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Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent the most common genetic cause of
Parkinson's disease (PD). However, LRRK2 function andmolecularmechanisms causing the parkinsonian pheno-
type remain widely unknown. Most of LRRK2 knockdown and overexpression models strengthen the relevance
of LRRK2 in regulating neurite outgrowth. We have recently identified ARHGEF7 as the first guanine nucleotide
exchange factor (GEF) of LRRK2. This GEF is influencing neurite outgrowth through regulation of actin polymer-
ization. Here, we examined the expression profile of neuroblastoma cells with reduced LRRK2 and ARHGEF7
levels to identify additional partners of LRRK2 in this process. Tropomyosins (TPMs), and in particular TPM4,
were the most interesting candidates next to other actin cytoskeleton regulating transcripts in this dataset.
Subsequently, enhanced neurite branching was shown using primary hippocampal neurons of LRRK2 knock-
down animals. Furthermore, we observed an enhanced number of growth cones per neuron and a
mislocalization and dysregulation of ARHGEF7 and TPM4 in these neuronal compartments. Our results reveal a
fascinating connection between the neurite outgrowth phenotype of LRRK2 models and the regulation of actin
polymerization directing further investigations of LRRK2-related pathogenesis.

© 2013 Published by Elsevier B.V.
1. Introduction

Understanding the molecular mechanisms underlying the patho-
genesis of Parkinson's disease (PD) is ofmajor interest in current neuro-
degenerative disease research. Especially in Leucine-rich repeat kinase 2
(LRRK2) associated PD, this goal is far frombeing reached. Up until now,
more than 50 variants in this 286 kDa protein have been described [1].
Multiplying the complexity of the research projects, the proven
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pathogenic mutations cover all enzymatic domains of this protein.
Among those are N1437S/H and R1441C/R/H mutations in the GTPase
domain (Roc) of LRRK2 [2–5]. The COR-domain harbours the Y1699C
mutation and in the kinase domain the I2020T and the most common
G2019S mutation have been found [2,3,6–8]. Additionally, it is not yet
clear whether the pathogenicity is being induced by a differentially
active GTPase activity or kinase activity of LRRK2, or both.

Research in LRRK2 invertebrate models, cell culture and mouse
models clearly indicates an influence of LRRK2 on neurite outgrowth.
In Caenorhabditis elegans the LRRK2 homologue lrk-1 plays a role in
the specification of axons and dendrites, their outgrowth ability and
capacity in pathfinding [9,10]. This LRRK2 associated phenotype is
supported by analyzing primarymurine neurons, inwhich an enhanced
kinase activity of LRRK2 results in reduced neurite growth whereas re-
duced kinase activity has the opposite consequence of increased neurite
outgrowth [11–14].

The molecular basis for this phenotype is far from being fully deter-
mined. Investigations on LRRK2 interacting proteins hint at underlying
signalling cascades. It has been shown that LRRK2 directly interacts
and phosphorylates tubulin leading tomore stable yet less dynamicmi-
crotubules [15–17]. The interaction of LRRK2with the elongation factor
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1α (EF1A), known for maintenance of microtubule stability, further
supports a function of LRRK2 in this pathway [18]. Axonal guidance,
neuronalmaintenance andmicrotubule stabilization are also influenced
by the dishevelled protein family (DVL) and the Wnt signalling path-
way. Not only the interaction of LRRK2 with DVL1/2/3 was recently
identified, but also the expression profile of SH-SY5Y cells with reduced
LRRK2 levels and the expression profile of mononuclear cells of PD pa-
tients with the G2019S mutation points to a dysregulation of the Wnt
signalling pathway [19–21].

In addition to microtubule cytoskeleton structures that are
influenced by LRRK2, the impact of LRRK2 on actin cytoskeleton regula-
tion is being heavily investigated. Recently, the interaction of LRRK2with
the Rho GTPases Rac1 and CDC42, that have critical roles in actin cyto-
skeleton remodelling, was shown by us and others [5,22]. In these
studies, the authors identified that LRRK2 attenuates Rac1 activation
which in turn causes neurite retraction through disassembly of actin
filaments [22]. The influence of LRRK2 on the ratio of filamentous
actin (F-actin) to monomeric actin (G-actin) was also shown by the
group of M. Ueffing [23]. They identified that LRRK2 is interacting
with actin isoforms as well as with proteins that regulate actin stability
andmaintenance like capping proteins, subunits of the Arp2/3 complex,
tropomyosins and actin motor proteins [23]. Additionally, LRRK2 is
interacting and phosphorylating ezrin, radixin and moesin that are
crucial for the fixation of actin filaments on the cell membrane [16,24].

Together, these hints aswell as the expression profile of SH-SY5Y cells
after knockdown of LRRK2, clearly point to LRRK2 as a centralmediator of
the cellular actin network [19]. The detailed analysis of this expression
profile highlights a dysregulation of actin cytoskeleton pathways, with
ARHGEF7 being one of the most profoundly up-regulated cytoskeleton-
associated transcripts. In subsequent studies, ARHGEF7 was identified as
the first guanine nucleotide exchange factor (GEF) for the GTPase activity
of LRRK2 [5]. This GEF is known to regulate the maintenance of the actin
cytoskeleton through (i) regulating the activity of CDC42 and, additional-
ly, (ii) by interacting with PAKs that are important in activating LIM-
kinases [25,26]. In this study, we further analyzed the interplay of
LRRK2 and ARHGEF7 with respect to downstream partners for the actin
cytoskeleton signalling. Given that the upregulation of ARHGEF7 leads to
enhanced neurite growth [27,28] and the downregulation of LRRK2 results
in upregulation of ARHGEF7 [19], the enhanced neurite growth in LRRK2
knockdownmodels [12,14,29] could be in connection to ARHGEF7 and ad-
ditional until now not elucidated actin cytoskeleton associated partners.

For that purpose we used the joint downregulation of ARHGEF7 and
LRRK2 in SH-SY5Y cells, followed by transcription profiling. By compar-
ing the expression values of the single LRRK2 and the joint knockdown
(lowermay resemble a rescue effect) we identified four actin associated
transcripts that could be relevant for the phenotype. Finally, the results
were transferred into ex vivo studies to validate their relevance in regu-
lating neurite outgrowth and growth cone morphology.
Table 1
Oligonucleotides for qRT-PCR measurement, reference genes are displayed in grey.

