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Evaluating normative representation
learning in generative AI for robust anomaly
detection in brain imaging

Cosmin I. Bercea 1,2 , Benedikt Wiestler 3,4, Daniel Rueckert4,5,6 &
Julia A. Schnabel 1,2,4,7

Normative representation learning focuses on understanding the typical ana-
tomical distributions from large datasets of medical scans from healthy indi-
viduals. Generative Artificial Intelligence (AI) leverages this attribute to
synthesize images that accurately reflect these normative patterns. This cap-
ability enables theAI allowing them to effectively detect and correct anomalies
in new, unseen pathological data without the need for expert labeling. Tradi-
tional anomaly detection methods often evaluate the anomaly detection per-
formance, overlooking the crucial role of normative learning. In our analysis,
we introduce novel metrics, specifically designed to evaluate this facet in AI
models. We apply these metrics across various generative AI frameworks,
including advanced diffusion models, and rigorously test them against com-
plex and diverse brain pathologies. In addition, we conduct a large multi-
reader study to compare these metrics to experts’ evaluations. Our analysis
demonstrates thatmodels proficient in normative learning exhibit exceptional
versatility, adeptly detecting a wide range of unseen medical conditions. Our
code is available at https://github.com/compai-lab/2024-ncomms-bercea.git.

The continuous advancement in medical imaging technology has
markedly enhanced our ability to diagnose diseases. Yet, this progress
presents a new challenge: extracting actionable insights from the vast
volumes of medical imaging data now available1. This scenario
underscores the urgency for automated diagnostic tools capable of
efficiently processing this data to offer accurate and timely diagnoses,
thereby easing the burden on healthcare systems. Computer-aided
diagnostics, particularly those employing supervised learning2,3, have
represented a significant leap in this direction, enabling machines to
recognize disease patterns across various imaging modalities4. How-
ever, thesemethods often struggle to fully capture the complexity and
rarity of human pathologies (https://rarediseases.info.nih.gov/about),
especially in the absence of large, annotated datasets5.

In response to these limitations, UnsupervisedAnomalyDetection
(UAD)6 has gained prominence, offering the promise of autonomous
anomaly detection without reliance on labeled data. The potential of
UAD extends across diverse imagingmodalities, from brainMRIs7–10 to
chest X-rays11,12 and beyond13–15, suggesting a transformative change in
diagnostic approaches. Nonetheless, the clinical integration of UAD
faces challenges, including biases toward certain pathology profiles16

and the opaque nature of these ‘black box’ systems.
Generative AI17 has brought a novel dimension to anomaly

detection by adeptly capturing the nuances of what is considered
‘normal’ inmedical images, see Fig. 1. The true innovationof generative
AI lies in normative representation learning, a concept driven by data
to uncover characteristics of a healthy population. Here, anomaly
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detection assumes a complementary role, focusing on pinpointing
deviations from these learned representations. However, the evalua-
tion of generative AI methods often tilts disproportionately towards
anomaly detection, leading to biased or incomplete assessments. For
instance, certain approaches optimize solely for hyper-intense lesion
detection18, anchor their design principles (e.g., specific noise types)
around large tumors19, or approximate the unknown anomaly dis-
tribution through self- or weak-supervision20,21. While such methodol-
ogies can be advantageous for detecting specific pathologies, they
often fall short in broader anomaly detection contexts16,22.

Addressing this critical gap, our analysis advocates for a reor-
ientation in the evaluation of generative AI, emphasizing its intrinsic
role in normative representation learning. This approach marks a shift
in the assessment of generative AI, positioning it not just as a tool for
disease identification but as a system for evaluating the realness and
plausibility of generated counterfactuals in medical imaging.

Proposed metrics
We propose specific metrics to assess the quality of the pseudo-
healthy restorations: Restoration Quality Index (RQI): is an image-
based metric that evaluates the perceived quality of synthesized ima-
ges by measuring their semantic similarity to original inputs.

Anomaly to Healthy Index (AHI): measures the closeness of the
distribution of restored pathological images to a healthy reference set.

Healthy Conservation and Anomaly Correction Index (CACI):
measures the effectiveness of models in maintaining integrity in
healthy regions and correcting anomalies in pathological areas.

