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Prediabetes remission to reduce the global 
burden of type 2 diabetes 
Leontine Sandforth1 ,2 ,3 , Stephanie Kullmann1,2,3 , Arvid Sandforth1,2,3 , Andreas Fritsche1,2,3 , 
Reiner Jumpertz-von Schwartzenberg1,2,3,4 ,5 , Norbert Stefan1,2,3 , and Andreas L. Birkenfeld 1,2,3,6 , * 
Highlights 
Prediabetes remission to normal glucose 
regulation (NGR), in addition to standard 
weight loss, lowers type 2 diabetes (T2D) 
risk more than standard weight loss 
alone. 

Remission of prediabetes to NGR should 
be considered in guidelines and recom-
mendations for the delay and prevention 
of T2D. 
Prediabetes is a highly prevalent and increasingly common condition affecting a 
significant proportion of the global population. The heterogeneous nature of pre-
diabetes presents a challenge in identifying individuals who particularly benefit 
from lifestyle or other therapeutic interventions aiming at preventing type 2 diabe-
tes (T2D) and associated comorbidities. The phenotypic characteristics of individ-
uals at risk for diabetes are associated with both specific risk profiles for 
progression and a differential potential to facilitate prediabetes remission and re-
duce the risk of future T2D. This review examines the current definition and global 
prevalence of prediabetes and evaluates the potential of prediabetes remission to 
reduce the alarming increase in the global burden of T2D. 
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Future studies will provide evidence 
whether or not prediabetes remission 
can protect against incident T2D-
related comorbidities such as cardiovas-
cular and/or chronic kidney disease 
(CKD).
Need for prevention of T2D 
One major global target for noncommunicable diseases is to halt the increase in the prevalence of 
T2D among adults, keeping the prevalence at 2010 levels. Yet, the number of people with T2D 
has nearly quadrupled since 1980, and incidence continues to rise, faster in low- and middle-
income than in high-income countries and communities. Regions expected to experience very 
large increases in incident T2D are Latin America and the Caribbean, North Africa, the Middle 
East, and Southeast Asia. It will therefore be crucial to understand regional differences in individ-
uals at risk of T2D and to define more effective strategies to prevent this large wave of incident 
T2D and its complications in the future [1–5]. 

In general, there are many conditions that predispose patients to developing T2D. One of the 
strongest risk factors is obesity, but also sedentary lifestyle, genetic predisposition, and history 
of gestational diabetes [6]. Other, less well-defined risk factors include chronic stress, certain in-
fections, and specific drugs, such as certain checkpoint inhibitors in the treatment of cancer [7,8]. 
The best-studied condition with a high risk of progression to T2D is prediabetes – a condition af-
fecting a highly heterogeneous group. Here, we will focus mainly on its different phenotypes and 
global pathophysiological aspects and discuss recent advances in prediabetes remission as an 
effective strategy to prevent incident T2D and potential complications. 

Definitions and global epidemiology of prediabetes 
Health organizations have proposed different definitions of prediabetes [9]. The American Diabetes 
Association (ADA, Box 1), defines prediabetes by at least one of the following conditions: fasting 
plasma glucose (FPG) between 100 and 125 mg/dl (6.5–6.9 mmol/l) [impaired fasting glucose 
(IFG)], 2-h plasma glucose in a 75 g oral glucose tolerance test (OGTT) between 140 and 199 
mg/dl (7.8–11.0 mmol/l) [impaired glucose tolerance (IGT)], and/or hemoglobin A1c (HbA1c) be-
tween 5.7% and 6.4% (39–47 mmol/mol). The World Health Organization (WHO) uses the term ‘in-
termediate hyperglycemia’ instead of ‘prediabetes’; one of its criteria is FPG between 110 and 125 
mg/dl (6.1–6.9 mmol/l), without a reliable cut-off value of Hba1c as the WHO stresses the concept of
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Box 1. Mentioned studies, guidelines, and organizations 

ADA: American Diabetes Association: one of the world’s largest diabetes associations, founded in 1939 