Gene symbol Gene name

PDHB Pyruvate dehydrogenase beta

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

SDHA Succinate dehydrogenase complex, subunit A 

LRRK2 Leucine-rich repeat kinase 2

ARHGEF7 Rho guanine nucleotide exchange factor (GEF) 7 

ARHGEF9 Cdc42 guanine nucleotide exchange factor (GEF) 9 

CDC42 Cell division cycle 42

MGMT O-6-methylguanine-DNA methyltransferase 

NDN Necdin homolog

SCG5 Secretogranin V (7B2 protein) 

SEMA4F Semaphorin 4F

SYT1 Synaptotagmin I

TPM4 tropomyosin 4

ZMAT3 zinc finger, matrin-type
2. Material and methods

2.1. Antibodies and other reagents

The following antibodies were used in this study: rabbit monoclonal
anti-LRRK2 antibody MJFF2 (c41-2) and MJFF3 (c69-6) (Epitomics),
rabbit polyclonal anti-SH3 ß-Pix antibody 07-1450 (Millipore), rabbit
polyclonal TPM4 antibody ab77683 (Abcam) for detection of mouse
TPM4, and mouse monoclonal TPM4 antibody 4E4-102 (Abnova) for
detection of human TPM4. Additionally, we used themousemonoclonal
Beta-Actin antibody clone Ac15 (Sigma), the p97 ATPase (VCP) anti-
body #65278 (Progen) and two different Map2 antibodies (sc20172
Santa Cruz,M1406 Sigma). For the immunofluorescence stainingwe ap-
plied 4′,6-diamidino-2-phenylindol (Sigma) to detect nuclei and Alexa
Fluor 488 phalloidin (Invitrogen) to visualize the actin cytoskeleton.
The coating was done with poly-DL-ornithine hydrobromide (P8638,
Sigma) for neurons and with poly-L-lysine (P8920, Sigma) for SH-
SY5Y or NIH3T3 cells.

2.2. Cell cultures and mouse model

SH-SY5Y cells (ACC 209) andNIH3T3 (ACC59)were purchased from
DSMZ. The shRNA based LRRK2 knockdown mouse model was pub-
lished previously [30,31] and kindly provided by the group of W.
Wurst (Munich, Germany).

2.3. RNA interference

RNA interference experiments were performed in SH-SY5Y cells
according to the previously published protocol [19]. In addition to the
published siRNA against LRRK2 (siLRRK2-1) and the control siRNA, we
used the siRNA against ARHGEF7 with the target sequence CAAGCGCA
AACCTGAACGGAA. Forty eight hours after transfection, the cells were
analyzed further.

2.4. RNA isolation, cDNA synthesis and qRT-PCR

RNAwas isolated using anRNeasyMini Kit (Qiagen) according to the
protocol. A QuantiTect Reverse Transcription Kit (Qiagen) was used for
cDNA synthesis. The primer design for exon–exon boundary-spanning
oligonucleotides was done with Primer3 software (http://frodo.wi.mit.
edu/primer3/). The used oligonucleotides for the measurement of the
human genes are listed in Table 1.

The qRT-PCR was done using a QuantiTect SYBR Green PCR Kit
(Qiagen) on the LightCycler 480 (Roche) in a 348-well plate and 10 μl
volume. The PCR settings were applied according to the manufacturer's
protocol. The assay specificity was analyzed by melting curves, and
standard curves weremeasured to obtain primer-specific PCR efficiency.
Forward primer (5’-3’) Reverse primer (5’-3’)

ggtttcccattcaagacctg tggtttccatgtccattggt

agccacatcgctcagacac gcccaatacgaccaaatcc

agaagccctttgaggagca cgattacgggtctatattccaga

atgatgacagcacagctagga aaacggtcaagcaagattgta

ccagcaaatgctcgtacagt tcactgcagaagggtgattg

actcagcagatcaacgaacg ccgagctcctgtctaggatg

ccagagactgctgaaaagctg gcacttccttttgggttgag

ctcttcaccatcccgttttc agggctgctaattgctggta

tcactgaggagttcgtccaa ccatgatttgcatcttggtg

tgaagggaggagagagacga gacagacttctttgcaacaaca

cagtctgtgcctggagctt tccaggctctttaggacacaa

tgcaaagtgctgagaaggaa tgcctccagaatgacaacag

tgaaaaggaggacaaatatgaaga ctttggcctgggcaagtt

aatcctcagagctgggtcaa gagagcggggattgaagtaa

http://frodo.wi.mit.edu/primer3/
http://frodo.wi.mit.edu/primer3/
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Fig. 1. Efficient knockdown of ARHGEF7 and/or LRRK2 by RNAi. SH-SY5Y cells were transfected with siRNA against LRRK2 and/or ARHGEF7 or control siRNA. A) qRT-PCR measurements
were performed to analyze the RNAi efficiency. Relative expression of ARHGEF7 (black) and LRRK2 (grey) was compared to control siRNA transfected cells. PDHBwas used as a reference
gene for normalization. The analysis was done in 3 independent replicates. Statistics were calculated with Student's t-test, p-value * ≤ 0.05, *** ≤ 0.001. B) RNAi efficiency test by SDS-
Page (6%) followed by immunoblotting of 60 μg total protein lysate of RNAi transfected cells. Data is representative of three independent experiments. VCP was used as loading control.
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For data analysis, the cp-valueswere generated using a secondderivative
maximum method. Further data analysis to obtain relative expression
values was done with qBASE and PDHB. GAPDH and SDHA were used as
reference genes.
2.5. Microarray and pathway analyses

Microarrays were analyzed with biological triplicates for each condi-
tion (control siRNA, siARHGEF7, siLRRK2 + siARHGEF7) using the
Affymetrix GeneTitan® platform with GeneChip® HT HG-U133+ PM
array plates. Primary data were analyzed with GeneChip operating soft-
ware, resulting in quality scores for each array. For normalization, the
GCRMA algorithm was applied to all data sets using ArrayAssist Expres-
sion Software Version 5.5.1 (Stratagene). To identify differentially regu-
lated genes between the conditions (baseline = control siRNA
treatment) we used a filtering scheme of 1.5-fold change in expression
Fig. 2. Differentially regulated transcripts based on the microarray analysis. Volcano plot of the
siRNA, and B) siARHGEF7 + siLRRK2 vs. control siRNA. Grey = all probe sets with p-valu
(p-value ≤ 0.05, fold change ≥ ±1.5) of all conditions compared to control siRNA treatment.
level and p-value of less than 0.05. The results were compared with the
previously published data of siLRRK2-treated SH-SY5Y cells [19]. Ingenu-
ity Pathways Analysis software (ingenuity® systems, www.ingenuity.
com) was used to generate gene regulation networks, differentially reg-
ulated functions and canonical pathways as previously described [19].
2.6. Preparation of hippocampal neurons

