petralia et al, 2015) integrates time-series data
and links two genes, i and k, in the prior graph if the past values of
gene k are predictive of future values of gene i.

Further experimental priors
In addition to the most commonly used prior sources as outlined in
Table 1, KiMONO and scGLUE are designed to handle further
input data in the form of a feature matrix. KiMONO (Ogris et al,
2021) mentions protein expression data, which can be added to the
prior graph by establishing links to genes and other proteins via
protein annotation data. KiMONO further mentions methylation,
SNP and mutation data to extend the heterogeneous prior graph by
leveraging the genomic distance as a prior to link these additional
features to genes. scGLUE (Cao and Gao, 2022) similarly leverages
snmC-seq DNA-methylation data. Hawe et al. (2022) extend the
genomic entities to CpG sites and construct CpG-to-gene priors
using histone mark combinations (measured by ChIP-seq) and
genomic distance.

Topological prior

GRNs are characterized by specific structural properties, which can
be quantified by topological measurements (Zhivkoplias et al,
2022). Recent studies showed that current GRN inference
algorithms produce networks that lack the typical topological
properties of GRNs, which can be important in predicting various
biologically relevant properties (Stock et al, 2024), such as
robustness to perturbations, etc. A common characteristic of GRNs
is their scale-free node-degree distribution (Zhivkoplias et al, 2022).
This implies that the node degree follows a power-law distribution,
where a small number of nodes exhibit exceptionally high
connectivity, serving as hubs with numerous interactions. Such
hub genes can represent master regulators of a biological process.

To enhance accuracy, some algorithms leverage known GRN
properties to establish topological priors and introduce constraints
on graph topology. For example, constraints on the node-degree
distribution are employed in certain methods (Nair, 2017). The
BDgraph algorithm (Mohammadi and Wit, 2019) takes a related
approach by using priors such as the expected sparsity coefficient,
the G-Wishart distribution for the null adjacency matrix, and the
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Bernoulli distribution for link inclusion. Another notable method is
Graphical Lasso (Friedman et al, 2008), which promotes sparsity by
applying a lasso penalty to the inverse covariance matrix. In
addition, NSCGRN (Liu et al, 2022) incorporates commonly
recurring GRN motifs as structural priors, enforcing local patterns
like cascades and feedforward loops in the inferred networks.

In their preprint (Aguirre et al, 2024) recently summarized
additional common attributes of GRNs, such as modular
structure (gene modules), bidirectional and overall sparsity, as well
as asymmetric degree distributions (in-compared to out-degree)
that could be leveraged as further structural priors for
directed GRNs.
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Direct data prior incorporation and graph prior extraction

In GRN inference, the way prior knowledge is incorporated can
vary depending on the algorithm but generally falls into two main
approaches. Some algorithms use prior knowledge to construct a
graph, which serves as a “prior graph” during the inference process.
In contrast, other methods integrate prior knowledge directly
during the inference without building any prior graph first. We
categorize the first approach as “graph-based” priors and the
second as “data-based” priors (see Fig. 1C).

Algorithms employing “data-based” priors frequently combine
transcriptomic and epigenomic data, especially in single-cell contexts
(e.g., FigR, GRaNIE, SCENIC+, Pando, scMEGA). These typically
establish correlations between chromatin accessibility at regulatory
regions, such as promoters and enhancers, and gene expression. For
instance, FigR, GRaNIE, SCENIC+, Pando, and scMEGA all construct
enhancer-based GRNs, where TF-RE and RE-TG links are inferred
first. Then, a TF-to-TG network is derived through additional post-
processing steps. Other algorithms in this category incorporate
different types of prior knowledge, such as NSCGRN (Liu et al,
2022), which uses topological priors on GRNs (see section above).

On the other hand, algorithms that utilize “graph-based” priors
follow a two-step process. First, a prior graph is constructed, either
using additional data sources (e.g., Inferelator 3.0, iRafNet,
CellOracle, scGLUE, NetREX-CF, KiMONO, Symphony, BDgraph,
Graphical Lasso, D-SPIN) or by downsampling curated ground
truth GRNs (e.g., GENELink, PriorPC, GRGNN, scPRINT). In the
second step, this prior graph serves as input for inferring the
final GRN.

A key advantage of this approach is its flexibility. The second
step can accommodate various types of priors because the prior
graph is presented in an abstract, unified format. This allows
researchers to construct the prior graph from diverse experimental
data sources, unlike algorithms that rely on data-based priors,
which require specific experimental inputs. In addition, the two-
step process enables benchmarking studies to independently
evaluate the contributions of performance gains due to the prior
from the gains due to the actual inference algorithm.

