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Meta-analysis of genome-wide associations 
and polygenic risk prediction for atrial 
fibrillation in more than 180,000 cases

 

Atrial fibrillation (AF) is the most common heart rhythm abnormality 
and is a leading cause of heart failure and stroke. This large-scale 
meta-analysis of genome-wide association studies increased the power 
to detect single-nucleotide variant associations and found more than 350 
AF-associated genetic loci. We identified candidate genes related to muscle 
contractility, cardiac muscle development and cell–cell communication 
at 139 loci. Furthermore, we assayed chromatin accessibility using assay 
for transposase-accessible chromatin with sequencing and histone H3 
lysine 4 trimethylation in stem cell-derived atrial cardiomyocytes. We 
observed a marked increase in chromatin accessibility for our sentinel 
variants and prioritized genes in atrial cardiomyocytes. Finally, a polygenic 
risk score (PRS) based on our updated effect estimates improved AF risk 
prediction compared to the CHARGE-AF clinical risk score and a previously 
reported PRS for AF. The doubling of known risk loci will facilitate a greater 
understanding of the pathways underlying AF.

The genetic basis of AF has been studied for over two decades, with 
approaches ranging from family-based studies1–4 to larger case-control 
genome-wide association studies (GWAS)5–13. In this study, we ana-
lyzed the largest collection of AF GWAS so far, which included a total 
of 181,446 AF cases and 1,468,899 controls. We meta-analyzed 68 
summary-level results from more than 40 primary cohorts (Supplemen-
tary Table 1) representing eight groups of ancestry and ethnicity, includ-
ing non-Finnish, non-Icelandic European (nAF = 128,044), Icelandic 
(nAF = 20,953), Finnish (nAF = 17,325), East Asian (nAF = 11,350), admixed 
African and African American (nAF = 1,782), Hispanic (nAF = 1,203),  
Brazilian (nAF = 571) and South Asian (nAF = 218) (Supplementary Table 2). 
We analyzed a total of 29,789,980 single-nucleotide variants and inser-
tions and deletions, with 8,272 variant associations exceeding the 
genome-wide significance level of P < 5 × 10−8. Conditional and joint 
analysis of the combined ancestry meta-analysis results revealed 403 
independently associated signals (Supplementary Table 3).

We identified 354 genetic loci with minor allele frequency 
(MAF) ≥ 1% and at least 500 kb between sentinel variants (Fig. 1 and 
Supplementary Table 4). Of these 354 loci, 135 (38.1%) were farther than 

1 Mb away from previously reported8,14–17 sentinel variants for AF (Sup-
plementary Table 5). A large subset (299 out of 354) of sentinel variants 
were available in the validation cohort from the Million Veteran Pro-
gram (MVP). The effect estimates showed a positive correlation across 
the primary meta-analysis and the validation GWAS (Extended Data 
Fig. 1a,b). Nearly all sentinel variants (293 out of 299) demonstrated 
consistent directions of effect for the primary and validation analyses, 
with 215 variants exceeding a nominal significance level (P < 0.05) (Sup-
plementary Table 4). Most (64%) of the common lead variants mapped 
to intronic regions of a gene, and 31% mapped to intergenic regions. The 
remaining 5% were coding variants (predominantly missense variants). 
An exploratory analysis of low-frequency variants (MAF < 1%) revealed 
14 genetic loci (Fig. 1 and Supplementary Table 6), as described in 
the Supplementary Note, Supplementary Table 7 and Extended Data 
Fig. 1c,d. Seven of the common lead variants showed significant het-
erogeneity of effect estimates by ancestry (Supplementary Table 4). 
Further ancestry-specific loci are presented in the Supplementary Note.

Bridging the gap from single-variant associations and genetic loci 
to candidate genes remains a challenge with any GWAS. Ultimately, 
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potassium channel activity and transcriptional regulation (Extended 
Data Fig. 9).

Our GenePrio approach identified recognized AF susceptibility 
genes, including CAV1 (ref. 21), SYNPO2L (ref. 22), TTN (ref. 23), CASQ2 
(ref. 24), CAMK2D (ref. 25) and MYH6 (ref. 26) (Fig. 2a). We also iden-
tified genes with less established links to AF. These genes, namely 
FBXO32, IGF1R, HSPB7 and ABLIM1, are interesting candidates for func-
tional follow-up and evaluation as novel therapeutic targets. FBXO32 
(F-box protein 32) encodes a protein known to be involved in muscle 
atrophy. eQTL data showed that increased expression was associated 
with a higher risk for AF. IGF1R (insulin-like growth factor 1 receptor) 
encodes a transmembrane receptor that binds insulin. Decreased 
expression was associated with increased risk for AF via eQTL. Mice 
that overexpress IGF1R develop cardiac hypertrophy27. HSPB7 (heat 
shock protein family B (small) member 7) encodes a protein involved 
with the cardiac sarcomere and a binding partner of titin. Decreased 
expression of HSPB7 was associated with an increased risk for AF in the 
eQTL results. Cardiac-specific knockdown of Hspb7 in mice leads to 
embryonic lethality, implicating an important role in heart develop-
ment28. ABLIM1 (actin binding LIM protein 1) encodes a protein that 
binds to actin filaments and helps mediate interaction with targets in 
the cytoplasm. The eQTL results suggest that decreased expression of 
ABLIM1 is associated with increased AF risk.

Next, we generated atrial CMs derived from induced pluripotent 
stem (iPS) cells and measured chromatin accessibility using assay 
for transposase-accessible chromatin with sequencing (ATAC–seq) 
and epigenetic modifications as assessed by histone H3 lysine 4 tri-
methylation (H3K4me3). At the transcription start sites of our 139 
GenePrio genes, we found enhanced chromatin accessibility within 
the iPS-derived atrial CMs, compared to other tissues and cell types 
from the Encyclopedia of DNA Elements (ENCODE) (Fig. 2e). Moreover, 
we observed similar atrial CM enrichment when centering analyses 
around the 354 common AF sentinel variants (Fig. 2f). For example, in 
atrial iPS-CMs, we detected a marked enrichment in open chromatin 
and H3K4me3 peaks at several AF risk loci, including TBX5, PITX2 and 
HSPB7 (Extended Data Fig. 10).

Although most common genetic variants have modest effects on 
AF, the cumulative effect of risk variants across the genome can be har-
nessed through a PRS. To evaluate the gain of the increased sample size 
and the newly identified loci in this study, we created a polygenic score 
(details described in Methods) for AF (PRSAF) from the GWAS presented 
here, excluding the Trøndelag Health Study (HUNT) and UK Biobank 
data (n = 154,330 cases). The PRSAF was then evaluated using incident 
AF cases in both HUNT (2,474 incident AF cases; 50,283 controls)  
and UK Biobank (10,416 incident AF cases; 236,267 controls). To control 

functional effector genes, more so than AF-associated variants, have 
the potential to uncover novel biological mechanisms and identify drug 
targets for novel therapeutics. Therefore, we evaluated five different 
lines of evidence that prioritize candidate genes at GWAS loci: (1) a 
region-based method (multi-marker analysis of genomic annotation 
(MAGMA)18; Supplementary Table 8); (2) a similarity-based method 
(polygenic priority score (PoPS)19; Extended Data Fig. 2 and Supple-
mentary Table 9); (3) cardiac gene expression (expression quantitative 
trait locus (eQTL); Supplementary Tables 10 and 11), (4) single-cell gene 
expression in cardiomyocytes (CMs) (single-nuclei RNA-sequencing 
(snRNA-seq), Extended Data Fig. 3a,b and Supplementary Table 12); 
and (5) predicted deleteriousness (Supplementary Tables 13 and 14). 
Findings from these five approaches are described in the Supplemen-
tary Note.