For isolation of primary hippocampal neurons, hippocampi were
dissected from brains of p0mice in HBSS. After 14 min of trypsinization
(0.25% Trypsin/EDTA) in 37 °C water bath, the hippocampi were
washed three times with a Neurobasal-A medium containing 1×
Glutamax. Afterwards, two hippocampi per animal were triturated in
a 500 μl plating medium (Neurobasal-A medium with 1× Glutamax,
0.5 ml B27 supplement and 5 ng/ml bFGF). Subsequently the suspen-
sion was transferred to coated 6-well plates (Nunc) with coverslips,
−log(p-value) against the log(fold change) of each probeset of A) siARHGEF7 vs. control
e ≤ 0.05 and a fold change ≥ ±1.5. C) Overview of the differentially regulated genes

http://www.ingenuity.com
http://www.ingenuity.com
image of Fig.�1
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containing 2.5 ml of a platingmedium. The coatingwas performed pre-
viously for 1 h with 0.5 mg/ml poly-DL-ornithine hydrobromide
dissolved in sterile 0.15 M boric acid (with H2O, pH 8.35, Sigma) and
a final three-time-washing step with HBSS. All the reagents were pur-
chased from Gibco unless specified otherwise. After 7 days in culture
(DIV7), primary hippocampal neurons were used for analyses.

2.7. Immunofluorescence

The DIV7 hippocampal neurons, SH-SY5Y and NIH3T3 cells, grown
on the cover slips, had been prefixated for 2 min with 0.4% PFA in the
cell culture media. Subsequently, a fixation step with 4% PFA (in PBS)
for 15 min was done followed by incubation overnight at 4 °C in a wet
chamber with the primary antibodies (or Alexa Fluor 488 phalloidin
for staining the actin cytoskeleton) diluted in PBSwith 5% Chemiblocker
(Millipore) and 0.1% Triton X-100 (Sigma). After four times of washing
with PBS (containing 2% Chemiblocker) the cells were incubated for 2 h
at room temperature with a mouse or rabbit secondary Cy2 or Cy3
labelled antibody diluted in PBS (containing 2% Chemiblocker). This
was followed by four times of washing with PBS and 10 min of staining
of the nuclei with 0.04 μg/ml 4′,6-diamidino-2-phenylindol (in PBS).
The digital images from the stained cells were taken with LSM510
(Zeiss) and LSM Image Browser Software (Zeiss).
Fig. 3. Comparative analysis of biological functions and transcripts affected by knockdown of AR
datasets of siLRRK2 vs. control siRNA [19], siARHGEF7 vs. control siRNA and siLRRK2 + siARH
p-value of the siLRRK2 dataset. Numbers (1–5) in bars represent the ordered position (most
the p-values. (B) Venn diagram of siLRRK2 vs. control siRNA [19], siARHGEF7 vs. control siRN
up-regulated (red) or down-regulated (green). Blackwriting represents different direction of re
and LRRK2.
2.8. Quantification of neurite outgrowth and growth cones

For the quantification of processes, branches and neurite outgrowth,
a picture of the indicated number of randomly chosen and separate neu-
rons (Map2 stained) or cells (phalloidin stained) was taken by a person
blinded for the condition. For hippocampal neurons at least 3 different
litters containing wildtype and knockdown animals were analyzed.
The neurite quantification tool of Metamorph 7.6 (Molecular Devices,
USA) was applied for the quantification.

The growth cone quantification was done manually for separate
phalloidin-stained neurons. First, the mean growth cone number per
neuron was quantified. Secondly, the growth cones were grouped ac-
cordingly to their shape (collapsed, normal) [32]. Finally, the percentage
of neurites of one neuronwith collapsed, normal or no growth conewas
calculated, followed by the quantification of the average overall neurons
of each genotype.

The localization of ARHGEF7 and TPM4 in the growth cones was
analyzed with Metamorph 7.6 (Molecular Devices, USA). The indicated
numbers of neurons per genotype were examined by a blinded investi-
gator. The area and intensity of ARHGEF7 or TPM4 in the growth cone
were determined additional to the area of the entire growth cone
(stained with phalloidin). Initially, the area sizes were displayed sepa-
rately in a scatter plot according to the genotype. For statistical analyses,
HGEF7 and/or LRRK2. (A) Ingenuity Pathways Analysis Software was used to compare the
GEF7 vs. control siRNA. Biological functions are sorted according to the most significant
significant = 1) of this function in the dataset. Fischer's exact test was used to calculate
A, and siLRRK2 + siARHGEF7 vs. control siRNA. Overlapping transcripts are indicated as
gulation in the datasets. 29 overlapping transcripts are regulated by joint RNAi of ARHGEF7

image of Fig.�3
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the growth cones were grouped according to their size (area of
phalloidin), and the ratio of either ARHGEF7 or TPM4 area (or intensity)
and the phalloidin area of the growth cones of each group was deter-
mined. The averages overall growth cone ratios (grouped) were com-
pared between the genotypes.

The quantification of the F-actin area located around the neuronal cell
body was performed with Metamorph 7.6 (Molecular Devices, USA). The
cell body area of randomly chosen and separate neurons was calculated
using Map2 staining of the neuron. The F-actin area was quantified with
the phalloidin staining of the same neuron. The ratio of F-actin area vs.
Map2 area was averaged for all the neurons of each genotype.

2.9. Protein isolation and immunoblotting

Protein lysis of whole brain of C57Bl6wildtypemice for immunopre-
cipitation studies was performed with 3 ml cell lysis buffer (Cell
Fig. 4. Pathway of overlapping transcripts from the LRRK2/ARHGEF7 co-knockdown resemb
Pathways Analysis Software contained 39 genes. It is based on 29 differentially regulated trans
change (up-regulated in red, down-regulated in green) and the p-values are shown below th
specific expression values is shown for B) ARHGEF7 knockdown and C) LRRK2 knockdown.
Signaling Technologies) containing a protease inhibitor cocktail (Cell Sig-
naling Technologies) and phosphatase inhibitor cocktails II and III
(Sigma) using a dounce-homogenisator. After 45 min of incubation
with rotation at 4 °C a 15 min centrifugation step at 4 °C at
13,000 rpmwas executed. The protein concentration of the supernatant
was analyzed with the Bradford method. Protein lysis of the brain re-
gions of C57Bl6 wildtype mice was performed as previously described
[33]. Thirty micrograms were used for SDS-Page.