The following sections provide an overview of the various
subtypes of “graph-based” priors and the algorithms designed to
operate with this type of input.

GRN inference with graph priors

Graph-based priors are commonly represented using adjacency
matrices B, where each entry bi,j denotes the weight of the edge

between nodes i and j. In certain algorithms (e.g., CellOracle,
GRGNN, GENELink, Inferelator 3.0, Symphony, scPRINT,
KiMONO), these weights are binary, representing merely the
presence or absence of a link. In other cases, the weights encode a
confidence score, quantifying the uncertainty of the link, often due
to inconsistencies across different sources of prior knowledge (e.g.,
PriorPC, iRafNet, NetREX-CF, scGLUE, BDgraph, Graphical Lasso,
D-SPIN).

Graph priors can be categorized as either “homogeneous” or
“heterogeneous”, depending on their composition. Homogeneous
graph priors consist solely of TF-TG interactions, as utilized in
algorithms such as Inferelator 3.0, PriorPC, iRafNet, GENELink,
CellOracle, GRGNN, Symphony, NetREX-CF, D-SPIN and
scPRINT. In contrast, heterogeneous graph priors incorporate
interactions with additional elements, such as REs in scGLUE or
proteins in KIMONO. Hawe et al (2022) applies BDgraph,
Graphical Lasso, and iRafNet to a heterogeneous graph prior.
However, since iRafNet was originally presented to operate with
homogeneous networks, we classify it under the homogeneous
prior category. Figure 1D provides a detailed overview of the types
of graph priors employed by various algorithms.

During the GRN inference process, graph prior edges are
handled according to the confidence level attributed to them. If
edges are considered certain, they are retained in the final GRN and
referred to as “hard positives.” Algorithms that accept graph priors
with “hard positives” work in a “constructive” manner, adding
missing edges to the prior graph to generate the final GRN. In
contrast, some algorithms operate in a “destructive” fashion,
generating the final GRN by removing edges from the graph prior.
Here, the prior is treated as a list of potential interactions to be
filtered, with the absence of an edge serving as evidence of no
interaction (i.e., the prior contains “hard negatives”). A third
approach is a “hybrid” method that allows both the addition and
removal of edges from the graph prior, treating it as a “soft prior”.
Figure 2A provides a graphical summary of these three modes of
operation.

As noted earlier, algorithms using graph-based priors offer a
modular and flexible framework, allowing for customized graph
priors as input. However, for effective results, it is critical to align
the choice of algorithm with the nature of the graph prior (i.e., hard
positives, hard negatives, or soft prior). Figure 2B summarizes the
operational modes of the algorithms reviewed here. For instance,
GENELink and GRGNN subsample the ground truth graph to
obtain hard positive and hard negative edges (in the case of
GENELink). In scPRINT, a curated set of hard positives and hard
negatives is utilized to train a regression model, enabling the
identification of the most effective attention heads in a transformer

Figure 2. Algorithms leveraging homogeneous graph priors enable disentangling the contributions of priors and inference methods in benchmarking studies.

(A) Classification of GRN inference methods that leverage a homogeneous graph prior knowledge in terms of their operation mode. Constructive algorithms (top panel)
add edges to the prior network, destructive algorithms (middle panel) remove edges from the prior network, and hybrid algorithms (bottom panel) can add and remove
edges simultaneously. (B) This panel displays the operation mode of each algorithm, with an indication of whether they can incorporate hard positives, hard negatives, and
soft prior. (C) Schematic illustration of the different approaches found among the reviewed methods to construct a homogeneous graph prior before the inference process
that incorporates the RNA expression data. Some approaches directly infer TF-TG link priors (bottom panel). Other approaches build an enhancer GRN including
regulatory elements first and then extracting the TF-TG graph from it. In this case, some priors are leveraged for selecting candidate REs ("RE selection"), for the definition
of TF-RE links and for the definition of RE-TG links. (D) Benchmarking of GRN inference with prior knowledge. The upper panel shows a standard benchmarking setup,
where the combination of a specific prior modality and algorithm are evaluated against each other. In this scenario, the effect of the prior and algorithm cannot be
distinguished. The lower panel shows the two additional options when benchmarking methods with a unified graph prior input. This enables a comparative evaluation of
the contribution of priors and algorithms separately.
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model for predicting the rest of the GRN. In addition, GRGNN
utilizes a soft prior on the remaining edges. Inferelator 3.0 removes
certain genes from the prior network to assess performance on
these genes using the ground truth later. Algorithms that operate in
a “destructive” manner by removing edges from the graph prior
include CellOracle, Symphony, KiMONO, and PriorPC, with
PriorPC being the only one of these able to leverage a soft prior
for potential interactions. Finally, algorithms capable of adding or
removing edges based on a soft prior include scGLUE, iRafNet,
NetREX-CF, BDgraph, D-SPIN and Graphical Lasso.