These metrics collectively provide a more comprehensive eva-
luation, extending beyond simple anomaly mapping to include
assessments of the quality and accuracy of the normative and pseudo-
healthy representations generated by AI models.

Evolution of generative AI for UAD
The impact of generative AI onmedical imaging for anomaly detection
has unfolded in distinct evolutionary phases, each marking a pivotal
advancement in the field, as illustrated in Fig. 2.

Autoencoders (AEs) set the basis for UAD, premised on the
hypothesis that anomalies would induce higher reconstruction
errors4,23–26. Despite their promise, AEs struggle with generalizing
beyond training data without losing detail, leading to anomaly
misidentification26–28.

Variational AEs (VAEs) introduced probabilistic constraints on
latent variables, advancing anomaly detection through nuanced pos-
terior distribution approximations8,28–30. However, challenges in high-
dimensional data representation still impact reconstruction quality.

Generative Adversarial Networks (GANs) revolutionized data
synthesis through adversarial training, significantly enhancing anom-
aly detection31–34. However, their tendency towardsmode collapse and
limitations in preserving healthy tissue are critical areas for
improvement.

Hybrid Models, such as Adversarial AEs (AAEs), combine struc-
tured latent spaces of VAEs with the superior image generation of
GANs16,35–37. However, they still face challenges in handling dis-
crepancies in healthy regions.

Diffusion Models have revamped generative modeling by cap-
turing complex characteristics without latent space constraints38.
Within medical anomaly detection19,21, diffusion models incrementally
add noise to a pathological input, obscuring anomalies up to a certain
threshold before methodically reverting them to a pseudo-healthy
state. However, the choice of the noise level remains an important
challenge39,40.

Guided Restoration Techniques utilize context-encoding and
masking strategies to enhance the accuracy of diagnostics. Incorpor-
ating shape priors derived from healthy structures27 and techniques
like random masking in masked AEs (MAEs) and Patched Diffusion
models (pDDPM)41–44 offer nuanced adaptability in anomaly detection.
Recent advancements include automatic masking strategies that
intelligently transform only regions likely to contain anomalies, pre-
serving the integrity of healthy tissue40,45.

Results
In our evaluation of generative AI models, we utilized normal T1-
weighted brain MRI datasets, FastMRI+46 with 176 scans and 581 sam-
ples from IXI, for model training. For the evaluation phase, we focused
on two key datasets: the enhanced FastMRI+ dataset, which encom-
passes awide spectrumof 171 brain pathologies, and420 subjects from
the ATLAS v2.0 dataset47, known for its diverse range of stroke lesions.
This strategy allowed us to rigorously test the capabilities of different
models in detecting and localizing a broad array of anomalies,
benchmarking their performance against the complexity and diversity
of real-world brain pathologies. See Supplementary Figs. 1 and 2 for
more details.

Fig. 1 | Generative AI for unsupervised anomaly detection in medical imaging.
a demonstrates the AImodel being trained on a dataset of normal brain anatomy, a
process known as normative representation learning. This can be achieved using
compression, e.g., autoencoders, or diffusion processes. In Fig. b, a pathological

brain magnetic resonance image (MRI) is input into the AI system, which then
outputs a pseudo-healthy restoration of the brain. The transition frompathological
input to healthy output is evaluated to produce an anomaly map, highlighting the
areas of deviation.
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Normative learning evaluation
Our analysis primarily centered on normative representation learning,
a crucial aspect for ensuring that models accurately represent healthy
anatomical patterns. Figure 3 summarizes the results.

Each of these indices offers a unique perspective on the perfor-
mance of the generative models. For instance, methods that simply
replicate input images, like AEs, achieve high RQI but score low on AHI
and CACI. Conversely, methods such as VAEs, latent transformer
models (LTMs), and MAEs that remove anomalies and improve CACI
often produce blurry outputs, resulting in poor RQI. The AHI metric,
which requires the synthesized imagedistributions to closely resemble
a healthy set, proves challenging for many methods, often resulting in
near-zero scores. Notably, the FID is particularly demanding; even
methods that produce realistic healthy images but lack diversity or
show slight domain shifts, such asRAor DDPM-G, find it challenging to
achieve good scores. Guided restoration techniques using intelligent
masking tend to achieve the best scores.