To integrate the results from each of the above modalities, we 
developed a simple approach called GenePrio (gene prioritization), 
which combines the five gene-level annotations to rank genes at  
each GWAS locus. The lines of evidence for each gene were summed 
(GenePrio sum) and the genes at each GWAS locus were ranked. Genes 
with at least two lines of evidence and the largest GenePrio sum at a 
locus are shown in Supplementary Table 15. The approach identified 
139 GenePrio genes at AF loci. Most of the identified genes (56%) cor-
responded to the protein-coding gene closest to the sentinel variant 
(Extended Data Fig. 4). Ten of these genes had four supporting lines 
of evidence (Fig. 2a), and 40 genes were annotated with three lines 
of evidence (Fig. 2b). The remaining 89 genes were supported by two 
lines of evidence (Extended Data Fig. 5). Genes prioritized by GeneP-
rio showed strong enrichment in rare variant association testing of 
loss-of-function and predicted damaging variants, based on recently 
analyzed whole-exome or whole-genome sequencing data20 (Fig. 2c  
and Supplementary Table 16). Of note, five genes prioritized by  
GenePrio (TTN, PKP2, FLNC, RBM20 and CTNNA3) showed Bonferroni 
significant (0.05/92 = 0.00054) associations in rare variant association 
testing (Fig. 2d and Supplementary Table 17).

We then ran colocalization analyses for all genes for which the top 
hit was an eQTL in atrial appendage, left ventricle, or left atrium tissue 
(Supplementary Tables 10 and 11). A gene set enrichment analysis of 
these 139 GenePrio genes revealed 164 enriched pathways (Extended 
Data Fig. 6) involving processes including muscle contractility, cardiac 
muscle development and cell–cell communication (Supplementary 
Table 18 and Extended Data Figs. 7 and 8). We additionally performed 
a Gene Ontology-based cluster analysis of the 139 genes after anno-
tating them with cell-type-specific expression from the left atrium 
(Supplementary Table 19). The cluster analysis showed groups of Gene 
Ontology terms enriched for candidate genes related to actin binding, 
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Fig. 1 | Miami plot of meta-analysis across 181,446 AF cases and 1,468,899 
controls for common variants and low-frequency variants. The top panel 
depicts the common variant results with MAF ≥ 1%; significant loci are 
highlighted in red. The y axis for the common variant Miami plot is capped 
at −log10(P) = 140 for clarity. The signals that were capped are located on 
chromosome 1 (rs34515871, P = 6.46 × 10−154), chromosome 4 (rs6843082, 

P = 1.74 × 10−1141), chromosome 10 (rs11598047, P = 1.95 × 10−174) and chromosome 
16 (rs2106261, P = 7.24 × 10−257). The bottom panel depicts the low-frequency 
results with MAF < 1%; significant loci are highlighted in blue. The meta-analysis 
included 181,446 AF cases and 1,468,899 controls. The genome-wide significance 
cutoff of P < 5 × 10−8 was applied to correct for multiple testing. The P values of 
the meta-analysis were calculated with the inverse-variance-weighted method.
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Fig. 2 | Prioritization of genes at common variant AF GWAS loci. a,b, Genes 
with four (a) and three (b) lines of evidence. Genes with two lines of evidence are 
shown in Extended Data Fig. 5. The five categories of evidence were snRNA-seq 
(marker gene for CMs in left atrium, labelled as snRNA); Coding (significant 
coding variant (loss-of-function or missense with high deleterious score)); 
MAGMA (significant in MAGMA analysis); PoPS (high PoPS score); and eQTL 
(significant eQTL for sentinel variant in cardiac tissue). c, Enrichment of GenePrio 
genes within four nested sets of rare variant association test (RVAT) genes for 
AF. The four P value thresholds used to determine the sets of RVAT genes for the 
enrichment analysis were defined as ‘exome-wide’ (P < 0.05/11,242), ‘GenePrio’ 
(P < 0.05/92), ‘sensitivity’ (P < 0.005) and ‘nominal’ (P < 0.05). The total number 
of genes tested in RVAT was n = 11,242 and the overlap of GenePrio genes with 
tested genes in RVAT was n = 92. The significance levels of 0.005 and 0.5 were 

included to show the trend of the enrichment analysis from higher to lower 
confidence RVAT results. A two-sided Fisher’s exact test was performed. Shown 
as dots are the odds ratio and as error bars the 95% confidence interval. d, QQ plot 
for the 92 GenePrio genes available in the RVAT. Multiple testing was adjusted by 
Bonferroni (P < 0.05/92). The results are from a two-sided burden test in a logistic 
mixed-effects model. The sample size was 52,416 cases and 257,772 controls (for 
TTN, CTNNA3) and 51,019 cases and 253,267 controls (for PKP2, FLNC, RBM20). 
e,f, ATAC–seq fragment depth centered around the transcription start site (TSS) 
of the 139 GenePrio genes (e) as well as the 354 common sentinel variants (f). 
The different lines show fragment depth from ATAC–seq from our generated iPS 
cell-derived atrial CMs (atrial iPS-CMs) as well as seven publicly available cell lines 
and tissues from ENCODE. ATAC–seq fragment depth is elevated in atrial iPS-CMs 
compared to other tissues and cell lines. NK, natural killer.
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for ancestry-induced differences in the PRSAF within European ancestry 
samples, we adjusted PRSAF for genetically inferred principal compo-
nents (Methods). We observed a clear stratification of the cumulative 
incidence rate for AF across quintiles of the score (Fig. 3a,b).

We created seven models for comparison of performance using 
Harrell’s concordance index (C-index): model 1, sex; model 2, age; model 
3, baseline; model 4, baseline + PRSKhera; model 5, baseline + CHARGE-AF; 
model 6, baseline + PRSAF; and model 7, baseline + PRSAF + CHARGE-AF. 
Baseline covariates included sex, age, age2 and study-specific variables. 
PRSKhera is a published PRS for AF including 6.7 million variants29 based 
on previously published AF GWAS results7 and the LDPred algorithm30. 
CHARGE-AF is a published clinical risk score for AF31. PRSAF is the newly 
generated PRS including 1.1 million variants, based on these GWAS 
results and the PRS-continuous shrinkage (PRS-CS) algorithm32.