CATAMERI study: Catanzaro Metabolic Risk Factors study: an observational study enrolling White individuals with at least 
one cardiometabolic risk factor 

Da Qing study: Da Qing Diabetes Prevention Study: aimed at investigating the effect of dietary and exercise intervention, on 
T2D incidence in people with impaired glucose tolerance in a randomized manner, starting in 1986 and including 577 adults 

DCCPG: Diabetes Canada Clinical Practice Guidelines 

DiRECT: Diabetes Remission Clinical Trial: open-label, cluster-randomized trial including 306 individuals with T2D from 
Scotland and the Tyneside region of the UK, starting in 2014 

DPP: Diabetes Prevention Program: a study conducted from 1996 to 2001 in the USA comparing lifestyle intervention, 
metformin, or placebo, including 3234 individuals without T2D 

DPPOS: DPP Outcome Study: further follow-up of 2776 individuals from DPP from 2002 to 2014 with semi-annually lifestyle 
reinforcement in the original lifestyle intervention group and unmasked metformin treatment in the original metformin group 

Finnish DPS: Finnish Diabetes Prevention Study: lifestyle intervention study in 523 individuals with impaired glucose tolerance, 
recruited between 1993 and 1998 in Finland 

IDF: International Diabetes Federation: world’s largest diabetes organization, founded in 1950 

IDPP: Indian Diabetes Prevention Program: comparing lifestyle modification, metformin, lifestyle modification, and metformin 
combined, with control in 531 Asian Indians with impaired glucose tolerance, recruited between 2001 and 2002 

NDPP: National Diabetes Prevention Program: lifestyle intervention program established by the Centers for Disease Control 
and Prevention (CDC) in the USA since 2010 

NHANES: National Health and Nutrition Examination Survey: program of the National Center for Health Statistics for 
assessing health and nutritional status of adults and children in the USA, started in 1960 

NICE: National Institute for Health Care Excellence: publishes guidelines for the use of health technologies, clinical practice, 
guidance on health promotion and social care services in the UK 

PLIS: German Prediabetes Lifestyle Intervention Study: conducted in Germany from 2012 to 2016 with ongoing follow-up, 
designed to investigate the effect of different intensities of lifestyle intervention in individuals with prediabetes 

POP-ABC: Pathobiology of Prediabetes in a Biracial Cohort: prospective evaluation of the natural history of impaired glucose 
regulation that enrolled 376 individuals between 2006 and 2009 in the USA 

RISC Study: European Relationship between Insulin Sensitivity and Cardiovascular Disease Study: enrolled 801 participants 
from 13 European countries between 2002 and 2004 

TÜF study: Tübingen Family Study for T2D: enrolled 2600 individuals with normal glucose tolerance and with or without 
family history of T2D cross-sectionally 

Whitehall II study: British study that included 10 308 civil servants to investigate social and occupational influences on 
health and disease from 1985 to 1988 

WHO: World Health Organization: agency for global public health established in 1948 

YMCA DPP: Young Men’s Christian Association (YMCA) Diabetes Prevention Program: 12-month lifestyle intervention 
program for individuals at risk for T2D provided by the Young Men’s Christian Association 