Therefore, it is crucial to consider thesemetrics collectively rather
than in isolation. Optimal performance is characterized by high scores
across RQI, AHI, and CACI, indicating the comprehensive ability to
understand and replicate healthy anatomical structures while effec-
tively identifying and rectifying anomalies. To fuse the metrics, we
propose a harmonic mean between RQI and CACI, averaged with AHI.
This approach balances image quality and anomaly correction while
mitigating the impact of near-zeroAHI scores on the overall evaluation
(see Eq. (4)).

Anomaly detection performance
The anomaly detection results, detailed in Table 1, reveal notable
insights into the performance of various generative AI models (please
refer to Supplementary Table 1 for the complete results). PHANES and
AutoDDPM, in particular, demonstrated exceptional proficiency in

mastering normative aspects of medical imaging, which translated
effectively into their leading roles in anomaly detection. In the FastMRI
+ dataset, AutoDDPM achieved great success, detecting 159 out of 171
pathologies. PHANES showed superior performance in identifying
enlarged ventricles and was especially effective in segmenting large
stroke lesions in the ATLAS dataset. In contrast, AutoDDPM exhibited
heightened sensitivity to smaller stroke lesions. These findings high-
light the predictive power of high normative learning scores, as mea-
sured by RQI, AHI, and CACI, in determining the capability of a model
to navigate the complexities of medical image analysis.

Interestingly, the results further reveal the varying effectiveness
of models with average or lower scores in normative learning metrics.
These models exhibited inconsistent results across different datasets,
suggesting a dependency on the specific pathology types and dataset
characteristics. For instance, the MAE model, despite ranking 7th in
stroke lesion detection and showing commendable performance in
identifying large lesions, ranked only 12th in the FastMRI+ benchmark
for detectingmore diverse and subtle anomalies like edema or smaller
lesions. This inconsistency in performance across varying conditions
underscores the critical importance of considering RQI, AHI, and CACI
scores collectively to assess the generalization ability in anomaly
detection across a wide spectrum of pathologies.

Interplay between normative learning and anomaly detection
Our in-depth analysis, detailed in Fig. 4, delves into the relationship
between normative learning metrics and anomaly detection metrics
(⌈Dice⌉ or F1 as in Table 1), revealing key insights:

The analysis, visually represented in the chord diagram and top
heatmap of Fig. 4 underscores the crucial role of normative learning
metrics in universal anomaly detection. Notably, while individual
metrics like RQI provide valuable insights, their diagnostic impact is
limited when considered in isolation. For instance, models focusing

Fig. 2 | Advancements in generative AI for medical anomaly detection: a
chronological perspective. The timeline showcases the evolution of generative AI
techniques in medical imaging, classified into distinct `Eras' from Variational
Autoencoders (VAEs) to Diffusionmodels. The lower segment details the evolution

of guided restoration, highlighting the shift from basic deformations to sophisti-
cated automatic masking strategies. Corresponding anomaly maps for each cate-
gory are provided, allowing direct visual comparison of their detection capabilities
in identifying stroke lesions.
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solely on RQI might replicate anomalies, and missing critical detec-
tions. Conversely, CACI shows a high predictive value for anomaly
detection. However, the most comprehensive insights are obtained
when these metrics are collectively analyzed, with combinations such
as CACI and RQI, and particularly the integration of all three metrics
(RQI, AHI, CACI), demonstrating enhanced predictive anomaly detec-
tion power. This highlights the importance of a balanced normative
learning approach in generalizing across various pathologies. Inter-
estingly, we observed a single negative correlation where higher nor-
mative metrics were associated with reduced detection of cases
labeled as ‘paranasal sinus opacification’. Upon review by an expert
neuroradiologist, these cases exhibited no clear visual signs of
pathology. Methods with a tendency for more false positives might
mistakenly detect issues in these cases, likely attributable to the
proximity of the affected area to the skull-a region prone to false
positives.

Our analysis of the five leadingmethods (Top 5), as per normative
learning metrics, led to two significant observations. First, we noticed
negative correlations in the detection of white matter lesions (WML).
Expert neuroradiologists pointed out that some lesions were not visi-
ble, often obscured by significant motion artifacts, which are not
typically classified as anomalies. Second, a higher AHI seemed to
negatively affect the quantification of extensive stroke lesions. This
trendmaybe related tohow these lesions areannotated andevaluated.
Pathologists often mark entire regions impacted by stroke, covering
both affected and healthy tissues. Consequently, a model adept at
normalizing pathological areaswithout altering healthy tissue tends to
show a reduced overlap in these regions, leading to lower DICE scores.
This issue is more apparent in cases with larger lesions, as indicated by
the performance of AutoDDPM. These findings indicate a potential
need to revisit current annotation and evaluation methods, particu-
larly when the focus is on quantifying pathological burden.