Protein lysis for SDS-Page from cultured cells was performed with
100 μl (per 6-well) of the same lysis buffer and 45 min of incubation
with rotation at 4 °C. This was followed by 15 min of centrifugation at
4 °C at 13,000 rpm. Sixty micrograms of total protein lysate were
separated on SDS-Page.

After SDS-Page, selected proteins were detected by standard immu-
noblotting procedures. Quantification of intensities of protein bands
was done with the AlphaEaseFCTM software (Alpha Innotech).
les the single LRRK2 knockdown. Gene regulation network established with Ingenuity
cripts overlapping between the siLRRK2 and the siLRRK2 + siARHGEF7 dataset. The fold
e gene symbols. A) LRRK2 + ARHGEF7 co-knockdown. The identical network except the

image of Fig.�4


Fig. 5.Validation ofmicroarray data. qRT-PCRmeasurements for differentially regulated transcripts in at least one of the datasets with known function in A) regulation of the cytoskeleton,
B) influence on apoptotic processes, and C) relevance for synaptic regulation or vesicular trafficking. The relative expression values based onmicroarray (grey) and qRT-PCR (black) data
are indicated in the table below. Error bars indicate the standard deviation of themeans. The p-value of themicroarray data are always≤0.05 (not shown) and the p-value of the qRT-PCR
data is indicated *≤0.05, **≤0.01, ***≤0.001 (Student's t-test).
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3. Results

3.1. Microarray analysis after siRNA mediated co-knockdown of ARHGEF7
and LRRK2

The LRRK2 protein is assumed to play a role in maintaining the actin
cytoskeleton. siRNA-mediated knockdown experiments of LRRK2 in a
dopaminergic cell culture model revealed an up-regulation of the
guanine nucleotide exchange factor ARHGEF7 [19]. Although the impact
of ARHGEF7 on the stability of actin filaments is well known, the inter-
play of LRRK2 andARHGEF7 needs to be analyzed in greater detail. Thus,
the analysis of signalling cascades after knocking down ARHGEF7 in
addition to LRRK2 is one possible step to examine underlying pathways
of LRRK2 pathology.

image of Fig.�5
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To study the global influence of the double knockdown of both genes
we appliedmicroarray analyses. For this purposewe used our previous-
ly established LRRK2 knockdown SH-SY5Y cell culture model and tran-
siently transfected siRNA against LRRK2, ARHGEF7 and both together
additionally to an unspecific control siRNA. For the knockdown of
ARHGEF7we compared the knockdown capacity of two different siRNAs
and chose themore efficient one (data not shown). The knockdown effi-
ciency was controlled on the RNA level by qRT-PCR (Fig. 1A) and on the
protein level by Western blot analysis (Fig. 1B). Three independent bio-
logical replicates of each condition (control siRNA, siARHGEF7,
siLRRK2 + siARHGEF7) were analyzed on Affymetrix GeneChip® HT
HG-U133+ PM array plates. All nine arrays passed the quality perfor-
mance control (Supplementary Fig. 1) and were subsequently used to
determine differentially expressed transcripts with a fold change of at
least 1.5 and a p-value of b0.05. Comparing ARHGEF7 knockdown and
control siRNA treatment yielded in 50 differentially regulated genes
(26 up-regulated and 24 down-regulated) (Fig. 2A). Three times more
transcripts (152; 58 up-regulated, 94 down-regulated)were differential-
ly expressed in the double knockdown of ARHGEF7 and LRRK2 com-
pared to control siRNA treatment (Fig. 2B). A comparison to the
previously published dataset in the same cell line with knockdown of
LRRK2 vs. control siRNA transfection is shown in Fig. 2C [19]. Ingenuity
pathway analysis was performed with all three available datasets —

siLRRK2, siARHGEF7 and siLRRK2 + siARHGEF7 (each of them in
comparison to control siRNA treatment). The analysis of the impaired bi-
ological pathways (Fig. 3A) points at high similarity between the single
knockdown of LRRK2 and the double knockdown of LRRK2 and
ARHGEF7, respectively, namely on cell cycle and cell morphology. The
knockdown of ARHGEF7 alone resulted in regulation of different
biological functions such as amino acid and drug metabolism. Single
gene regulation as well as pathway analysis supported the indication
that a double knockdown of LRRK2 and ARHGEF7 are very close to the
single LRRK2 knockdown (Fig. 3B). The Venn diagram showed an
Fig. 6. LRRK2 knockdown leads to an outgrowth phenotype in SH-SY5Y cells. A) Representativ
stained with phalloidin (green). Scale bar = 10 μm. B) Quantification of processes and branch
transfections. Error bars indicate standard deviation of the means, ***p-value ≤ 0.001 (Studen
VCP was used as loading control.
overlap of 7 transcripts that were differentially regulated between
siLRRK2 and siARHGEF7 conditions. Considerably more transcripts (19)
are overlapping between the single knockdown of ARHGEF7 and the
double knockdown of ARHGEF7 and LRRK2. Even more intriguing was
the overlap of 29 transcripts between the single knockdown of LRRK2
and the double knockdown of LRRK2 and its GEF. On closer examination
of these 29 differentially regulated transcripts, especially considering
the altered pathways, one can clearly distinguish between the two single
knockdown datasets (Fig. 4B siARHGEF7, Fig. 4C siLRRK2). Contrarily,
the double knockdownof LRRK2 andARHGEF7 (Fig. 4A)was very similar
to the single knockdown of LRRK2 (Fig. 4C) looking at the differentially
regulated transcripts in the depicted pathways. Although the expres-
sion changes were not the same, the direction of regulation was
identical.