Glossary 
Glucagon-like peptide 1 (GLP-1): 
peptide hormone produced in the ileum 
and colon that regulates blood glucose 
level and satiety, amongst other 
functions. 
Major adverse cardiac events 
(MACE): including cardiovascular 
death, non-fatal myocardial infarction, 
and non-fatal stroke. 
Major adverse renal events (MARE): 
proposed to include new onset of kidney 
injury [persistent albuminuria/proteinuria 
and/or decreasing glomerular filtration 
rate (GFR) <60ml/min/1.73m2 ], 
persistent signs of worsening kidney 
disease, development of end-stage 
kidney disease with estimated GFR 
<15ml/min/1.73m2 without or with 
initiation of kidney replacement therapy, 
and death from renal cause [138]. 
Metabolic dysfunction-associated 
steatotic liver disease (MASLD): 
steatotic liver disease associated with 
cardiometabolic risk factors without 
elevated alcohol consumption. 
Metabolically healthy obesity 
(MHO): individuals with obesity with a 
relatively low risk for cardiometabolic 
abnormalities. 
Raster scan optoacoustic 
mesoscopy (RSOM): a method  used  
for microvascular structure assessment 
with a laser. 
Reactive oxidative species (ROS): 
highly reactive chemicals formed from 
oxygen that can exert damaging effects. 
Sodium-glucose cotransporter 2 
(SGLT2): a protein of the renal proximal 
tubule that helps reabsorbing glucose.
metabolic diseases as a continuum. Both the Diabetes Canada Clinical Practice Guidelines 
(DCCPG) and the National Institute for Health and Care Excellence (NICE) are aligned with 
the WHO in its FPG thresholds, but add HbA1c levels between 6.0% and 6.4%. Overall, the
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ADA proposes the lowest cut-off values for prediabetes, allowing for identification of at-risk in-
dividuals at an early stage [10].

Recent observations show the age-adjusted global prevalence of IGT to be at 9.1% (464 million peo-
ple) and of IFG to be at 5.8% (298 million people) in 2021 based on WHO criteria in the International 
Diabetes Federation (IDF) Diabetes Atlas [11]. The global prevalence of IGT is projected to increase to 
10.0% (638 million people) and IFG to 6.5% (414 million people) in 2045. Applying ADA criteria, the 
same estimate may be up to 60% higheri . Until 2045, the largest relative growth in cases of IGT 
and IFG is projected to occur in low-income countries, with a 12% and 6.7% increase, respectively 
(WHO criteria) [11]. While the prevalence of IGT is currently highest in North America and Caribbean 
regions (13.1%) and lowest in Southeast Asia (4.5%), Southeast Asia had the highest age-adjusted 
prevalence of IFG (9.4%) in 2021, reflective of genetic and environmental differences (Figure 1) 
[12,13]. Importantly, race- and ethnicity-specific prevalences of prediabetes in the USA do not differ 
between persons of non-Hispanic Asian (37.3%), non-Hispanic Black (NHB) (39.2%), Hispanic 
(35.4%), or non-Hispanic White (NHW) (38.7%) ancestry. These data suggest that local environmen-
tal factors might overrule genetic background in an obesogenic environment. 

In the USA, one-third of the population lives with prediabetes, as diagnosed by ADA cut-offs, with 
NHW men being least aware of their condition, followed by NHB, Hispanic, and Asian people. Overall, 
prediabetes prevalence shows a clear association with age, with prevalence increasing from 27.8% in 
18–44 years olds to 48.8% in >65 years olds in the USA (ADA). Similar to the differing definitions by 
health organizations, prediabetes prevalence greatly depends on applied thresholds [14,15]. The re-
gional prevalence of IFG differs markedly from IGT. This could either result from differing diagnostic 
tools, for example, sole measurements of fasting glucose instead of performance of whole OGTT, 
and/or reflect differential pathophysiological patterns and/or ethnicity. Sensitivity of HbA1c testing 
was 83% in NHB, while being only 20% in NHW in the National Health and Nutrition Examination Sur-
vey (NHANES) [16]. However, sensitivity of IFG testing was only around 50% in NHB. This is partly as-
sociated with differing prevalences: IFG rate in NHB was 18%, while elevated HbA1c rate was 29.8%. 