The predictive performance of each score was assessed over the first 
10 years of follow-up with a Cox proportional hazards model. Each model 

showed an increased C-index over the previous model, from model 1 
to model 7 (Fig. 3c and Supplementary Table 20). The model with the 
strongest predictive power (model 7) included both the CHARGE-AF clin-
ical risk score and the PRSAF, achieving a C-index of 0.872 (95% confidence 
interval, 0.866–0.878) in HUNT and a C-index of 0.790 (95% confidence 
interval, 0.786–0.794) in UK Biobank (Supplementary Tables 20 and 21). 
The incremental improvement of the best model with PRS relative to the 
model without was 0.0152 in HUNT and 0.026 in UK Biobank.

The new PRSAF was used in the UK Biobank for a phenome-wide 
association analysis across a panel of 57 cardiometabolic and other  
diseases as well as 26 cardiometabolic traits (Fig. 4). Curated dis-
ease phenotypes were defined using reports from medical history 
interviews, inpatient and outpatient ICD-9 and ICD-10 codes, opera-
tion codes and death registry records33. The significance threshold  
was set at 6.02 × 10−4 to correct for multiple testing. Not surprisingly, 
the largest effect of the PRSAF was for AF (β = 0.557, P = 4.04 × 10−1466). 
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Fig. 3 | Polygenic risk prediction of AF with PRS in HUNT and UK Biobank.  
a,b, Plots showing the cumulative incidence rates of AF for the PRS score in the UK 
Biobank (a) and HUNT (b), separated by quintiles. The cumulative incidence plots 
include a lighter-shaded band showing the confidence intervals. The measures 
of center are the cumulative events, and the error bands are the 95% confidence 
intervals. c, Plot showing the model fit comparisons of several prediction models 
using the C-index with 95% confidence intervals. Each model was based on 
Cox proportional hazard regression. Model 1, ‘sex’ included sex. Model 2, ‘age’ 
included age and age2. Model 3, ‘baseline’ included age, age2 and sex. Model 4, 
‘baseline + PRSKhera’ included a previously published PRS29 for AF on top of the 

baseline model. Model 5, ‘baseline + CHARGE-AF’ included the CHARGE-AF risk 
score31 on top of the baseline model. Model 6, ‘baseline + PRSAF’ included the newly 
generated PRSAF on top of the baseline model. Model 7, ‘baseline + PRSAF + CHARGE-
AF’ included the newly generated PRSAF and the CHARGE-AF clinical risk score 
on top of the baseline model. Both PRSAF and PRSKhera were inverse-normal-
transformed and adjusted for the first ten principal components. HUNT included 
52,757 samples with 2,474 incident AF cases. UK Biobank included 246,683 samples 
with 10,416 incident AF cases. The measure of center for the error bars is the 
C-index, and the error bars are the 95% confidence intervals. CHARGE, Cohorts for 
Heart and Aging Research in Genomic Epidemiology.
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Other associations with large effects include supraventricular tachy-
cardia (β = 0.316, P = 3.98 × 10−96) and tricuspid valve disease (β = 0.213, 
P = 4.36 × 10−43; Supplementary Table 22). The results may indicate a 
shared genetic basis among several structural cardiac diseases and 
arrhythmias but may also reflect the co-morbidity of these diagno-
ses (Fig. 4). Among quantitative traits, some of the largest effects 
were observed for weight (β = 0.504, P = 9.30 × 10−111), P-wave duration 
(β = −0.499, P = 5.52 × 10−8), left ventricular diastolic volume (β = 0.508, 

P = 2.01 × 10−4) and left ventricular systolic volume (β = 0.406, 
P = 6.25 × 10−7; Fig. 5 and Supplementary Table 22). Surprisingly, PRSAF 
was associated with shorter rather than longer P-wave and QRS duration 
in the population. This may reflect genetic differences in ion channel 
function or cell–cell connections rather than the conduction delays 
that occur as a result of fibrosis and dilation in AF.

In the present study, we performed the most comprehensive  
AF meta-analysis so far, including 68 genome-wide studies across  

Structural cardiac disease and arrhythmia
Atrial fibrillation
SVT
Tricuspid valve disease
DCM
Mitral valve disease
Heart failure
HCM
Ventricular arrhythmia
Bradyarrhythmia
SCD
CHD
Conduction
Aortic valve disease
Cardiac surgery

Vascular and metabolic
Ischemic stroke
Stroke
Hyperthyroidism
PVD
HTN
MI
VTE
CAD
Hypothyroidism
Hypercholesterolemia
T2D
T1D

Inflammatory disease
Gout
Psoriasis
Rheumatoid arthritis
Asthma
Allergic rhinitis
IBD
Dermatitis

Gastrointestinal, hepatobiliary and renal
CKD
Pancreatitis
Diverticular disease
Cholelithiasis
Gastroesophageal reflux
IBS

Other medical traits or conditions
Pacemaker
Defibrillator
Sleep apnea
Pneumonia
Bipolar disorder
COPD
Osteoarthritis
Anxiety
Osteoporosis
Back pain
Depression
Cataract
Sciatica
Migraine
Glaucoma
Epilepsy
Parkinson's disease
Multiple sclerosis

Odds ratio
1.745
1.372
1.237
1.221
1.197
1.189
1.135
1.119
1.099
1.078
1.071
1.065
1.064
1.028

1.155
1.094
1.078
1.063
1.048
1.046
1.041
1.038
1.035
1.03
1.028
1.005

1.047
1.035
1.024
1.017
1.006
1.002
0.994

1.073
1.029
1.029
1.017
1
0.995

1.139
1.097
1.06
1.046
1.04
1.024
1.02
1.019
1.017
1.013
1.011
1.003
1
0.999
0.992
0.989
0.973
0.969

P value
4.04 × 10–1466

3.98 × 10–96

1.39 × 10–57

5.71 × 10–3

4.36 × 10–43

9.79 × 10–9

1.48 × 10–75

9.55 × 10–14

9.01 × 10–29

4.79 × 10–4

1.04 × 10–2

4.61 × 10–7
2.65 × 10–10

1.35 × 10–2

1.56 × 10–22

6.06 × 10–19

5.42 × 10–8

6.24 × 10–7

1.74 × 10–42

5.40 × 10–8

6.83 × 10–7

7.70 × 10–8

7.46 × 10–8

1.49 × 10–13

6.52 × 10–6

7.44 × 10–1

8.59 × 10–6

4.28 × 10–3

2.56 × 10–2

1.72 × 10–4

3.33 × 10–1

8.76 × 10–1

4.42 × 10–1

5.30 × 10–15

9.07 × 10–2

1.87 × 10–8

1.60 × 10–2

9.95 × 10–1

5.04 × 10–1

9.16 × 10–29

1.55 × 10–3

5.67 × 10–7

1.95 × 10–11

1.01 × 10–1

1.20 × 10–3

7.51 × 10–7

2.35 × 10–2

3.46 × 10–2

3.83 × 10–2

4.33 × 10–2

6.25 × 10–1

9.68 × 10–1

9.15 × 10–1

4.01 × 10–1

1.84 × 10–1
3.99 × 10–1

1.75 × 10–1

No. of
cases
25,679
4,318
4,240
827
8,175
12,088
483
4,569
15,401
2,251
1,414
10,889
7,012
8,229

4,786
10,353
5,527
7,098
151,623
16,338
17,129
23,971
28,356
86,678
30,408
3,883

10,223
7,334
8,982
57,612
28,319
6,441
16,955

13,519
3,440
46,241
23,286
51,227
16,850

7,736
1,177
7,843
25,089
1,868
20,051
84,244
15,336
16,505
26,413
38,449
44,095
8,380
16,432
11,293
5,993
2,541
1,874

Total
no.