It is known that both ARHGEF7 and LRRK2 have an impact on the
actin cytoskeleton network. ARHGEF7 regulates the actin cytoskeleton
through CDC42 and PAKs, whereas LRRK2 influences actin polymeriza-
tion [23,25,26]. Therefore, it was not surprising that next to apoptosis
related transcripts like C14orf100 (also known as Jamp), ING3,
MAPK8, MGMT or NDN, the transcript levels of cytoskeleton associated
transcripts were most severely changed. Among them were CDC42,
MAP4, SEMA4F and several tropomyosins. Comparing the fold change
of these cytoskeleton associated transcripts, 66.6% of them are less dif-
ferentially regulated in the double knockdown of ARHGEF7 and LRRK2
compared to the single knockdown of LRRK2 (Supplementary Fig. 2).
The regulation of these transcripts was not initiated by the sole loss of
ARHGEF7 as only in the single knockdown of LRRK2 or in the double
knockdown of ARHGEF7 and LRRK2 was the change in their expression
levels present.

Analysis of selected transcripts by qRT-PCR confirmed the microar-
ray data (Fig. 5). Comparing all the datasets, only six transcripts were
regulated in all conditions. One of them is TPM4, a tropomyosin, stabi-
lizing polymeric actin filaments.
e image of SH-SY5Y cells treated with control and LRRK2 specific siRNA. F-actin structures
es in control siRNA (n = 77) and siLRRK2 (n = 86) treated SH-SY5Y cells from different
t's t-test). C) Representative image of LRRK2 knockdown efficiency on the protein level.
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3.2. SH-SY5Y process phenotype was mediated by ARHGEF7 and LRRK2

Neurite growth depends on the fine-tuning of expression and post-
transcriptional modification of actin-associated proteins like the small
GTPase CDC42, profilins, PAKs and tropomyosins [34]. The underlying
mechanisms how LRRK2 is guided to the actin cytoskeleton and how
LRRK2 is influencing the actin polymerization, however, are unclear.
Similar to other cell culture models [12,35] knocking down LRRK2 in
SH-SY5Y cells also features the known outgrowth phenotype with
more processes and branches per cell (Fig. 6). This phenotype was
Fig. 7. ARHGEF7 knockdown induces a reverse outgrowth phenotype compared to LRRK2 knock
siRNA, respectively. F-actin structures stainedwith phalloidin (green). Scale bar = 10 μm. B)Qua
(n = 44) SH-SY5Y cells. Error bars indicate standard deviation of the means, *p-value ≤ 0.05, **
knockdown efficiency on the protein level. VCP was used as loading control.
also seen in mouse fibroblasts (NIH3T3) after knockdown of LRRK2
and counting of filopodia (Supplementary Fig. 3). Since knockdown of
LRRK2 leads to increased expression of ARHGEF7 and this on its own
could already result in enhanced actin polymerization, which could be
the fundamental cause for this phenotype, we analyzed the phenotype
of the ARHGEF7 knockdown in this SH-SY5Y cell model. As expected,
we found a dramatic reduction in the number of processes and branches
additionally to a reduction in total outgrowth and length of processes
(Fig. 7). To test whether both proteins act together on actin rich struc-
tures like processes, neurites or filopodia, we examined the endogenous
down. A) Representative image of SH-SY5Y cells treatedwith control and ARHGEF7-specific
ntification of process outgrowth in control siRNA-treated (n = 53) and siARHGEF7-treated
p-value ≤ 0.01, ***p-value ≤ 0.001 (Student's t-test). C) Representative image of ARHGEF7
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Fig. 8. LRRK2 knockdown leads to enhanced branching of hippocampal neurons. DIV7 hippocampal neurons of LRRK2 knockdownmice (KD) andwildtype (WT) littermates were stained
withMap2 (red). A)Representative images of neurons of both genotypes. Scale bar = 10 μm. B)Wildtype (n = 128) and LRRK2knockdown (n = 138) neurons of four litterswere quan-
tified using the neurite outgrowth tool of Metamorph software. For representative reasons all parameters were normalized to wildtype condition, but the statistical tests were donewith
the raw data). Error bars indicate standard deviation of the means, *p-value ≤ 0.05 (Student's t-test).
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localization of both proteins in NIH3T3 cells. These cells express high
endogenous levels of LRRK2 which allowed the use of available LRRK2
antibodies generated by the MJFF consortium for immunofluorescence
studies. These experiments confirmed the colocalization of LRRK2 and
ARHGEF7 in actin rich lamellipodial structures (stained with F-actin,
as shown in Supplementary Fig. 4). Also in NIH3T3 cells both proteins
were clearly found in the filopodia, in particular at the tips of these
actin rich structures (Supplementary Fig. 5).

3.3. LRRK2 knockdown hippocampal neurons were characterized by a
growth cone phenotype and enhanced branching

After examining the influence of LRRK2 and ARHGEF7 on processes
and branches in cell culturemodels, we extended our analysis to neuro-
nal cultures. Therefore, we examinedprimaryDIV7 hippocampal neuro-
nal cultures from LRRK2 knockdown mice. The residual amount of
LRRK2 expression in whole brain of these LRRK2 knockdown mice is
from p0 to p7 less than the barely existent LRRK2 expression in WT
mice at p0 (data not shown). Although these mice did not show an ob-
vious dopaminergic neurodegeneration and, thus, no obvious motoric
phenotype before adulthood, behaviourally they exhibited subtle
motor and sensory phenotypes (personal communication). We found
significant enhanced branching of DIV7 LRRK2 knockdown hippocam-
pal neurons (Fig. 8). Co-staining of Map2 and F-actin rich structures
and growth cones by phalloidin (Fig. 9A) clearly indicated an enhanced
number of growth cones per neuron in the LRRK2 knockdown condition
(Fig. 9C). For further characterization of the growth cones, we classified
them according to their shape [32]. Neurons of LRRK2 knockdownmice
had significantly more normally shaped growth cones at neurite tips.
This came along with a reduced number of collapsed growth cones
(Fig. 9B). Thenumber of neuriteswithout growth coneswas unchanged.
The same tendency was observed for growth cones along neurites
(Supplementary Fig. 6). Interestingly, hippocampal neurons of LRRK2
knockdown mice showed significantly more F-actin rich structures
around the cell soma than the wild types, indicating a potential dysreg-
ulation of actin associated proteins (Fig. 9D). Ourmicroarray data clear-
ly pointed on tropomyosins. In particular TPM4, which was not only
regulated in all three conditions but also showed a partial rescue effect
comparing the single LRRK2 knockdown and the double knockdown of
LRRK2 and ARHGEF7 (Supplementary Fig. 2), could be influenced by
LRRK2 and ARHGEF7 during F-actin polymerization processes.