Progression to T2D differs between regions, which is reflected by the distribution of known T2D ge-
netic variants [17,18]. In Asian Indians, T2D occurs at an earlier age than in Caucasian Whites [19]. A 
decreasing beta-cell function seems to play a major role in Asian Indians with impaired glucose reg-
ulation, specifically with IFG and IGT [12]. The progression rate of IGT to T2D is higher in Asian Indians, 
with a cumulative incidence of 55.0% in 3 years (18.3% per year) compared with Chinese (11.3% per 
year), Finnish (6.0% per year) and, American individuals (11 per 100 person-years) [20–22]. Further-
more, the risk thresholds of anthropometric measures are lower in Asian people compared with Cau-
casian Whites, as the risk of T2D increases already at a body mass index (BMI) of >23 kg/m2 and a 
waist circumference of 85 cm for men and 75–80 cm for women [23]. For a given BMI, Asian Indians 
have been found to have a higher central adiposity accompanied by insulin resistance [24]. Moreover, 
recent elegant studies provide evidence that South Asians differ from White Europeans in the adipose 
tissue physiology of weight gain. Accordingly, differences in adipocyte morphology are associated 
with greater adverse metabolic changes with weight gain in South Asians [25]. In Black African indi-
viduals with prediabetes or T2D, beta-cell failure without significant insulin resistance was more fre-
quent than insulin resistance while the insulin resistant phenotype showed a higher T2D prevalence 
[26]. As body weight, being a key indicator of insulin resistance, is increasing in most countries, the 
prevalence of prediabetes is expected to rise even faster than T2D prevalence [11,27,28]. 

Sex-specific considerations 
Prediabetes affects females and males differently at different stages of life. Yet, high-quality data are 
still rare. In the USA, more males [41.0 (37.3–44.8%)] than females [32.0 (28.9–35.2%)] have
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Figure 1. Color-coded age-
adjusted prevalence for impaired 
glucose tolerance (IGT), impaired 
fasting glucose (IFG), and type 2 
diabetes (T2D) in adults aged 
20–79 years by International 
Diabetes Federation (IDF) region. 
Dark red: highest prevalence; dark 
green: lowest prevalence. (B) Based on 
data from Rooney et al. [11], (C) based 
on data from IDF Diabetes Atlas 2021ii . 
IFG was defined as fasting plasma 
glucose levels of 6.1 to 6.9 mmol/l 
(110–125 mg/dl). Figure created using 
BioRender. 
prediabetes; however females were more aware of living with prediabetes than males [29]. More-
over, females with prediabetes had a greater increase in metabolic syndrome severity and central 
adiposity compared with males over time, which may, together with elevated coronary heart dis-
ease risk factors and stronger endothelial dysfunction already in the prediabetic state, contribute 
to the higher risk for cardiovascular diseases (CVDs) in females with T2D in the USA [30–33]. 

By contrast, in India, a larger proportion of people with prediabetes has IFG or even isolated im-
paired fasting glucose (i-IFG), with more than 70% being female, while IGT is more frequent
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among males than among females [34]. In a Chinese cohort, physical activity favored remission 
from prediabetes to normal glucose tolerance (NGT) in males, while in females, lower waist cir-
cumference seemed to be more important. Here, high 2-h glucose in men, as opposed to high 
fasting glucose levels in females, were associated with a high risk for the progression to T2D [35]. 

While males with prediabetes seem to be more susceptible to develop T2D at a younger age than 
females [36], in the Rotterdam Study, lifetime risk of progression to T2D after 45 years of age was 
higher in females than in males, which may be explained by a diverging vulnerability of females 
and males to the effects of obesity and ageing [37,38]. 

Taken together, our knowledge on ethnic- and race-specific as well as sex-specific differences in 
people at risk for diabetes is still incomplete; it is imperative to conduct further investigations 
aiming at a comprehensive understanding of risk differences for developing T2D and the 
means of preventing it. This will be crucial for meeting the demands of modern medicine. 

Pathophysiology and natural history of prediabetes 
Obesity 
Once prediabetes develops, glucose homeostasis is already strongly, but partly still reversibly, 
dysregulated. Its pathophysiology seems to be to some extent specific to the individual at-risk 
condition, including BMI category, body composition, and genetic risk. 