Models with only moderate scores (Avg. 4) in normative learning
metrics oftendemonstrate inconsistent diagnostic capabilities, hinting
at overfitting to specific scenarios rather than wide-ranging disease
detection. These models, with suboptimal scores in RQI, AHI, and

CACI, generally excel in limited contexts but lack broad applicability
across diverse pathologies.

Less effective methods (Bottom 5) showed a significant negative
correlation between restoration quality and anomaly detection per-
formance. This finding aligns with existing literature18,48, which notes
that methods with dense latent spaces, often producing less sharp
reconstructions, can surprisingly outperform more advanced meth-
ods. However, this trend may inadvertently lead researchers to focus
on optimizing anomaly detection for a limited range of pathologies,
typically marked by distinct features such as hyperintense or hypoin-
tense lesions. Pursuing this narrowed research direction risks devel-
oping models with limited adaptability and reduced clinical utility.

Clinical validation
To evaluate the performance of different AI algorithms and validate
our quantitativemetrics–RQI andAHI–weconducted a comprehensive
test involving 16 radiologists. Each was given 180 images in a rando-
mized sequence, including 30 pathology-free originals and 30 from
each AI method (15 from ATLAS and 15 from FastMRI+). Radiologists
rated each image on ‘Realness’ (1 for likely fake to 5 for real), ‘Image
Quality’ (1 for poor to 5 for excellent), and ‘Health Status’ (1 for
pathological to 5 for healthy). Evaluating the CACI, which requires the
analysis of input-reconstruction pairs, is challenging in a blinded test
setting where radiologists view a randomized order of unknown
images.

The violin plots in Fig. 5a reveal the scores given by radiologists
for both real and AI-generated images. Even real images show score
variability, especially regarding health status, indicating that not all
pathology-free images should be automatically deemed ‘healthy’. Dif-
ferentiating between AI-generated and real images proves difficult,
with real images scoring only marginally higher, highlighting AI’s
growing proficiency in replicating authentic radiological scans. The
AutoDDPM model often deceived radiologists, receiving high ‘Real-
ness’ scores (≥3). In contrast, the RA method achieved strong ‘Health’
scores, similar to real images, but displayed limited samplediversity, as
reflected by its lower AHI score (0.16) compared to 0.49 for

Fig. 3 | Normative learning evaluation. The central pathological MRI image is
encircled by the pseudo-healthy restorations of different models, with their
respective dataset-wide metric scores (RQI, AHI, CACI) radiating outward.

Segments with darker and higher values indicate better performance, highlighting
effectiveness in image restoration, anomaly normalization, and preservation of
healthy tissue. Source Data are provided as a Source Data File.
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AutoDDPM. Enhancing reconstruction quality is crucial for methods
likeMAE, RA, and AnoDDPM to improve realism and diagnostic utility.
Others, including AutoDDPM and pDDPM, should focus on better
generating ‘healthy’ images, especially transforming large pathological
areas. The primary challenge remains to balance accurate recon-
struction with effective pseudo-healthy synthesis, a complex yet cri-
tical task in anomaly detection40.

The heatmap in Fig. 5b shows the variability in realness scores
among different radiologists. While the general trends from the pre-
vious violin plot are consistent, the scores vary between individual
raters. Generally, real images received the highest realness scores.
Except for the MAE method, which consistently received the lowest
ratings, other AI methods varied in their ratings, with some instances
even surpassing real images.

The bar charts in Fig. 5c highlight differences in evaluation scores
between residents (N = 13) and experienced, board-certified radi-
ologists (N = 3). These variations suggest that experience level affects
the interpretation of image quality and health implications. Specifi-
cally, for realness scores (illustrated in the upper boxplot), experi-
enced radiologists distinguished more clearly between real and AI-
generated images. Additionally, the experts generally assigned higher
ratings for both image quality and health status.