405,430
405,430
405,430
379,245
405,430
405,045
405,430
405,430
405,430
405,430
405,430
405,430
405,430
405,430

405,430
405,430
405,430
405,430
405,430
405,430
402,942
405,430
405,430
405,430
405,430
405,430

405,430
405,430
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Fig. 4 | Phenome-wide associations of diseases and traits to the PRSAF in 
the UK Biobank. Forest plot showing the associations of the PRSAF with 57 
cardiometabolic and other medical diseases and traits. The associations are 
sorted by odds ratio within each group. Significant associations are determined 
by Bonferroni correction as 0.05/83, resulting in a significance threshold of 
P < 6.024 × 10−4. The results are from a two-sided logistic regression model. The 
number of samples tested and the number of cases for each trait are included 
in the figure. The maximal available sample size was n = 405,430. The measure 

of center for the error bars is the odds ratio, and the error bars are the 95% 
confidence intervals. CAD, coronary artery disease; CHD, congenital heart 
disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary 
disease; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; 
HTN, hypertension; IBD, inflammatory bowel disease; IBS, irritable bowel 
syndrome; MI, myocardial infarction; PVD, peripheral vascular disease; SCD, 
sudden cardiac death; SVT, supraventricular tachycardia; T1D; type 1 diabetes; 
T2D, type 2 diabetes; VTE, venous thromboembolism.
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40 primary cohorts and more than 180,000 AF cases (Supplementary 
Table 1). Most participants were of European ancestry, but we also 
incorporated two large-scale GWAS from European bottleneck popu-
lations (Iceland and Finland) as well as a large study sample from East 
Asia, predominantly represented by Biobank Japan34 (Supplementary 
Table 2). We identified 354 AF-associated loci (Fig. 1), including five 
loci that were ancestry-enriched (Supplementary Tables 4 and 6). We 
found significant enrichment of overlap of chromatin accessibility and 
epigenetic modifications from iPS-derived atrial CMs with our GWAS 
loci. The novel PRS modestly improved the prediction of incident AF 
over the published PRS (Fig. 3c).

This work had several limitations. Most of the analyzed data were 
from individuals of European ancestry, and analyses that required a 
linkage disequilibrium (LD) reference panel were restricted to LD of 
European ancestry. The five lines of evidence used in gene prioritiza-
tion can reflect shared information. For example, MAGMA results are 
included in the PoPS algorithm. There are many approaches to gene 
prioritization, but there is no gold standard for validation. A com-
parison of GenePrio to the contemporary locus-to-gene model35 from 
OpenTargets can be found in the Supplementary Note.

In summary, we present results from the largest GWAS meta- 
analysis of AF so far and provide an improved PRS for the prediction  
of incident AF. The results implicate several candidate genes for AF that 
could serve as novel targets for therapeutics and may aid in determining 
the underlying biology of AF.
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Methods
Sample
This research complies with all relevant ethical regulations. Written 
informed consent was obtained from all participants in this study.  
The UK Biobank resource was approved by the UK Biobank Research 
Ethics Committee, and all participants provided written informed con-
sent to participate. The use of UK Biobank data was authorized under 
application number 17488 and was approved by the local Massachusetts 
General Brigham Institutional Review Board. The Institutional Review 
Board at Massachusetts General Hospital reviewed and approved the 
overall study. Our sample included a total of 68 summary-level result 
files (Supplementary Table 1). Of those, 26 were previously published 
and unchanged since the last publication14 (Supplementary Table 23), 
whereas 42 non-overlapping summary-level results were novel or 
updated. The baseline information for these 42 novel or updated stud-
ies is reported in Supplementary Table 24. The study description of the 
novel or updated summary-level results can be found in the Supplemen-
tary Note. The baseline and study information for the 26 previously 
published study-based AF GWAS results are described elsewhere14. 
Across the entirety of the 68 study results, we included samples of Euro-
pean ancestry (ncase = 166,322; ncontrol = 1,313,950), East Asian ancestry 
(ncase = 11,350; ncontrol = 137,515), admixed African and African American 
ancestry (ncase = 1,782; ncontrol = 9,356), Hispanic ancestry (ncase = 1,203; 
ncontrol = 6,569), Brazilian ancestry (ncase = 571; ncontrol = 1,096) and  
South Asian ancestry (ncase = 218; ncontrol = 413). The European subset 
furthermore incorporates samples from the two bottleneck popula-
tions of Finland (ncase = 17,325; ncontrol = 97,214) and Iceland (ncase = 20,953; 
ncontrol = 353,822) (Supplementary Table 2). AF was broadly defined as 
paroxysmal or permanent AF or atrial flutter. Controls did not present 
with these diagnoses.

Genotyping, pre-imputation quality control and imputation
The genotyping, pre-imputation quality control procedure and imputa-
tion of the 26 previously published summary-level results and the UK 
Biobank has been described elsewhere14,36. For novel and updated stud-
ies, genotyping arrays, calling algorithms and pre-imputation quality 
control steps by study are listed in Supplementary Table 25. In short, 
the pre-imputation quality control consisted of sample-level filtering 
(low call rate, excess heterozygosity, relatedness) and variant-level 
filtering (low call rate, deviation from Hardy–Weinberg equilibrium, 
excess heterozygosity, low MAF). In total, 32 of the novel or updated 
studies were imputed to the TOPMed reference panel37 and six to the 
Haplotype Reference Consortium panel38. The studies FinnGen and 
deCODE were imputed to population-specific reference panels based 
on whole-genome sequence (FinnGen, n = 3,775 Finnish individuals 
from Sequencing Initiative Suomi (SISu v.3); deCODE, n = 49,708 Ice-
landic individuals). Biobank Japan was imputed to a merged reference 
panel, including 1000 Genomes phase 3 (v.5) and a population-specific 
reference panel consisting of whole-genome sequences from 1,037 
Japanese individuals39.