Elegant cross-sectional studies have examined persons with obesity with NGT, some of whom 
are classified as people with so-called metabolically healthy obesity (MHO) (see Glossary), 
compared with lean persons with normal glucose regulation (NGR [39,40]. People with metabo-
lically unhealthy obesity with NGT are characterized by whole-body insulin resistance with skeletal 
muscle and hepatic insulin resistance, higher insulin secretion, and reduced insulin clearance rate, 
leading to an increase in basal insulin values of >100% [40]. In these people, visceral adipose tis-
sue (VAT), hepatic and skeletal muscle fat content, de novo lipogeneses, and cholesterol- and 
saturated fatty acid-triglyceride secretion rates are higher compared with those of people who 
are healthy and normal weight. Since insulin secretion rate, and thus beta-cell function, is reduced 
(while insulin secretion is increased), this may indicate that insulin secretion reaches a plateau 
[39,41,42]. Interestingly, recent data show that insulin secretion remains elevated in persons 
with obesity compared with lean people, even when matched for insulin sensitivity in a cross-
sectional setting [43]. However, these data remain to be corroborated in longitudinal trials. 

Ethnicity-specific differences seem to contribute to the heterogeneity, with a faster reduction in 
beta-cell function in African Americans and increased hepatic lipid accumulation and muscle in-
sulin resistance despite lower body weight in Asian Indians [44–46]. 

In order to unravel early mechanisms of insulin resistance, young, lean, sedentary individuals with-
out prediabetes have been examined upon high-carbohydrate mixed meals [47]. From this 
group, insulin-resistant individuals showed post-prandial skeletal muscle insulin resistance, 
which led to higher hepatic de novo lipogenesis by redirecting glucose from muscle to liver, 
where glucose uptake is not insulin dependent, and consequently, these young lean insulin-resis-
tant individuals had higher hepatic and circulating triglyceride levels, compared with insulin-sen-
sitive individuals. Prediabetes in the context of overweight/obesity is in most cases associated 
with increased energy intake, possibly from saturated fat sources and monosaccharides, which 
can cause ectopic lipid storage in VAT and numerous other organs. De novo lipogenesis in the 
liver and low-grade inflammation in adipose tissue contribute to ectopic lipid storage [48–52], 
while the regional distribution of ectopic lipid disposition in the body is, to an important extent,
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genetically determined [53,54]. Ectopically stored lipids, especially diacylglycerols and 
ceramides, can lead to hepatic insulin resistance together with an adipose tissue–liver crosstalk 
via FFA/acetyl-Co [55–57]. Free fatty acids (FFAs) from VAT can drain via the portal vein directly 
to the liver, possibly exposing it to high concentrations of FFAs and glycerol [58]. So far, the con-
tribution of FFAs drained from VAT to the portal vein has not been quantified in a longitudinal man-
ner after weight loss, while in cross-sectional studies, FFAs drained from VAT to the liver were 
quantitatively lower than FFA from subcutaneous white adipose tissue. High FFAs in the pancre-
atic circulation, which may stem from very-low-density lipoproteins (VLDL) secreted by the liver 
and/or dietary and adipose tissue-derived sources, may hamper beta-cell function by impairment 
of beta-cell gene transcription and elevation of oxidative stress via reactive oxygen species 
(ROS) [59–61]. 

A liver fat content above 1.85% is already associated with hepatic insulin resistance [55,62,63]. 
As a consequence, an elevated fasting hepatic glucose production can result in IFG. However, 
the absolute level of liver fat at which metabolic deterioration begins varies from person to person. 
Studies have shown that people with obesity but a rather healthy metabolic phenotype have a re-
duced prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) 
compared with those with an unhealthy metabolic phenotype [64]. 

In people with prediabetes and obesity, the prevalence of visceral obesity, MASLD, and both in-
sulin resistance and relative insulin secretion failure is high [65]. This is often accompanied by 
three or more criteria of the metabolic syndrome, reflecting a high-risk phenotype to develop 
T2D and complications. 

In people with prediabetes and normal weight, however, relative beta-cell dysfunction occurs fre-
quently, while insulin resistance is only present in around one-third of individuals. Rates of visceral 
adiposity are relatively low and of MASLD even lower. 

Still, these phenotypes do not necessarily reflect the development of overall prediabetes, but 
rather different pathophysiological subgroups and traits of prediabetes [66]. Interestingly, the re-
lationship between mortality and BMI just before incident T2D has been found to be J-shaped, 
with the highest hazard ratio for all-cause mortality in the normal weight (18.5–22.4 kg/m2 ) and 
the obese (≥35.0 kg/m2 ) BMI category [67]. 