The correlation matrix in Fig. 5d demonstrates the relationships
between the scores given by radiologists and our proposed metrics.
The RQI showed a very high degree of correlation with the perceived
image realness and quality. The AHI also exhibited a positive correla-
tion with the perceived health status, albeit with slightly reduced
strength. Minor inconsistencies in the AHI might stem from its use of
the FID, which evaluates not only the “health" status of images but also
other aspects such as sampling diversity and domain alignment
between the evaluated sets.

Discussion
Our analysis marks a significant shift in generative AI for medical
imaging, advocating for emphasis on normative representation
learning. To facilitate this, we introduced new metrics–Restoration
Quality Index (RQI), Anomaly toHealthy Index (AHI), andConservation
and Correction Index (CACI)–designed to evaluate howwell AI models
learn the underlying, normal anatomy. Our findings demonstrate that
the proposed metrics indicate the ability of a model to generalize
across diverse conditions without relying on predefined labels or
expectations about disease characteristics. We conducted a compre-
hensive clinical validation with 16 radiologists and found that the
proposed RQI, and to a lesser extent the AHI, correlate well with clin-
ical assessments.

Clinically, the implications are considerable. Models that master
normative learning can discern subtle pathological nuances, essential
for early disease detection and accurate diagnostics. Beyond improv-
ing diagnosis, the insights from this analysis can extend to pre-
operative planning, therapeutic monitoring, and training healthcare
professionals. The pseudo-healthy reconstructions provided by such
models can serve as a ‘baseline’ view against which deviations can be
accurately assessed. This could be particularly beneficial in complex
scenarios such as brain volume loss. Here, the distinction between
healthy and pathological states is often not clear-cut but exists on a
continuum. The ability of these models to accurately represent this
spectrum is invaluable for clinicians, aiding inmore nuanced diagnosis
and treatment planning. Ultimately, these AI models can assist clin-
icians in developing a deeper understanding of underlying patho-
physiologies. This could be instrumental in generating novel
hypotheses and advancing medical research, ultimately contributing
to improved patient care strategies.

Despite the promising advancements, integrating these AI sys-
tems seamlessly into clinical workflows presents ongoing challenges.
As critical tools in patient triage, these systems must exhibitTa
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robustness across various scanning protocols and adaptability to dif-
ferent patient demographics. Additionally, while 2D generativemodels
produce high-quality slices, they often fail to maintain spatial integrity
in a full 3D context49. Future work could evaluate these models across
axial, coronal, and sagittal planes to assess their coherence in con-
structing accurate 3D structures.

In summary, our emphasis on normative learning and the intro-
duction of new metrics contribute to developing AI models with
greater clinical relevance. Moving forward, the development of AI
models should emphasize not just excellence in experimental condi-
tions but also resilienceand adaptabilitywithin the complex realities of
clinical environments. The pursuit of AI that comprehensively
encompasses the range of normal anatomical variations is a critical
step towards systems that enhance clinical decision-making and ulti-
mately improve patient care and outcomes.

Methods
Background
This study complies with all relevant ethical regulations. The analysis
was conducted on publicly available, anonymized datasets; no addi-
tional ethical approval was required. The comprehensive under-
standing of standard anatomical structures is imperative for the
identification of anomalies. This process, as illustrated in Fig. 1,
involves training models on datasets (DH) composed solely of images
x 2 RC ×W ×H from healthy subjects, where C, W, and H represent the
channels, width, and height of the images, respectively. These models
are then employed to discern and morphologically convert patholo-
gical structures within mixed datasets (DP) into their normative
(healthy) counterparts.

Mathematical framework. Generative models typically employ an
encoder-decoder mechanism, where both the encoder E and the

decoder G are formulated as neural networks with parameters θ. E
compresses an input image x into a lower-dimensional latent repre-
sentation z, typically in Rd where d ≪ C × W × H. Then, a decoder (or
generative model G) restores a pseudo-healthy image x̂ � DH from z.
The primary training objective is to minimize the reconstruction loss
Lðx, x̂Þ, often measured as the mean squared error (MSE), thereby
optimizing the parameters θ. Interestingly, not all models follow this
traditional “condensation” route. Diffusionmodels, for instance, take a
different path. They preserve the original dimensionality and itera-
tively add noise to the input. This action allows the model to build up
content while preserving intricate details50.

