1	Evaluating Normative Representation Learning in
2	Generative AI for Robust Anomaly Detection in
3	Brain Imaging
4	Cosmin I. Bercea ^{1,2*} , Benedikt Wiestler ^{1,3} , Daniel Rueckert ^{1,3,4} , Julia A. Schnabel ^{1,2,5}
6 7 8 9 10	¹ Technical University of Munich, Munich, Germany. ² Helmholtz AI and Helmholtz Center Munich, Munich, Germany. ³ Dept. of Neuroradiology, Klinikum Rechts der Isar, Munich, Germany. ⁴ Imperial College London, London, UK. ⁵ King's College London, London, UK.

*Corresponding author(s). E-mail(s): cosmin.bercea@tum.de;

¹² Supplementary information.

11

Supplementary Fig. 1: Extended Figure on Pixel Intensity Distribution Comparison. This figure reveals a substantial overlap between the pixel intensity distributions of healthy (teal) and pathological (red) tissues, illustrating that our evaluation goes beyond mere intensity-based anomalies. The substantial overlap suggests that simple thresholding methods would likely be ineffective for distinguishing between these two tissue types, emphasizing the need for more sophisticated diagnostic techniques.

1

Supplementary Table 1: Anomaly Detection Peformance on FastMRI+. The models are assessed based on the number of detections out of the total number of samples (/N) and F1 scores for various pathologies: absent septum pellucidum (ASP), craniatomy (Cran.), dural thickening (DT), edema, encephalomalacia (Enc.), enlarged ventricles (EV) intraventricular substance (IvS), lesions (Les.), post-treatment changes (Post.), resections (Res.), sinus opacification (Sinus), white matter lesions (WML) and mass. Best results are shown in **bold**.

Method	/1	ASP F1↑	C /15	ran. F1↑	/7	$DT F1 \uparrow$	Ес /18	łema F1 ↑	/1	Enc. F1 ↑	/19	EV F1↑	/1	IvS F1↑	/22	Les. F1↑	F /44	°ost. F1 ↑	I /10	Res. F1 ↑	/2	Sinus F1 ↑	V /5	VML F1 \uparrow	N /26	lass F1 ↑
AE [1]	0	0.00	5	6.26	2	4.76	0	0.00	0	0.00	0	0.00	0	0.00	1	2.27	14	3.81	1	0.95	2	8.76	0	0.00	0	0.00
VAE [2]	0	0.00	12	14.66	4	20.83	2	4.07	0	0.00	7	11.81	1	15.38	9	4.90	29	14.96	8	16.13	2	16.67	0	0.00	16	13.37
LTM [3]	0	0.00	13	18.75	5	29.75	4	11.48	1	22.22	16	44.75	1	15.38	10	6.07	30	11.76	8	16.87	2	14.22	1	1.02	19	16.97
f-AnoGAN [4]	0	0.00	14	19.19	3	9.54	2	3.44	0	0.00	13	22.82	1	12.50	8	3.68	30	12.08	8	17.78	2	9.16	2	1.58	16	12.36
SI-VAE [5]	0	0.00	11	14.47	4	19.31	0	0.00	0	0.00	9	15.70	1	18.18	6	3.97	27	9.44	8	24.55	2	11.42	2	6.03	12	7.08
RA [6]	1	15.38	13	34.78	6	52.65	12	45.56	1	66.67	18	77.54	1	50.00	17	29.50	35	30.78	10	54.32	2	26.67	5	15.50	21	30.78
DDPM-G [7]	0	0.00	14	16.86	7	47.02	5	9.07	1	28.57	12	22.70	1	13.33	11	5.32	34	14.32	8	17.33	2	11.26	2	2.87	17	12.01
DDPM-S [7]	1	14.29	9	14.04	6	38.48	14	35.51	1	40.00	17	51.23	1	28.57	16	16.92	32	15.94	10	33.21	1	1.72	3	8.14	22	12.42
ceVAE [8]	0	0.00	14	16.99	4	22.70	3	4.52	0	0.00	4	5.91	1	20.00	10	5.05	32	14.76	7	15.00	2	15.88	0	0.00	19	14.12
MorphAEus [9]	0	0.00	13	17.10	6	37.85	9	17.38	1	40.00	10	15.77	1	28.57	15	10.94	35	15.51	10	23.47	2	11.54	2	3.02	22	17.24
MAE [10]	0	0.00	12	18.48	3	8.81	2	4.63	0	0.00	7	17.37	1	15.38	7	3.71	29	14.55	7	24.23	2	15.11	0	0.00	14	13.66
pDDPM [11]	1	16.67	12	20.39	7	50.87	17	49.46	1	66.67	13	27.56	1	33.33	19	21.22	40	18.67	10	37.86	2	5.35	5	17.70	25	29.11
PHANES [12]	1	18.18	14	36.15	7	51.31	16	43.28	1	100.00	19	80.51	1	40.00	21	27.31	40	29.65	10	49.33	1	10.00	2	4.07	24	33.89
autoDDPM [13]	1	25.00	13	37.03	6	50.27	16	45.78	1	66.67	18	40.84	1	66.67	21	36.30	40	38.97	10	49.44	1	14.29	5	22.16	26	49.57

Supplementary Fig. 2: Extended Figure on the Broad Anomaly Detection Task. Our evaluation goes beyond mere intensity-based anomalies, showcasing the application of three different anomaly detection techniques on MRI brain scans. These techniques excel in identifying and visualizing a variety of structural and topological anomalies. This includes atrophy, such as enlarged ventricles, changes following ischemic strokes, and mass effects due to tumors.