Single-variant GWAS
Single-variant testing was performed using an additive genetic model 
and genotype dosages. Most studies included prevalent AF cases, 
and a subset combined prevalent and incident cases, in either case 
applying a logistic regression model. Studies with separate results 
for incident and prevalent cases used the Cox proportional hazards 
model and logistic regression, respectively. The analytical details 
and tools used by each study are listed in Supplementary Table 25 or 
have previously been described (Supplementary Table 23). In general, 
studies were advised to include the covariates of age, sex and genetic 
principal components in their models. Studies and biobanks with 
large case-control imbalances used appropriate tools, such as SAIGE, 
to account for the imbalance. Each summary-level results file was 
evaluated based on the following quality control criteria: inspection 

of Manhattan plots, quantile–quantile plots and PZ plots (P value 
reported versus P value from Z-score), a reasonable genomic inflation 
parameter (λGC), consistent direction of effect for known AF-associated 
variants, distribution of effect estimates and allele frequencies. We 
furthermore compared reported allele frequencies to those of the 
Haplotype Reference Consortium or TOPMed freeze 5 reference panel. 
Variants were filtered before the meta-analysis for imputation quality 
of >0.3 and MAF × imputation quality × n events of ≥10.

Meta-analysis
The tool used for the meta-analysis was METAL (version released on 
2018-08-28), with the inverse-variance-weighted approach. Standard 
errors were adjusted according to the genomic inflation for each study 
if λGC was >1. The meta-analysis was first conducted by each one of the 
following eight groups: (1) European (non-Finnish and non-Icelandic); 
(2) Finnish; (3) Icelandic; (4) African and African American; (5) Brazilian;  
(6) South Asian; (7) East Asian; and (8) Hispanic. Subsequently, these 
eight result files were meta-analyzed and heterogeneity was calcu-
lated. We applied the commonly used genome-wide significance 
cutoff of P < 5 × 10−8. We evaluated our results separated by allele fre-
quency. A total of 18,842,305 variants were common with MAF ≥ 1%. 
Low-frequency variants with MAF < 1% were more stringently filtered 
for a mean imputation quality of ≥0.8. A total of 10,947,675 variants 
with low frequency were assessed. Genetic loci were identified in a 
region-based approach, defining a locus to a 1 Mb region around a 
sentinel variant. The sentinel variant, or lead variant, was the variant 
with the lowest P value in that 1 Mb region. The variants were annotated 
for functional consequence and overlapping genes with the VEP tool 
(97 version)40.

Conditional and joint analysis
Conditional and joint analysis of all ancestry meta-analysis results was 
performed with the tool GCTA (Genome-wide Complex Trait Analysis)41 
and the stepwise model selection procedure. Owing to computational 
limitations, the P values were capped at 1 × 10−300. The threshold for 
significance was defined as 5 × 10−8. As an LD reference, the TOPMed 
imputed genotype data from the European ancestry participants of 
the Broad Cardiovascular Disease Initiative (Broad CVDi) study was 
used (n = 32,715). The LD references included variants with imputation 
quality scores of >0.3 and MAF > 0.01% and were converted to hard calls 
with a threshold of 80%.

Validation
We sought to validate the sentinel variants in the MVP using genotypes 
(release 3). The MVP is an independent cohort with 30,831 AF cases 
and 268,407 controls of European ancestry, 4,539 AF cases and 76,046 
controls of African American ancestry, 1,428 AF cases and 30,507 con-
trols of Hispanic descent, and 163 AF cases and 4,165 controls of Asian 
descent. The AF cases and controls were analyzed in a combined ances-
try analysis, including age, sex and AF-related principal components 
as covariates.

Ancestry-specific effects
Ancestry-specific effects were evaluated in a heterogeneity analysis 
of sentinel variants across the eight listed ancestry groups reported 
above. We applied a Bonferroni correction for multiple testing. For 
the common lead variants, the threshold was 0.05/354 = 1.41 × 10−4. For 
low-frequency lead variants, the threshold was 0.05/39 = 1.28 × 10−3. 
We report the I2 statistic and the P value for the heterogeneity test 
across ancestries. Additionally, we annotated each lead variant with 
the direction of effect by ancestry.

Gene ranking at GWAS loci with GenePrio annotation
Genes at the common variant GWAS loci were identified by intersecting 
a 1 Mb region around each sentinel variant with the GENCODE42 gene 
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reference (v.26). Any gene with a transcription start position (txStart) 
within the 1 Mb region of the sentinel variant was assigned to the respec-
tive locus. In the case of overlapping loci, the gene was associated with 
the locus with the shorter distance between the txStart and sentinel 
variant. The nearest gene and the nearest protein-coding gene were 
identified as the gene or protein-coding gene with the closest proximity 
of its txStart to the coordinates of the sentinel variant.

Subsequently, each gene was annotated across five categories:  
(1) eQTL; the gene was a significant eQTL in either cardiac tissue from 
the Genotype-Tissue Expression (GTEx) or left atrial tissue from  
MAGNet; (2) PoPS; the gene was within the top-ranked genes (>mean 
+3 s.d.) of the similarity-based PoPS analysis; (3) MAGMA; the gene 
was significantly associated in the region-based MAGMA analysis; 
(4) coding; the gene had a significant coding variant that was either 
annotated as loss-of-function (high confidence) or missense with a 
deleterious score greater than 0.3; and (5) snRNA-seq; the gene was 
within top 10% of specific genes for CMs in left atrial single-nuclei  
tissue from the human heart.

Each annotation had a binary flag (0, no; 1, yes). The five lines of 
evidence were summed for each gene, and the genes were subsequently 
ranked by locus based on that sum. Tied ranks were assigned as the aver-
age. We refer to this gene-based annotation on a locus level as GenePrio. 
At each locus, a gene was selected if it presented with a GenePrio rank 
of 1 as well as a minimum of two lines of evidence.

Gene-level analyses
MAGMA. The proximity-based gene-level analysis of our GWAS data 
was performed with the MAGMA18 (v.1.09) tool. European ancestry 
samples from the 1000 Genomes project were used as an LD reference, 
and 9,793,179 variants available in the LD reference were included. 
Gene-level annotations from the file magma_0kb.genes.annot gene
rated by the PoPS tool were used for this analysis. This annotation 
file contains 18,383 protein-coding genes with no added window. LD 
reference and MAGMA gene annotations were downloaded on 5 April 
2021 (https://www.dropbox.com/sh/o6t5jprvxb8b500/AADZ8qD6Rp-
z4uvCk0b5nUnPaa/data?dl=0). The SNP-wise mean model was applied. 
Owing to computational constraints, very low P values of variants 
were capped at 5 × 10−324 for the input data. A total of 18,116 genes 
from the gene annotations contained single-nucleotide polymor-
phisms (SNPs) in the genotype data. We used a Bonferroni correc-
tion to account for multiple testing with a significance threshold of 
0.05/18,116 = 2.76 × 10−6.