Anomaly scoring. The discrepancy between the original image x
from DP and the reconstructed image x̂ from DH is quantified as an
anomaly score S(x). This score provides a pixel-wise indication of
anomalies, aiding in the localization of abnormal regions. For
broader detection purposes, the anomaly presence in an image can
be summarized by computing the mean or maximum anomaly
score across all pixels: Simage =maxi, jSðxi, jÞ or Simage =

1
N

P
i, jSðxi, jÞ

where xi,j denotes the pixel at position (i, j) and N is the total number
of pixels.

Normative representation learning
Req. i. Restoration Quality Index (RQI). Evaluates restoration quality
by semantically comparing two images using the Learned Perceptual
Image Patch Similarity (LPIPS). LPIPS is a metric that quantifies per-
ceptual similarity between images in a way that aligns closely with
human judgment. This metric is derived from the internal activations
of deep convolutional networks, which, although trained on high-level
classification tasks, have shown to be effective in representing per-
ceptual similarity51. The RQI evaluates the fidelity of image restorations
of unseen healthy samples, with a lower LPIPS indicating greater

Fig. 4 | Correlationbetweennormative learningmetrics andanomalydetection
performance. We present a chord diagram illustrating the correlations between
normative learning metrics (RQI, AHI, CACI) and the detection performance of
various pathologies. In the primary diagram, the width and brightness of the links
denote the strength of correlation. Together, all three metrics show a strong
positive correlation with improved anomaly detection performance across all
methods. Heatmap insets on the right offer a detailed view of correlation patterns

in different sub-groups (top-performing, average-performing, and low-performing
methods). In some cases, intra-correlations within these groups may appear
counter-intuitive, such as negative correlations with RQI for certain disease types.
This suggests a complex optimization landscape where initial improvements in
restoration quality may paradoxically yield inferior results, highlighting the
nuanced challenge of refining anomaly detection techniques. Source Data are
provided as a Source Data File.
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accuracy:

RQI =
1
N

X
x2DH

1� LPIPSðx, x̂Þ �minlp

maxlp �minlp
, ð1Þ

where DH represents the dataset of N unseen healthy samples. The
minlp denotes the minimum LPIPS possible, which is 0 in the case a
method returns the identity function. We set maxlp to 25, which is
higher than the worst-performing method (VAE). To maintain
consistency and avoid negative values, performances worse than 25

Fig. 5 | Radiologists in a randomized studyperformeda test todifferentiate real
and AI-generated images. a Violin plots display average score distributions across
metrics like Readiness, Quality, and Health. b Heatmap indicates inter-rater varia-
bility in scoring image realness among radiologists, including both experienced
([Exp]) and resident ([Res]). c Bar charts compare mean scores between residents

(N = 13) and experienced radiologists (N = 3). The error bars represent the standard
deviation (SD) across raters. Individual data points are overlaid to show the score
distribution. d The matrix shows Pearson correlation coefficients between pro-
posed metrics (RQI, AHI) and radiologists' judgments of image quality and health.
Source Data are provided as a Source Data File.
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canbe capped at thismaximum threshold, thus normalizing themetric
between 0 and 1.

Req. ii. Restoration to a healthy state. To test how well the models
can normalize image abnormalities, we propose measuring the dis-
tances between image distributions. Specifically, the Anomaly to
Healthy Index (AHI) measures the ability to transform a pathological
dataset DP towards the normative patterns of the healthy training set
DH . Using the Fréchet Inception Distance (FID)52 to measure the dis-
tance between two distributions, we compute AHI as:

AHI = max 0, 1�max 0, FIDRP,H � FIDUH,H

� �
FIDP,H � FIDUH,H + ϵ

� �
, ð2Þ

where FIDA,B represents the FID between two datasets A and B, and P
and RP represent the pathological and restored pathological samples,
respectively. AHI is normalized to the range between 0 and 1.

Req. iii. The healthy conservation and Anomaly Correction
Index (CACI). Utilizes the Structural Similarity Index (SSIM)53 to assess
the proficiency of the models in preserving healthy tissue details and
correcting anomalies:

CACI =
2

1
SSIMH + ϵ

� �
+ 1

maxð0, SSIMH�SSIMANÞ+ ϵ

� � , ð3Þ

where SSIMH measures similarity within healthy regions and SSIMAN

within anomalous regions. This index requires lesion segmentation
masks annotated by expert clinicians, formally defined as binarymasks
mi, where mi = 1 if the pixel is identified as anomalous and mi = 0
otherwise. CACI is bounded between 0 and 1.