2

Supplementary Table 2: Comparison of Brain MRI Datasets: Demographics, Imaging Characteristics, Disease Types, Annotations, Preprocessing, and Acquisition Types.

Characteristic	IXI	fastMRI+	ATLAS				
Number of Subjects	581	5847	1271				
Number of Annotated Scans	581	1001	655				
Age Range (years)	20-86	Not specified	Not shared				
Sex Distribution	Male = 277, Female = 342	Not specified	Not shared				
Scanner Vendors	Philips, GE, Siemens	11 different scanners	Not specified				
Scanning Location	3 hospitals in London, UK	5 clinical locations	Not specified				
Field Strength (T)	1.5, 3.0	1.5, 3.0	1.5, 3.0				
Image Sequences	T1 , T2, PD, MRA, DWI	Axial T1, Axial T2, Axial FLAIR	T1				
Disease Type	Healthy volunteers	Various pathologies	Ischemic stroke lesions				
Annotation Type	None	Bounding box annotations	Pixel-wise segmentation				
			Intensity standardization				
Preprocessing	Not specified	Cropped for de-identification	Linear registration to MNI 152				
			Defacing				
Acquisition Type	3D	2D Axial acquisition	3D				

13 References

- [1] Baur, C., Denner, S., Wiestler, B., Navab, N. & Albarqouni, S. Autoencoders for
 unsupervised anomaly segmentation in brain mr images: A comparative study.
 Medical Image Analysis 101952 (2021).
- [2] Zimmerer, D., Isensee, F., Petersen, J., Kohl, S. & Maier-Hein, K. Unsupervised
 anomaly localization using variational auto-encoders. *Medical Image Computing and Computer Assisted Intervention* 289–297 (2019).
- [3] Pinaya, W. H. *et al.* Unsupervised brain imaging 3d anomaly detection and segmentation with transformers. *Medical Image Analysis* **79**, 102475 (2022).
- [4] Schlegl, T., Seeböck, P., Waldstein, S. M., Langs, G. & Schmidt-Erfurth, U.
 f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial
 networks. *Medical Image Analysis* 54, 30–44 (2019).
- [5] Daniel, T. & Tamar, A. Soft-IntroVAE: Analyzing and improving the intro spective variational autoencoder. Proceedings of the IEEE/CVF Conference on
 Computer Vision and Pattern Recognition 4391-4400 (2021).
- [6] Bercea, C. I., Wiestler, B., Rueckert, D. & A, S. J. Generalizing unsuper vised anomaly detection: Towards unbiased pathology screening. *International Conference on Medical Imaging with Deep Learning* (2023).
- [7] Wyatt, J., Leach, A., Schmon, S. M. & Willcocks, C. G. Anoddpm: Anomaly
 detection with denoising diffusion probabilistic models using simplex noise.
 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 650–656 (2022).
- [8] Zimmerer, D., Kohl, S. A., Petersen, J., Isensee, F. & Maier-Hein, K. H. Contextencoding variational autoencoder for unsupervised anomaly detection. arXiv preprint arXiv:1812.05941 (2018).
- [9] Bercea, C. I., Rueckert, D. & Schnabel, J. A. What do AEs learn? Challenging Common Assumptions in Unsupervised Anomaly Detection. *Medical Image Computing and Computer-Assisted Intervention* 304-314 (2023).
- [10] He, K. et al. Masked autoencoders are scalable vision learners. Proceedings of the
 IEEE/CVF conference on computer vision and pattern recognition 16000–16009
 (2022).
- [11] Behrendt, F., Bhattacharya, D., Krüger, J., Opfer, R. & Schlaefer, A. Patched
 diffusion models for unsupervised anomaly detection in brain mri. International
 Conference on Medical Imaging with Deep Learning (2023).
- [12] Bercea, C. I., Wiestler, B., Rueckert, D. & Schnabel, J. A. Reversing the abnormal: Pseudo-healthy generative networks for anomaly detection. *Medical Image*
 - 4

- [13] Bercea, C. I., Neumayr, M., Rueckert, D. & Schnabel, J. A. Mask, stitch, and re sample: Enhancing robustness and generalizability in anomaly detection through
- automatic diffusion models. *ICML 3rd Workshop on Interpretable Machine*
- ⁵³ Learning in Healthcare (2023).

5

⁴⁹ Computing and Computer-Assisted Intervention (2023).