TPMs are proteins that stabilize actin filaments and protect them
from severing proteins. Although there are more than 40 mammalian
tropomyosin isoforms known to date, there is widespread isoform-
specific expression in the brain [36]. We analyzed if all the three pro-
teins (LRRK2, ARHGEF7, TPM4)were endogenously expressed in differ-
ent mouse brain regions (Supplementary Fig. 7). The highest amount of
ARHGEF7 and TPM4 was found in the cerebellum while LRRK2 had its
highest expression in the striatum. The lowest expression of ARHGEF7
and LRRK2 was found in the brainstem, and TPM4 was lowest in the
striatum.

3.4. Phenotype of the LRRK2 knockdown hippocampal neurons was
dependent on localization of TPM4 and ARHGEF7

Next, we analyzed whether ARHGEF7 and TPM4 were localized in
growth cones and dendrites of hippocampal neurons. As shown in
Fig. 10A and B, ARHGEF7 clearly co-localized with Map2 as a marker
of dendrites. Additionally, the expression of ARHGEF7 in growth
cones, stained with Alexa Fluor 488 phalloidin, was remarkable
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Fig. 9. LRRK2 knockdown induces growth cone phenotype in hippocampal neurons. Growth cones of DIV7 hippocampal neurons of LRRK2 knockdown mice (KD, n = 96) and wildtype
littermates (WT, n = 96) are visualizedwith phalloidin staining of F-actin (green) structures and co-staining ofMap2 (red). A) Representative images of neurons of both genotypes. Scale
bar = 10 μm. B) Growth conemorphology of wildtype and LRRK2 knockdown neurons of three litters grouped and quantified according to growth cone shape (representative image as
pictured in the bar). C) Mean growth cone number per neuron. D) Area quantification covered by F-actin (phalloidin staining, blue) in relation to the cell body area indicated by Map2
staining (purple) of LRRK2 knockdown neurons (n = 30) and wildtype littermates (n = 30). Error bars indicate standard deviation of the means, **p-value ≤ 0.01 ***p-value ≤ 0.001
(Student's t-test).
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(Fig. 10C, D). Looking at the expression of TPM4 in the same neuronal
compartments, the localization of TPM4 in dendrites was predominant
to its localization in growth cones (Fig. 11). Because of the low
expression of LRRK2 and the problem of unavailable sensitive antibod-
ies, the endogenous localization of LRRK2 could not be identified in
these structures. Yet, the localization of ARHGEF7 and TPM4 in
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Fig. 10. ARHGEF7 is localized in growth cones and dendrites of hippocampal neurons. Wildtype hippocampal neurons (DIV7) were stained with ARHGEF7 (red) and Map2 (green)
(A, B = zoomed box of A) to identify the endogenous localization of ARHGEF7 in dendrites. The co-staining of ARHGEF7 (red) and phalloidin (green) (C, D = zoomed box of C) indicates
the co-localization of ARHGEF7 with F-actin rich structures and the growth cone. Scale bar = 10 μm.
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dendrites and growth cones led to the hypothesis that both are involved
in the LRRK2-associated regulation of the actin-cytoskeleton. Therefore,
we compared their localization in hippocampal neurons of LRRK2
knockdown mice with wildtype littermates. The general expression
and localization in the neuronwere identical for ARHGEF7 (Supplemen-
tary Fig. 8) and for TPM4 (Supplementary Fig. 9), respectively.

For a detailed growth cone analysis, we measured their areas
(F-actin staining) and blotted them against the areas of the growth
cones covered by ARHGEF7 in LRRK2 knockdown compared towildtype
mice (Fig. 12A–C). The results indicated that specifically smaller growth
cones (b100 μm2) in LRRK2 knockdownmice had a larger area covered
by ARHGEF7 compared to wildtype mice. Group-wise analysis
highlighted higher significance of this difference in growth cones
b30 μm2 (p-value = 0.0016, Fig. 12D). Despite lower significance,
growth cones between 30 μm2 and 60 μm2 also showed this enhanced
localization of ARHGEF7 (p-value = 0.0066, Fig. 12E). The significant
difference then disappeared in growth cones between 60 μm2 and
90 μm2 (Fig. 12F). The question whether this distribution of ARHGEF7
is accompanied by enhanced ARHGEF7 expression, was answered by
calculating the ratio of the ARHGEF7 staining intensity in the growth
cone to the corresponding area of phalloidin. Supplementary Fig. 10
points to the same ARHGEF7 intensity in growth cones b30 μm2 and
less ARHGEF7 intensity in growth cones of 30–60 μm2 and 60–90 μm2,
respectively, comparing LRRK2 knockdown animals with wildtype lit-
termates. These quantifications allow the conclusion that in smaller
growth cones, which probably still need to grow and find their
direction, loss of LRRK2 leads to enhanced ARHGEF7 expression in an
expanded area of growth cones.

The detailed analysis of TPM4 localization in growth cones of hippo-
campal neurons of LRRK2 knockdown animals indicated an enhanced
TPM4 area per growth cone (Fig. 13A–D). This was accompanied with
an increased intensity of TPM4 (Fig. 13E). Looking at the growth cones
of LRRK2 knockdown mice with an area of less than 30 μm2 and of 30
to 60 μm2, in which the ARHGEF7 dysregulation was most prominent,
the dysregulation of TPM4 was also detected (Supplementary Fig. 11).
4. Discussion

In 2004, thefirst genetic indication of an involvement of LRRK2 in PD
was published [2,3]. Since then the physiological role of LRRK2 has been
investigated in different overexpression and knockdownmodels. There
is a growing body of evidence for LRRK2 acting as a direct or indirect
regulator of actin polymerization which may provoke the neurite out-
growth phenotype reported in many of the studies [14,23,24]. The un-
derlying molecular mechanisms have, however, remained largely
elusive. It has been shown that LRRK2 is interacting with the small
GTPases CDC42 and Rac1 [5,22]. Both proteins are key regulators of
actin polymerization through activation of the Arp2/3 complex that
operates as a seed structure for actin polymerization and for a branched
actin network as well [37]. In our previous studies we have shown that
an up-regulation of CDC42 after knocking down LRRK2 is associated
with an up-regulation of ARHGEF7 in the neuroblastoma cell line
SH-SY5Y [19]. ARHGEF7 is a guanine nucleotide exchange factor for
both, CDC42 and Rac1, and plays a major role in actin polymerization
[25]. Furthermore, ARHGEF7 is influencing PAKs that are important in
regulating downstream proteins that maintain F-actin stability, like
LIM-kinases and ADF/cofilins [26,38]. As Meixner's group has shown,
LRRK2 is influencing theG-actin/F-actin ratio in vitro, but theunderlying
in vivomechanisms and the required signalling proteins that lead to the
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Fig. 11. TPM4 is localized in the growth cones and dendrites of hippocampal neurons. Staining ofwildtype hippocampal neurons (DIV7)with TPM4 (red) andMap2 (green) (A, B = zoomed
box of A) reveals the localization of TPM4 in dendrites. The staining of TPM4 (red) in addition to phalloidin (green) (C, D = zoomed box of C) points to an expression of TPM4 in growth
cones. Scale bar = 10 μm.
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described neurite phenotype in LRRK2 models still need to be elucidat-
ed [23].