Metric Integration. Integrating the RQI, AHI, and CACI offers a com-
prehensive evaluation of generative models in medical imaging.
However, individual assessments of these metrics still provide unique
insights into specific aspects of model performance, highlighting
strengths and areas for improvement. For a balanced overall evalua-
tion, we propose a combined metric calculated as:

RQI, AHI, CACI =
2 × RQI ×CACI

RQI +CACI

� �
+AHI

2
:

ð4Þ

Datasets
We used the following datasets in our manuscript:

Healthy data for training. Two public T1w brain MRI datasets from
healthy individuals, DH, were employed for model training: IXI (581
training samples) and FastMRI+46 (131 training, 15 validation). We kept
30 samples from the FastMRI+ as unseen healthy test samples, DUH.

Pathology data for evaluation. We used two public datasets con-
taining several disease classes as our datasets, DP, containing
pathology:

FastMRI+ Dataset46: It includes 643 annotated pathologies across
30 classes. We selected mid-axial T1-weighted slices, yielding 171
unique pathologies in 13 classes. We used the annotations provided as
bounding boxes bymedical experts to assess thedetection (‘#det’) and
precision (F1 score) of themodels16. We considered a detection to be a
true positive (TP) if at least 10% of the pixels within the annotated
bounding box were flagged as anomalous. False positives (FP) were
calculated as the ratio of misdetected pixels on healthy tissue relative
to correctly detected pixels within the anomaly box. Finally, we report
the F1 score as: F1 = 1

N

PN
i=0

2×P ×TP
P +TP , where P = TP

TP + FP and N is the
number of test cases.

ATLAS v2.0 Dataset47: Featuring scans with stroke lesions,
the ATLAS v2.0 presents a challenging range of lesion sizes and
intensities. The dataset includes 655 training scans with detailed
annotations, offering in-depth views of stroke anomalies. We stratified
the test sets into small (first 25th percentile, < 71 pixels), medium, and
large lesions (top 25th percentile, ≥570 pixels) for performance eva-
luation, with the largest Dice coefficient (⌈Dice⌉) as the metric. ⌈Dice⌉
represents the theoretical maximum segmentation accuracy,
achieved by a greedy search for the best residual threshold on the test
set8. We excluded the middle slices containing no visible anomalies
(N = 215) and the scans showing visible unlabeled artifacts (N = 20) as
in ref. 40.

Data pre-processing. We have intentionally preserved the variability
inherent in the data, adhering to the preprocessing protocols of the
original datasets (See Supplementary Table 2 for details). Additionally,
we normalized the mid-axial slices to the 98th percentile, applied
padding, and resized them to a resolution of 128 × 128 pixels. For
training,we used affine augmentationswith a random rotation up to 10
degrees, up to 0.1 translation, scaling from 0.9 to 1.1, and horizontal
flips with a probability of 0.5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available, and their usage
complies with the respective terms and conditions of the databases
where they were sourced.

The FastMRI dataset is available at https://fastmri.org, with the
respective labels of the fastMRI+ dataset at https://github.com/
microsoft/fastmri-plus. The FastMRI dataset is provided under a
Dataset Sharing Agreement by NYU LangoneHealth, permitting its use
for internal research or educational purposes only. Our use of this
dataset strictly adheres to these terms, as it has been employed solely
for non-commercial academic research purposes.

The IXI dataset is available at https://brain-development.org/ixi-
dataset/and is licensed under the Creative Commons CC BY-SA 3.0
license. This license permits use, distribution, and adaptation of the
data with appropriate credit and indication of changes. We have
ensured compliance with these requirements by properly citing and
crediting the dataset in this study.

TheAtlas 2.0dataset is available at https://atlas.grand-challenge.org.
The terms of this dataset require acknowledgment of its source in
publications or presentations. We confirm that the Atlas 2.0 dataset has
been used in accordance with these terms and appropriately cited in this
manuscript. Source data are provided with this paper.

Code availability
The implementation of all models and code presented in this manu-
script are publicly available at https://github.com/compai-lab/2024-
ncomms-bercea.git54.
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