Progression from NGR to prediabetes 
In the postabsorptive state, approximately two-thirds of glucose uptake is independent of insulin 
[68]. To avoid resulting hypoglycemia, an equilibrium between the rate of glucose uptake and en-
dogenous glucose production is achieved, mainly by the liver. Thus, FPG is primarily determined by 
hepatic glucose production, further being adapted by glucagon secretion [69,70]. In the postpran-
dial state, carbohydrates are absorbed into circulation, stimulating insulin secretion, together with 
the gastrointestinal incretin receptor hormones glucagon-like peptide 1 (GLP-1) and glucose-
dependent insulinotropic polypeptide (GIP). Both high glucose and insulin levels suppress hepatic 
glucose production and stimulate glucose uptake into peripheral tissues, mainly skeletal muscle, 
leading to high glucose disposal and, ultimately, normoglycemia [71]. Recent studies have 
shown that elevation of 1-h plasma glucose (1-h PG) seems to precede IGT, thereby suggesting 
that 1-h PG may be employed as an early marker of impaired glucose metabolism [72]. 

Impaired glucose regulation 
Changes in glucose homeostasis are a continuum, probably starting years before prediabetes 
is diagnosed (Figure 2). While numerous studies focused on the conversion from prediabetes
6 Trends in Endocrinology & Metabolism, Month 2025, Vol. xx, No. xx
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Figure 2. Natural history of the transition from normal glucose regulation (NGR) to prediabetes subtypes 
[isolated impaired fasting glucose (i-IFG), isolated impaired glucose tolerance (i-IGT), and impaired 
fasting glucose (IFG)/impaired glucose tolerance (IGT) combined] and remission of prediabetes to NGR 
due to lifestyle changes. Top: insulin sensitivity reflected by oral glucose tolerance test (OGTT)-derived indices [oral 
glucose insulin sensitivity (OGIS); insulin sensitivity index; Matsuda index] and Homeostatic Model Assessment of 
Insulin Resistance (HOMA-IR). Center: insulin secretion, reflected by Homeostasis Model Assessment of Beta-cell 
Function (HOMA-B) and/or area under the curve (AUC)c-pep0–30/AUCgluc0–30 as an index of glucose-stimulated insulin 
secretion levels during a 75-g OGTT. Bottom: beta-cell function reflected by insulin secretion relative to insulin 
sensitivity (adaptation index and disposition index) [127,139,140]. OGTT glucose: OGTT-derived glucose curves in 
NGR and in prediabetes, divided in i-IFG (green line), i-IGT (yellow line), and IFG + IGT (red line). Figure created using 
BioRender. 
to T2D, few studies have focused on the transition from NGR to prediabetes (i.e., i-IFG, i-IGT, 
or both). In a study of Pima Indians who are at high risk of developing T2D, individuals who 
progressed to T2D had beta-cell dysfunction even before the plasma glucose level rose 
into the prediabetic range, and beta-cell dysfunction worsened with rising plasma glucose 
levels [73,74]. 