Therefore, the major goal of this study was to characterize the influ-
ence of LRRK2 and ARHGEF7 on the regulation of the actin cytoskeleton.
We analyzed the transcriptome profile of SH-SY5Y cells with a double
knockdown of ARHGEF7 and LRRK2 and compared it to the single
knockdown conditions (only ARHGEF7 or LRRK2 knockdown). The
knockdown of ARHGEF7 resulted in dysregulation of 50 transcripts.
This small number is likely based on a rescue effect of the function of
this ARHGEF7 through other GEFs of this family with the same targets.
Three times more transcripts were differentially regulated by the dou-
ble knockdown of LRRK2 and ARHGEF7. These transcripts, their under-
lying functions and canonical pathways were similar to the observed
changes in the transcriptome of the single knockdown of LRRK2 as
shown in our previous study [19]. The up-regulation of 3 members of
the tropomyosin family in both conditions was particularly interesting.
Tropomyosins are coiled-coil dimers that bind actin filaments and stabi-
lize filamentous actin structures against the depolymerization by ADF/
cofilin proteins [36]. More than 40 mammalian tropomyosin isoforms
are known that have a broad but isoform-specific expression in the
brain [36]. Their expression changes along the differentiation process
of neurons [39]. Additionally, TPM5 and TPM1 influence neuronal
branching [40–43]. Since the TPM4 isoform is differentially regulated
in the transcriptome of all the three knockdown conditions, we priori-
tized the analyses of LRRK2, ARHGEF7 and TPM4 in different LRRK2
knockdown models.

The LRRK2 knockdown induced phenotype of SH-SY5Y cells
manifested in more processes and enhanced branching. This observa-
tion reflects the known phenotype of LRRK2 knockout neurons and of
PC12 cells with reduced LRRK2 levels [12,14,29,38], although some
studies come to opposing results [15,23].

The overexpression of G2019S LRRK2 in primary neurons as well as
in the SH-SY5Y cell line has been described with the opposite pheno-
type characterized by reduced neurite length [11–14,22]. The same
phenotype has been detected in LRRK2 models with mutations in the
GTPase domain [12,44,45]. The enhanced process and branching phe-
notype of the SH-SY5Y LRRK2 knockdown cells coincided with en-
hanced ARHGEF7 expression. This raised the question whether the
increased expression of ARHGEF7 could be responsible for the pheno-
type. Previous publications showed that both, the overexpression of
full length ARHGEF7 results in increased neuritogenesis and the reverse
phenotype with degeneration of neurites is induced by overexpression
ofmutated ARHGEF7withoutGEF activity [27,28]. The down-regulation
of ARHGEF7 in our experiments led to a strong reduction of all neurite
outgrowth parameters, which verified the previous published data.
Moreover, the expression changes of several cytoskeleton associated
transcripts in the LRRK2 knockdown condition could be partially
rescued by the additional knockdown of ARHGEF7.

In NIH3T3 cells, we now clearly showed that both LRRK2 and
ARHGEF7 were expressed in F-actin rich lamellipodia and filopodia —

the structures in which outgrowth is occurring in fibroblasts. Since
ARHGEF7 is known to be a GEF of LRRK2 [5] it needs to be determined
if the causing factor for the primary outgrowth phenotype is based on
the loss of LRRK2, the overexpression of ARHGEF7 or a combination of
both.

The analysis of primary neurons of a LRRK2 knockdown mouse was
chosen as a model to solve this question. We used our previously pub-
lished shRNA based LRRK2 mouse model as the source for the neurons
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Fig. 12. Localization of ARHGEF7 is changed in the growth cones of LRRK2 knockdown mice. A) Representative image of a growth cone of a wildtype (WT) hippocampal neuron (DIV7)
(overviewA1, A2) stainedwith ARHGEF7 (red, A3) and phalloidin (green, A4). Area quantificationwithMetamorph7.6 (Molecular Devices, USA) (A5, ARHGEF7 area = purple, phalloidin
area = blue). Scale bar = 5 μm. B) Representative image of a LRRK2 knockdown (KD) growth cone, colouring same as in A. C) Scatter plot of the phalloidin growth cone area and the
ARHGEF7 growth cone area of 201 wildtype growth cones (of 28 neurons, purple) and 273 LRRK2 knockdown growth cones (of 30 neurons, blue). D–F) Box plots of the quantification
of the growth cone area (ARHGEF7/phalloidin) grouped according to the growth cone area. Indicated are the median, the lower and upper quartiles and the minimum and maximum
of the data. (D = phalloidin area of ≤30 μm2, E = phalloidin area of 30 μm2–60 μm2, F = phalloidin area of 60–90 μm2). Statistics = Student's t-test.
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[30,31]. In DIV7 primary hippocampal neurons we identified enhanced
branching, a phenotype known from other LRRK2 knockout or knock-
down models [12,14,29]. Additionally, we identified both, an increased
number of growth cones per neuron and a reduced number of collapsed
growth cones confirming that neurons derived from these mice recapitu-
late important features of LRRK2 deficiency. In the neurons of these mice,
the F-actin area around the cell body was also expanded, suggesting that
the dysregulation of TPM4 and ARHGEF7 after knocking down LRRK2 is
the cause. Supporting this hypothesis, we identified a co-localization of
both proteins, additionally to LRRK2, in the main brain areas (cortex,
cerebellum, hippocampus, brainstem, and striatum). The subcellular local-
ization of TPM4 and ARHGEF7 in primary hippocampal neurons of
wildtypemice is in dendrites and growth cones, with amore pronounced
expression of ARHGEF7 in growth cones when compared to TPM4.
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Fig. 13. Localization and intensity of TPM4 is changed in the growth cones of LRRK2 knockdown mice. A) Representative growth cone image of a wildtype (WT) hippocampal neuron
(DIV7) (overview A1) stained with TPM4 (red, A2) and phalloidin (green, A3). Area quantification done with Metamorph 7.6 (Molecular Devices, USA) (A4, TPM4 area = purple,
phalloidin area = blue). Scale bar = 5 μm. B) Representative image of a LRRK2 knockdown (KD) growth cone, staining same as in A. C) Scatter plot of the phalloidin-stained growth
cone area and the TPM4-stained growth cone area of 118 wildtype growth cones (of 48 neurons, purple) and 48 LRRK2 knockdown growth cones (of 7 neurons, blue). D) Box plot of
the growth cone area covered by TPM4 (TPM4 area/phalloidin area) of the growth cones shown in C. E) Quantification of TPM4 intensity per growth cone (TPM4 area/phalloidin area)
of the growth cones shown in C. Indicated are the median, the lower and upper quartiles and the minimum and maximum of the data. Statistics = Student's t-test.
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In primary neurons of rats, TPM4 is located in the growth cone bod-
ies and tips of filopodia [46]. In this study Had et al. postulated that
TPM4 may be involved in the motile events of neurite growth and syn-
aptic plasticity through its involvement in stabilizing the spatial organi-
zation of the filamentous actin and its binding partners. Although
nothing is known about TPM4 and its direct influence in branching,
the expression of another tropomyosin TPM5 leads to enlarged growth
cones and enhanced branching [40].