PoPS. The similarity-based gene-level analysis of our GWAS data was 
performed with the PoPS19 (v.0.1) algorithm. Step 1 contained the gen-
eration of MAGMA results, as previously described. Step 2 aimed to 
select features using a predefined set of features PoPS.features.txt.
gz. Those 57,543 gene features were derived from gene expression 
(40,546), protein–protein interaction (8,718) and pathway member-
ship (8,479). A total of 22,017 features were selected in step 2. Step 3 
calculated the PoPS score using the selected features, a predefined 
set of control features from the file control.features as well as the gene 
locations from gene_loc.txt. The precomputed files PoPS.features.txt.
gz, control.features and gene_loc.txt were downloaded on 5 April 2021 
from (https://www.dropbox.com/sh/o6t5jprvxb8b500/AADZ8qD6Rp-
z4uvCk0b5nUnPaa/data?dl=0). The final results included a PoPS score 
for a total of 18,383 genes. The top-ranking PoPS genes were selected 
by subsetting to genes with a score greater than mean score + 3 s.d. of 
the score (PoPS score > 0.855) and additionally being located within 
500 kb of a genome-wide significant variant.

Transcriptional profiling
LD-score regression analysis with snRNA-seq data. LD-score regres-
sion analyses were performed using annotations based on snRNA-seq 
data from the healthy human heart43. The data were obtained from  

the four cardiac chambers: left atrium, left ventricle, right atrium and 
right ventricle. The data were subsetted to genes from the autosomal 
chromosomes with a total read count of >10. For the analysis, the anno-
tation file was built using 1000 Genomes Europeans LD reference files 
and a window size of 100 kb for SNPs that were used in the baseline 
model. The LD-score regression was performed on high-quality SNPs 
from the HapMap3 reference and included the baseline annotations 
from a previous work44.

The first analysis (CM by chamber) was conducted with gene 
expression profiles of CMs across the four cardiac chambers. For each 
chamber, the top 10% of upregulated genes in that chamber were 
chosen. The second analysis (left atrium by cell type) was conducted 
with gene expression profiles in the left atrium only of the cell types 
CMs, fibroblasts, endothelial cells, pericytes, macrophages, vascular 
smooth muscle cells, adipocytes, neuronal cells and lymphocytes. 
For each cell type, the top 10% of upregulated genes in that cell type 
were chosen. In both analyses, all considered genes were included in 
the control group. The significance threshold for each analysis was 
determined using Bonferroni correction: the CM by chamber analysis 
had a cutoff of 0.05/4 = 0.0125 and the left atrium by cell type analysis 
had a cutoff of 0.05/9 = 0.0056.

Intersection with eQTLs. Sentinel variants were intersected with 
significant eQTLs from two sources: cardiac tissues (left ventricle and 
atrial appendage) from GTEx45 (v.8) and left atrial tissue from MAGNet14. 
Only significant cis-eQTLs as defined in the primary analysis of the 
GTEx (v.8) and MAGNet eQTL datasets were included. We performed 
colocalization analyses with the R package coloc46. We used default 
prior probabilities p1 = 1 × 10−4, p2 = 1 × 10−4 and p12 = 1 × 10−5.

Variant consequences
We annotated variants with P < 0.05 using VEP (v.97)40. The most severe 
consequence of a variant was selected with the pick_allele option. The 
variants in the coding region were also annotated with the dbNSFP4.1a 
database47, and we created a deleterious score using 30 in silico  
prediction tools. The deleterious score was calculated if a variant had 
more than seven in silico prediction tools available.

Rare variant association testing analysis
We queried all genes prioritized with GenePrio against recently ana-
lyzed whole-genome sequencing and whole-exome sequencing rare 
variant analysis for AF. In brief, predicted loss-of-function and pre-
dicted damaging mutations were aggregated across genes and tested 
for an association with AF using burden tests in a logistic mixed-effects 
model (for details, see ref. 20). Enrichment for GenePrio genes among 
rare variant signals was performed at multiple P value cutoffs using a 
Fisher’s exact test. For GenePrio and nearby gene categorizations from 
GWAS, only protein-coding genes were considered.

Enrichment analysis
We performed a gene set enrichment analysis of the GenePrio genes 
with the web-based tool g:Profiler48 (https://biit.cs.ut.ee/gprofiler/
gost). Data sources for pathways included Gene Ontology49, Kyoto 
Encyclopedia of Genes and Genomes50, Reactome51, Human Phenotype 
Ontology52, the Human Protein Atlas53 and WikiPathways54. We applied 
the g:SCS algorithm for multiple testing.

Chromatin accessibility and epigenetic modifications
The cell line HUES8 was obtained from Memorial Sloan Kettering 
Cancer Center. Human pluripotent stem cells were maintained in 
feeder-free culture until 90% confluence in 5% CO2 at 37 °C. They were 
then dissociated into single-cell suspension and cultured with constant 
shaking to form spheroids, followed by manipulation of activin A/BMP4 
signaling and biphasic control of the WNT pathway with activation of 
retinoic acid signaling to generate atrial CMs.
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A total of 50,000 atrial iPS-CMs were used as input for ATAC–
seq, following the OMNI-ATAC–seq protocol55. Transposed DNA was 
purified with a Qiagen PCR MinElute kit (Qiagen 28004), and final 
ATAC–seq libraries were purified with a 1.8× SPRI purification using 
SPRISelect beads (Beckman Coulter) following PCR amplification. 
Libraries were sequenced on an Illumina NextSeq 500. Reads were 
mapped to the human genome (GRCh38) using Bowtie2 (ref. 56) with 
default paired-end settings and all non-nuclear and unmapped paired 
reads were discarded. Duplicated reads were removed with the Picard 
MarkDuplicates function, using default settings. Visualization of ATAC–
seq signals was done with HOMER, and all reads were normalized by 
read count in which scores represent read count per bp per 1 × 107 reads.

The following ENCODE ATAC–seq datasets were used in this 
study: ENCFF676KNV (skeletal muscle), ENCFF552GSS (natural killer 
cell), ENCFF246NCJ (pancreas), ENCFF466EAM (thyroid gland), 
ENCFF428WFH (urinary bladder), ENCFF348MQI (GM23338) and 
ENCFF258LP (liver).

The ATAC–seq and histone modification tracks were generated 
with the USCS browser57. The commercially available Tri-Methyl-Histone 
H3 (Lys4) (C42D8) Rabbit mAb (no. 9751) was used. The H3K4me3 
sites in our atrial iPS-CMs were produced with the Cleavage Under  
Targets & Release Using Nuclease (CUT&RUN)58 protocol. The layered 
track of histone H3 Lysine 27 acetylation (H3K27ac) was combined 
from seven published ENCODE H3K27ac cell lines: GM12878, H1-hESC, 
HSMM, HUVEC, K562, NHEK and NHLF.

Cluster analysis
We performed a cluster analysis of the GenePrio genes with the R (v.4.1) 
package clusterProfiler (v.4.0.5)59. The function compareCluster was 
used with the settings fun = ‘enrichGO’, OrgDb = ‘org.Hs.eg.db’ and 
pvalueCutoff = 0.05. The input lists of genes were created by intersect-
ing the GenePrio genes with the top 10% of specific genes for each cell 
type in the left atrium. A gene could be assigned to multiple cell types. 
In total, 112 out of 139 genes were assigned to one or more cell types and 
included in the analysis. The plot was created with the R library enrich-
plot (v.1.12.2) using the functions pairwise_termsim and emapplot.