The POP-ABC (Pathobiology of Prediabetes in a Biracial Cohort) study has identified several risk 
factors for the development of prediabetes. These include higher age, male sex, higher BMI, 
waist-to-hip ratio (WHR), plasma glucose levels, impaired insulin secretion and beta-cell dysfunc-
tion, higher triglycerides, lower adiponectin, higher alanine aminotransferase (ALT) levels, and 
higher blood pressure, amongst others [75,76]. People who progressed from NGR to prediabe-
tes had lower insulin sensitivity compared with non-progressors, as measured by the gold stan-
dard technique hyperinsulinemic-euglycemic clamp, and a steeper decrease of insulin sensitivity 
over the years [77,78].
Trends in Endocrinology & Metabolism, Month 2025, Vol. xx, No. xx 7
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i-IFG 
People with i-IFG are characterized by an elevated FPG (>100 mg/dl according to ADA criteria), 
an exaggerated early rise in plasma glucose concentration following glucose ingestion, and a 2-h 
glucose level similar to NGT. Most data indicate that people with i-IFG are primarily characterized 
by adipose tissue and hepatic insulin resistance with normal muscle insulin sensitivity, resulting in 
increased hepatic glucose output and increased fasting glucose levels [68,79–81]. The reason for 
the ability of people with i-IFG to maintain NGR after a glucose challenge is that muscle glucose 
disposal is not or only slightly impaired. Additionally, only first phase, but not second phase insulin 
secretion is mildly impaired and glucagon suppression by glucose stimuli is reduced, which is not 
specific to i-IFG only [82–84]. By contrast, the role of gut-derived incretins in i-IFG is less well un-
derstood and clearly needs further study [85]. 

Natural history of i-IFG 
In the Inter99 study [86], 5 years before the progression to i-IFG, beta-cell function was already 
significantly impaired in normoglycemic individuals. Yet, during the development of i-IFG, beta-
cell function did not decline further, indicating that a decreasing insulin secretion ability is not a 
major feature in the early stages of fasting hyperglycemia. Instead, these longitudinal data sug-
gest that a steady decline in hepatic, but not muscle, insulin sensitivity, causes the development 
of prediabetes. However, muscle insulin sensitivity was already low at baseline in people 
progressing to i-IFG. The prediabetic state, i-IFG, therefore appears to be caused by a low base-
line beta-cell function in combination with a progressive decline in hepatic insulin sensitivity. In-
deed, a family history of T2D was more common in the i-IFG cohort than in the NGT group, 
suggesting a genetic or epigenetic impact in the development of i-IFG. 

i-IGT 
When glucose tolerance during OGTT is impaired, insulin secretion is not sufficient to lower 
plasma glucose to normal values within the normal timeframe. A lower insulin sensitivity has 
been consistently demonstrated in individuals with i-IGT in comparison to those with NGT 
[87–89]. An impairment in insulin-stimulated whole-body glucose disposal, which is mainly deter-
mined by skeletal muscle glucose uptake, but further contributed to by adipose tissue and he-
patic glucose output, was observed in all ethnic groups studied, including Pima Indians, 
Hispanics, and Japanese [87,89–92]. High FFA levels can induce muscle insulin resistance [93] 
and defects in muscle glycogen synthesis occur in insulin resistance and contribute to elevated 
glucose levels by increasing the hepatic energy burden already at early stages [47]. 

Natural History of i-IGT 
In the transition from NGT to prediabetes to T2D, peripheral insulin resistance can first be com-
pensated by an increased insulin secretion by pancreatic beta cells. When prediabetes occurs, 
beta cells reach a plateau of their insulin secretion capacity and fail to lower plasma glucose levels 
into the normal range. People with i-IGT exhibit impairments in early and late phases of insulin se-
cretion as well as alpha-cell function with reduced glucagon suppression by glucose stimuli 
[83,84]. The role of gut-derived incretins in i-IGT is less well understood and requires further inves-
tigation [85]. Several studies have shown that in individuals with i-IGT or IFG/IGT, the modulation 
of insulin secretion by incretins is impaired, further contributing to the progression towards T2D 
[94,95]. 

Combined IFG and IGT 
In cross-sectional studies, people with obesity and IFG/IGT, a phenotype also referred to as me-
tabolically unhealthy obesity, have severe metabolic disturbances as a combination of the single 
attributes of people with i-IGT and i-IFG [39].
8 Trends in Endocrinology & Metabolism, Month 2025, Vol. xx, No. xx
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Analysis of the natural history shows that people developing IFG/IGT within 5 years from NGT are 
able to increase a previously low insulin secretion rate (either determined by fasting insulin levels or 
by insulin levels during the 75-g OGTT), while beta-cell function (evaluated as insulin secretion rate 
relative to insulin sensitivity) declines, and hepatic- as well as skeletal muscle insulin sensitivity, 
which are low already at baseline, further decline. 