Figure 2C provides an overview of how graph priors are
constructed using the types of data discussed in the section
“Experimental sources of prior knowledge”. Protein–protein
interactions, perturbation data, DNA binding motifs, and the
intrinsic feature extraction from RNA-seq are direct sources for TF-
TG link priors. Alternatively, an enhancer GRN can serve as an
intermediate step, consisting of TF-RE and RE-TG links, which can
then be collapsed into a homogeneous TF-TG prior graph, as done
in CellOracle (Kamimoto et al, 2023). Selecting functionally
relevant regulatory elements involves data such as chromatin
accessibility, TF ChIP-seq, evolutionary conservation across
species, and enhancer activity assays. TF-RE links are typically
derived from either TF binding motif enrichment or TF ChIP-seq
data, while RE-TG links are estimated using genomic proximity,
chromatin interaction data like Hi-C, or eQTL data.

In addition to being constructed, graph priors can also be
retrieved from databases. These databases (reviewed in (Baltoumas
et al, 2021)) combine inferred prior connections from various
sources, including manually curated literature or predicted TF-TG
links. Other databases store information critical for building priors,
such as sets of known regulatory elements, like the ENCODE
database (The ENCODE project consortium, 2012). GRaNIE
(Kamal et al, 2023) is another example, offering a precompiled
resource of potential TF binding sites for humans and mice, instead
of computing motif enrichment scores directly from selected peaks.
The choice of database often depends on the organism, cell type,
and specific information required. For example, in iRafNet (Petralia
et al, 2015), protein–protein interactions are sourced from BioGrid
(Oughtred et al, 2019), DIP (Xenarios et al, 2000), and MINT
(Zanzoni et al, 2002) to construct a GRN prior for S. cerevisiae. In
KiMONO (Ogris et al, 2021), BioGrid is used to create gene-gene
links, while Inferelator 3.0 (Gibbs et al, 2022) builds a GRN prior
for S. cerevisiae based on the YEASTRACT network (Monteiro
et al, 2020).

For certain well-studied models and cell types, databases of TF-
TG interactions are considered “ground truth” networks due to
their comprehensiveness. These “silver” or “gold” standard net-
works are frequently used to benchmark GRN inference methods.
Algorithms that do not utilize prior knowledge compare their
predicted GRN against these ground truth networks. For algo-
rithms that do incorporate prior knowledge, part of the ground
truth is typically subsampled as input, and the remaining hold-out
interactions are used to evaluate the algorithm’s performance (e.g.,
GRGNN, PriorPC, GENELink, scPRINT). One prominent example
of a ground truth network is the one provided by the DREAM5
challenge (Marbach et al, 2012), which uses RegulonDB (Salgado
et al, 2024) to curate a ground truth for E. coli (used by GRGNN
and PriorPC). For S. cerevisiae, ChIP-seq data combined with

binding motif conservation is used to construct a ground truth
(used by GRGNN and iRafNet). Other ground truth networks, such
as those on mouse and human embryonic stem cells, are curated in
the BEELINE benchmarking study (Pratapa et al, 2020), and used
by GENELink (Chen and Liu, 2022) and (McCalla et al, 2023), and
by scPRINT (Kalfon et al, 2024), which also relies on Omnipath
(Türei et al, 2016) and ENCODE (The ENCODE project
consortium, 2012) for additional validation. While gold standard
networks are widely used, they tend to have low complexity, cover a
limited range of interactions, and are often unavailable for higher
eukaryotes. Consequently, benchmarking against these networks
has inherent limitations (Kamal et al, 2023). For less-studied
organisms, databases from closely related species may be used as a
substitute, although this approach can introduce additional
uncertainty (Nair, 2017).

Benchmarking GRN inference algorithms
that incorporate prior knowledge

The diversity of GRN inference algorithms and the various ways
they incorporate prior knowledge provide researchers with many
options. However, this variety can complicate the selection process
for users and developers alike. As the field continues to grow, there
is an increasing need for robust and transparent benchmarking
studies that can guide the selection of methods. These studies
should focus on comparing algorithms fairly, particularly those that
leverage prior knowledge, as the quality and type of prior
knowledge used can significantly influence the algorithm’s
performance. Several existing benchmarking efforts have compared
GRN inference algorithms based on their ability to infer TF-TG
links (Marbach et al, 2012; McCalla et al, 2023; Pratapa et al, 2020)
or predict GRN topology (Stock et al, 2024). However, these studies
often overlook the critical role of prior knowledge in influencing
outcomes. Thus, future benchmarking studies should account for
both the computational strategies and the nature of the prior
knowledge used. Disentangling these factors will be essential for
identifying algorithmic weaknesses and advancing the field.