Polygenic risk scores
Derivation. To create a PRS for AF, we ran a meta-analysis, leaving out 
HUNT and UK Biobank, including a total of 154,330 cases and 999,609 
controls. We selected variants present in UK Biobank and HUNT for the 
analysis. We used the PRS-CS32 method to calculate the weights for the 
score with 1000 Genomes Europeans as the LD reference panel. The 
resulting weights (wm) for 1,113,668 genetic variants were then used 
to calculate the raw PRSAF in both HUNT and UK Biobank using the 
following formula:

PRSAFi = ∑
m

wmGm,i

where Gm,i is the dosage of effect alleles of individual i for marker m. 
For HUNT and UK Biobank, the raw PRSAF was then adjusted for the 
first ten genetic principal components. The adjusted score was further 
inverse-normal-transformed for the analyses to have the hazard ratios 
on the s.d. scale.

PRS testing in HUNT. HUNT60 samples were collected over three differ-
ent time periods: HUNT1 (1984–1986), HUNT2 (1995–1997) and HUNT3 
(2006–2008). HUNT1 was excluded, as genotypes were not available for 
this collection. HUNT2 and HUNT3 comprised the primary dataset for 
this analysis, and the baseline for each individual was set as the earliest 
time point with all clinical risk factors used in the CHARGE-AF risk score 
calculation available. Individuals with prevalent AF at baseline were 
excluded. The final dataset consisted of 52,757 individuals between the 
ages of 19 and 94 years (median follow-up, 21.2 years), including 2,474 

incident AF cases. The analyses were restricted to the first 10 years of 
follow-up. All AF prediction analyses were performed in R (v.3.6.3) with 
the library survival. We adjusted all models for the collection period 
(HUNT2 vs HUNT3). Baseline information for the components of the 
CHARGE-AF risk score in the HUNT cohort is provided in Supplemen-
tary Table 26.

PRS testing in UK Biobank. The PRS testing in the UK Biobank was 
performed on data from a total of 246,683 individuals with European 
ancestry. We excluded the following participants from this analysis: 
UK Biobank phase 1 participants, prevalent AF at enrollment, withdrew 
consent (n = 127), up to third-degree relatives (kinship coefficient 
of >0.0442, n = 81,849) and missing data for covariates. Our sample 
included a total of 10,416 incident AF cases within a 10-year follow-up. 
We adjusted all models for the genotyping array. We used R (v.3.6.0) 
and the packages survival (v2.44-1.1) and survminer (v0.4.3) for the 
statistical analyses and visualization. Baseline information for the 
components of the CHARGE-AF risk score in the UK Biobank cohort is 
provided in Supplementary Table 26. The variables for the CHARGE-AF 
risk score were taken at enrollment.

AF risk prediction with PRS. We compared seven different mod-
els. Model 1, ‘sex’ included sex. Model 2, ‘age’ included age and age2. 
The age2 term was included to account for the nonlinear relation-
ship between AF risk and age61. Model 3, ‘baseline’ included age, age2 
and sex. Model 4, ‘baseline + PRSKhera’ added a previously published 
PRS29 for AF. Model 5, ‘baseline + CHARGE-AF’ added the CHARGE-AF 
clinical risk score31. Model 6, ‘baseline + PRSAF’ added the newly gener-
ated PRSAF. Model 7, ‘baseline + PRSAF + CHARGE-AF’ added the newly 
generated PRSAF and the CHARGE-AF clinical risk score. All scores 
were inverse-normal-transformed. We used Cox proportional hazards 
models with follow-up time as the timescale to test the performance  
of different AF predictors. We compared the model fit using the 
C-index, a model fit statistic for survival models that is a generaliza-
tion of the receiver operating characteristic curve that also handles 
censored data.

PRS phenome-wide association in UK Biobank. There were 488,374 
samples with genetic data available. The participants who withdrew 
their consent (n = 127) and within third-degree relatives (kinship coef-
ficient of >0.0442, n = 81,849) were removed. We performed asso-
ciation tests between 83 cardiometabolic traits (57 diseases and 26 
quantitative traits) and PRSAF. The 57 diseases included prevalent and 
incident cases; the definitions are listed in Supplementary Table 27. 
The quantitative traits were measured at the time of enrollment. We 
used logistic regression for binary traits and linear regression for 
quantitative traits, adjusting for age, sex, genotyping array and the 
first five genetic principal components. The quantitative traits were 
inverse-rank normalized for analyses. The significance was determined 
at 6.02 × 10−4 (0.05/83 traits).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The summary-level results file as well as the weights file for the PRSAF 
are available for download at the Cardiovascular Disease Know
ledge Portal under the weblinks https://cvd.hugeamp.org/down-
loads.html#polygenic and https://cvd.hugeamp.org/downloads.
html#summary. The raw and processed ATAC–seq and H3K4me3 data 
have been deposited at the NCBI Gene Expression Omnibus under 
accession number GSE225293. The following datasets were used in this 
study and are publicly available under the listed weblinks: GENCODE: 
https://www.gencodegenes.org; 1000G LD reference, MAGMA gene 

http://www.nature.com/naturegenetics
https://cvd.hugeamp.org/downloads.html#polygenic
https://cvd.hugeamp.org/downloads.html#polygenic
https://cvd.hugeamp.org/downloads.html#summary
https://cvd.hugeamp.org/downloads.html#summary
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE225293
https://www.gencodegenes.org/


Nature Genetics

Letter https://doi.org/10.1038/s41588-024-02072-3

annotations and precomputed files for PoPS algorithm: https://www. 
dropbox.com/sh/o6t5jprvxb8b500/AADZ8qD6Rpz4uvCk0b5nUnPaa/ 
data?dl=0; GTEx: https://www.gtexportal.org/home; ENCODE: https://
www.encodeproject.org; OpenTargets: https://www.opentargets.org.

Code availability
All software programs used in the study are publicly available and 
described in the Methods and Reporting Summary.
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Extended Data Fig. 1 | Evaluation of effect estimates and allele frequencies 
for main GWAS meta-analysis and, in comparison, to the validation analysis. 
a,b, Plots showing data for the 299 sentinel variants from the common variant 
analysis (MAF ≥ 1%) that were also available in the validation set. a, Correlation 
of allele frequencies between the meta-analysis and the validation cohort 
from MVP. b, Correlation of effect estimates between meta-analysis and the 
validation cohort from MVP. The red line is the identity line (x = y). Labelled in red 
are the variants with discordant direction of effect between meta-analysis and 
validation. c, Plot showing the relationship between effect allele frequency and 