As tropomyosins, ARHGEF7 has important functions in growth cones
as well. Studies in PC12 cells point out that in response to bFGF2 the Ras/
ERK cascade gets activated and phosphorylates ARHGEF7. Subsequently,
ARHGEF7 is translocated to neuronal growth cones, which is important
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for neurite outgrowth [47]. The impact of LRRK2 on the ERK cascade is
currently actively investigated in detail by different groups, but until
now it is not clear whether or not LRRK2 is able to directly activate the
ERK cascade [13,35,48,49]. In fact, the MEK inhibitor UO126 rescued
the neurite shortening phenotype of differentiated G2019S SH-SY5Y
cells, indicating an influence of the ERK pathway on the phenotype
[13]. Previously, we have clearly shown, that LRRK2 is able to directly
phosphorylate ARHGEF7 at two positions, but these target sites are not
the same as the one phosphorylated by the Ras/ERK cascade [5,47]. Addi-
tionally, the knockdown of LRRK2 leads to enhanced expression of FGF2
[19], a protein which is known to induced neurite branching [50,51].

Our hypothesis that TPM4 and ARHGEF7 are responsible for the
neurite branching and the growth cone phenotype of LRRK2 knock-
down neurons is supported by the detailed comparison of growth
cones of LRRK2 knockdown and wildtype neurons, respectively. We
identified higher ARHGEF7 levels and enhanced growth cone area
covered by ARGHEF7 in small growth cones of LRRK2 knockdown hip-
pocampal neurons. The same elevated intensity and area was identified
through TPM4 staining. Given that growth cone motility and morphol-
ogy are closely related to neurite branching events [50,52], dysregula-
tion of ARHGEF7 and TPM4 in this neuronal compartment, may be
responsible branching phenotype of LRRK2 knockdown neurites.

Based on our results and those of previous studies, we favour the
following model, which needs extensive experimental validation:

Under normal conditions, LRRK2 may act as a scaffolding protein
bound to F-actin structures. It further guides TPM4, crucial for the
actin stability, and ARHGEF7, important for activating CDC42 and PAKs
to the actin cytoskeleton. Through its own activity and interacting part-
ners, LRRK2 regulates the balance between stabilization anddestabiliza-
tion of F-actin structures.

Probably, loss of LRRK2 as observed in our model leads to up-
regulation and/or mislocalization of ARHGEF7 and TPM4, especially in
growth cones. Altered ARHGEF7 expression may hence cause an en-
hanced activation of CDC42, which in turn leads to more filamentous
actin. Furthermore, ARHGEF7 may activate PAKs resulting in a reduced
F-actin destabilizing impact of ADF/Cofilin. More available TPM4 in
growth cones may stabilize newly synthesized actin filaments. The
joint action of ARHGEF7 and TPM4 probably causes an altered growth
rate of actin filaments at the barbed end and fragmentation of actin fil-
aments at the pointed end, leading to enhanced neurite outgrowthwith
more growth cones and branching under LRRK2 deficiency.

This scenario is supported by the known interaction partners of
LRRK2. First, LRRK2 is able to interact with different actin isoforms
[18,23]. Second, tropomyosins are extensively investigated as inter-
acting and stabilizing proteins of actin [36], and accessorily TPM iso-
forms are identified as interacting partners of LRRK2 [23]. And third,
ARHGEF7 activates the GTPase activity of LRRK2 through its GEF func-
tion and direct interaction with LRRK2 [5].

While awaiting experimental proof, our model could also be ex-
panded to speculate on the molecular mechanism leading to PD patho-
genesis. Potentially, mutated and thereby more active LRRK2 binds less
TPM4. That could result in less available TPM4 for F-actin binding and
stabilization. Additionally, the binding of mutated LRRK2 to ARHGEF7
and/or CDC42 could be reduced, as shown for the R1441C LRRK2 variant
and ARHGEF7 [5]. In doing so, the balance between CDC42 activity and
F-actin polymerisation could be massively perturbed. This would result
in reduced neurite outgrowth with destabilization of actin filaments,
probably in aged patients without any molecular rescue effect.

5. Conclusion

Our results support the impact of LRRK2 on the regulation of actin
cytoskeleton signalling. By expanding the microarray based in vitro
analysis to ex vivo experiments in neurons; we broaden the insights in
the LRRK2 associated regulation of ARHGEF7 and TPM4 in growth
cones. The complex interplay of LRRK2, ARHGEF7, and TPM4 needs to
be further elucidated to examine its relevance with respect to PD path-
ogenesis. The cooperation between the three actin cytoskeleton-
associated proteins could be part of a molecular pathway which is re-
sponsible for the neurite outgrowth phenotype of LRRK2 models.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbadis.2013.09.009.
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