To achieve a more objective comparison, we recommend
standardizing the representation of prior knowledge across
algorithms. For instance, the use of a homogeneous graph prior
could allow for a fair evaluation of both algorithms and the quality
of their prior knowledge sources (see Fig. 2D). Such an approach
would enable not only the standard comparison of algorithm-prior
combinations (Fig. 2D, top panel) but also two additional
evaluations: a ranking of the value of different prior types and a
comparable assessment of algorithmic performance using the same
prior as input (Fig. 2D, bottom panel). Furthermore, this frame-
work could enable the integration of multiple graph priors into a
single input, allowing researchers to assess whether the combined
use of different priors leads to improved GRN inference accuracy.
For such a benchmarking study, the operation mode of the
benchmark algorithms has to be taken into account, since
destructive algorithms cannot be directly benchmarked against
constructive algorithms. Sets of algorithms suitable for benchmark-
ing, which share the same type of RNA expression input (e.g.,
scRNA-seq) and compatible operational modes (e.g., constructive
or hybrid), can be identified from Table 2.
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Conclusion and perspectives

In this review, we provided a comprehensive overview of the
current strategies employed by GRN inference algorithms that
integrate scRNA-seq data with prior knowledge. We discussed the
various types of prior knowledge that can be utilized, the diverse
ways these priors are incorporated into algorithms, and how these
approaches affect the performance of GRN inference. The
accompanying tables summarize key information about the
reviewed algorithms, with those incorporating graph representa-
tions of prior knowledge listed in Table 2, and those relying on
other types of priors in Table 3. A detailed description of recent
representative inference algorithms that leverage graph priors is in
the Appendix Texts S1–S4.

By examining how different algorithms utilize diverse sources of
prior knowledge and proposing a unified representation of these
priors as graphs, we aim to encourage the integration of multiple
resources to improve the accuracy of inferred GRNs. While scRNA-
seq data serves as a rich and valuable source of biological insight, it
has inherent limitations that can impact GRN inference. At the
same time, the availability and quality of complementary data
sources, such as curated databases and other omics data, are
continually improving. Leveraging these diverse datasets alongside
scRNA-seq creates a powerful opportunity to enhance GRN
inference, paving the way for deeper insights into gene regulatory
mechanisms, the identification of therapeutic targets, and other
transformative discoveries.

One underexplored but promising aspect is the potential of graph
priors to provide more detailed GRN models. Current GRN inference
methods have progressed from undirected to directed networks and
have begun incorporating edge annotations representing activating
and inhibiting regulatory relationships. However, further refinement
is possible. For instance, self-loops, which are currently under-
represented in GRN models, could offer additional mechanistic
insights. Similarly, current models often reduce regulatory interac-
tions to simple OR-gate representations, neglecting cases where two
TFs jointly regulate a target gene, which would be better represented
by an AND-gate. These complexities, which remain unaccounted for
in both TF-TG networks and enhancer-based GRNs, could be more
effectively modeled using hypergraphs. Prior knowledge, for example
from perturbation experiments, could help distinguish between co-
regulation of a target by two TFs and independent regulation of the
target by each TF. Advances in machine learning methods for
hypergraph-based inference, combined with comprehensive

perturbation datasets-such as combinatorial knockout assays-will be
essential to achieve this level of detail.

Building on our analysis and classification of GRN inference
algorithms, we proposed a benchmarking strategy specifically
designed for algorithms that incorporate prior knowledge (see the
section “Benchmarking GRN inference algorithms that incorporate
prior knowledge”). This approach aims to disentangle the
individual contributions of the type of prior knowledge and the
algorithm itself to overall performance. Such a benchmarking study
is currently lacking but is needed to address critical gaps in the
field. Another essential element of future benchmarking strategies
is the emphasis on openness, reproducibility, and transparency,
which are vital for driving progress in GRN inference research.
Initiatives like the Open Problems framework (Luecken et al, 2024)
embody these principles, offering a strong foundation and setting
an important precedent for future efforts. By adhering to these
values, benchmarking studies can deliver robust, comparable, and
broadly applicable evaluations of GRN inference methods,
ultimately advancing the field.

Looking forward, we anticipate that future GRN inference
methods will draw upon and combine ideas from the approaches
we reviewed, addressing their current limitations while leveraging
increasingly standardized benchmarking frameworks. As high-
quality single-cell datasets become more available, especially with
the rise of pre-trained foundation models (Cui et al, 2024;
Theodoris et al, 2023), the inclusion of RNA-independent priors
will further enhance our understanding of GRNs.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-025-00088-3.
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