strength of effect for sentinel variants of the meta-analysis. The effect estimates 
are from the inverse variance weighted method for meta-analysis. The dotted 
vertical lines show the cutoff for rare variants with MAF < 1%. The genome-wide 
significance cut-off of P < 5 × 10−8 was applied to correct for multiple testing.  
d, Plot showing co-occurrence of risk allele for atrial fibrillation and minor allele 
in blue and the inverse in red for sentinel variants of the meta-analysis. AF, allele 
frequency; ALL, all-ancestry; MAF, minor allele frequency; Meta, meta-analysis; 
MVP, Million Veteran Program.
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Extended Data Fig. 2 | Distribution of PoPS-score. Red line shows the cutoff for mean + 3 standard deviations of the score (cutoff = 0.8548401). There were 205 genes 
with a PoPS-score higher than the cutoff.
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Extended Data Fig. 3 | Partitioned heritability analyses with annotations from 
human cardiac single-nuclei RNA-sequencing expression data. a, Plot showing 
the partitioned heritability results for gene expression of cardiomyocytes by 
heart chamber (PLeftAtrium = 2.46 × 10−2, PRightAtrium = 1.51 × 10−1, PLeftVentricle = 6.25 × 10−1,  
PRightVentricle = 1.43 × 10−1). The blue dotted line shows the cutoff for nominal 
significance P < 0.05. The red dotted line shows the Bonferroni corrected 
significance cut off 0.05/4. b, Plot showing the partitioned heritability results 

for gene expression in left atrial tissue by cell type (PCardiomyocyte = 2.26 × 10−3, 
PFibroblast = 8.18 × 10−1, PEndothelial = 6.07 × 10−1, PPericyte = 4.34 × 10−2, PMacrophage = 3.48 × 10−1,  
PVSMC = 3.15 × 10−2, PAdipocyte = 8.90 × 10−1, PNeuronal = 1.56 × 10−1, PLymphocyte = 5.63 × 10−1). 
The blue dotted line shows the cutoff for nominal significance P < 0.05. The red 
dotted line shows the Bonferroni corrected significance cut off 0.05/9. VSMC, 
vascular smooth muscle cells.
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Extended Data Fig. 4 | Venn diagram of consensus genes between GenePrio 
and nearest protein coding genes. Venn diagram for the overlap of GenePrio vs. 
nearest gene (protein coding, in relation to the transcription start position)  

at 139 loci. In red are the genes identified as the nearest, in blue are the GenePrio 
genes, and in black are the genes that overlap between the two groups. 56% of 
genes overlap.
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Extended Data Fig. 5 | Heatmap for GenePrio genes with two lines of evidence. 
GenePrio genes with two lines of evidence. The five categories of evidence that 
were assessed to prioritize genes at GWAS loci: snRNA-seq (labelled as snRNA), 
gene was a top 10% marker gene for cardiomyocytes in left atrial tissue; Coding, 
gene had genome-wide significant loss-of-function variant or missense variant 
with predicted to be damaging effect; MAGMA, significant result for the gene 
in MAGMA analysis; PoPs, gene had a high PoPs score; eQTL, sentinel variant at 

locus had a significant eQTL to that gene in cardiac tissue. The genes are sorted 
from lowest to highest P-value at the sentinel variant of the locus. AF, atrial 
fibrillation; eQTL, expression quantitative trait locus; GWAS, genome-wide 
association study; MAF, minor allele frequency; MAGMA, Multi-marker Analysis 
of GenoMic Annotation; PoPS, polygenic priority score; snRNA-seq, single-nuclei 
RNA-sequencing.
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Extended Data Fig. 6 | Gene set enrichment analysis for all GenePrio genes. 
Results of the gene set enrichment analysis for all 139 GenePrio genes across 
several databases. The −log10(P-values) are plotted sorted by gene set category. 
The top 5 gene sets by P-value are listed for each category. The size of each dot 
is proportional to the term size (n genes) of the gene set, that is larger terms 
have larger dots. The enrichment testing is done using a Fisher’s one-sided test 

(cumulative hypergeometric probability). P-values were adjusted for multiple 
testing using the g:SCS algorithm from the g:Profiler tool. BP, biological process; 
CC, cellular component; GO, gene ontology; HP, human phenotype ontology; 
HPA, human protein atlas; MF, molecular function; REAC, reactome; WP, wiki 
pathways.
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Extended Data Fig. 7 | Gene set enrichment results for top 10 GenePrio genes 
and GO:BP. Heatmap of significant (adjusted P < 5 × 10−6) gene sets for GO:BP, 
showing top 10 GenePrio genes (GenePrio sum = 4) and their affiliation to each 
set. The enrichment testing is done using a Fisher’s one-sided test (cumulative 

hypergeometric probability). P-values were adjusted for multiple testing using 
the g:SCS algorithm from the g:Profiler tool. BP, biological process; GO, gene 
ontology.
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Extended Data Fig. 8 | Gene set enrichment results for top 10 GenePrio genes 
and GO:MF, GO:CC, HP, HPA and REAC. Heatmap of significant (adjusted  
P < 5 × 10−6) gene sets for GO:MF, GO:CC, HP, HPA and REAC, showing top 
10 GenePrio genes (GenePrio sum = 4) and their affiliation to each set. The 
enrichment testing is done using a Fisher’s one-sided test (cumulative 

hypergeometric probability). P-values were adjusted for multiple testing using 
the g:SCS algorithm from the g:Profiler tool. CC, cellular component; HP, human 
phenotype ontology; HPA, human protein atlas; MF, molecular function; REAC, 
Reactome.
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Extended Data Fig. 9 | Cluster analysis of the GenePrio genes based on cell type 
specific expression and Gene Ontology. Results from a cluster analysis of 112 of 
the 139 GenePrio genes for Gene Ontology (GO) with clusterProfiler. Genes were 
annotated to cell types (one or more) based on the top 10% specific genes for 

each cell type. The over representation analysis uses a one-sided Fisher’s exact 
test. Multiple testing adjustment is performed with the Benjamini-Hochberg 
method. GO, gene ontology; VSMCs, vascular smooth muscle cells.
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Extended Data Fig. 10 | ATAC-seq tracks for TBX5, PITX2 and HSPB7 loci. 
a, TBX5 locus. b, PITX2 locus. c, HSPB7 locus. Tracks for ATAC-seq from our 
iPSC-derived atrial cardiomyocytes and seven publicly available ENCODE 
ATAC-seq datasets (GM23338, liver, skeletal muscle, NK cells, pancreas, thyroid 
and bladder), as well as two histone modification tracks: H3K4me3 from a 
CUT&RUN experiment on our iPSC-derived atrial cardiomyocytes and layered 
H3K27ac from seven published ENCODE cell lines. The histone modifications 
H3K27ac and H3K4me3 are both associated with active regions in the genome, 

and are often located at promoters, enhancers or transcription start sites. 
GWAS variants indicate the location of common variants with genome-wide 
significance (P < 5 × 10−8) in the meta-analysis. Coordinates are in build GRCh38. 
ATAC-seq, Assay for Transposase-Accessible Chromatin using sequencing; CMs, 
cardiomyocytes; CUT&RUN, Cleavage Under Targets & Release Using Nuclease; 
ENCODE, Encyclopedia of DNA Elements; H3K27ac, histone H3 Lysine 27 
acetylation; GWAS, genome-wide association study, H3K4me3, histone H3 lysine 
4 trimethylation; iPS cells, induced pluripotent stem cells.
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