Interesting to note is that individuals who develop IFG/IGT have more characteristics in common 
with those who developed i-IFG than with those who developed i-IGT, both in terms of sex dis-
tribution and family history of diabetes [86]. 

Natural history of i-IFG and i-IGT 
Observation of the natural history of i-IFG highlights that 5 years prior to the development of IGT, 
beta-cell function was already lower compared with that of people with NGT and further declined 
over time, while insulin sensitivity was lower already at baseline but did not decline further [86]. 
The progressive reduction in beta-cell function over time may therefore be secondary to the insu-
lin resistance observed at baseline. Together, this leads to increased basal and post-challenge 
insulin levels, which initiate a vicious cycle of insulin resistance and glucose toxicity. Factors 
such as lower physical activity and/or food quality, but also genetic or epigenetic factors, such 
as in utero programming, may contribute to lower insulin sensitivity [96,97]. 

Taken together, both i-IFG and i-IGT are conditions with impaired insulin sensitivity, yet, the site of 
insulin resistance, namely liver versus muscle, seems to differ. In this regard, i-IFG is mainly char-
acterized by impaired hepatic insulin sensitivity, while i-IGT is associated with low whole-body in-
sulin sensitivity [86,87]. Also, while mild impairments of mainly the early phase of insulin secretion 
seem to characterize beta-cell function in i-IFG, both phases are impaired in i-IGT. 

High 1-h PG level 
Earlier interventions are more successful in reverting pathophysiological changes such as beta-
cell dysfunction. Therefore, since many people with prediabetes will inevitably progress to T2D 
due to the substantial decline in insulin sensitivity and beta-cell function already present at the 
time of diagnosis, earlier identification of people at high risk is required. In the Botnia Prospective 
Study, people with NGT had a low risk of roughly 2% for developing T2D. By contrast, people 
with NGT and a 1-h PG >155 mg/dl (8.6 mmol/l) had a roughly fivefold higher risk (8.5%) for future 
T2D compared with people with NGT and a 1-h PG <155 mg/dl (1.3%) [98]. 

Individuals with high 1-h PG can meet IFG, IGT, or both criteria, and/or NGT, partly reflecting differing 
metabolic endotypes and risk stages [99–102]. People with IFG and high 1-h PG had a significantly 
increased risk (11.4%) for future T2D compared with people  with  IFG and  low 1-h  PG  (1.8%).  People  
with IGT and high 1-h PG had a significantly higher risk (14%) for future T2D compared with people 
with IGT and low 1-h PG level, in which the risk of developing diabetes is nearly absent. 

The European Relationship between Insulin Sensitivity and Cardiovascular Disease (RISC) study 
compared pathophysiological features of persons with NGT with low and high 1-h PG as well as 
IGT. They found that people with NGT and high 1-h PG had a larger waist circumference, higher 
BMI, lower insulin sensitivity, higher FPG, and higher insulin secretion than people with low 1-h 
PG. Compared with people with IGT, most glucose measurements of people with 1-h PG were 
in between NGT and IGT. Thus, people with NGT but high 1-h PG seem to be, both 
pathophysiologically as well as risk-wise, in a state between NGT and IGT. Most people with 
IGT also have high 1-h PG and recent regression models of longitudinal examinations show 
that elevation of 1-h PG seems to precede elevation of 2-h PG [72]. This stratification therefore
Trends in Endocrinology & Metabolism, Month 2025, Vol. xx, No. xx 9



Trends in Endocrinology &Metabolism
OPEN ACCESS
holds the potential to identify people at risk earlier than with conventional measures, opening up 
the possibility to implement preventive strategies earlier and therefore likely more successfully 
[103–105]. This has recently been underscored by findings from the Catanzaro Metabolic Risk 
Factors (CATAMERI) study, where high 1-h PG reflected reduced insulin sensitivity accompanied 
by impaired beta-cell function and identified individuals with an unfavorable cardiometabolic risk 
profile [106]. Still, whether or not people with elevated 1-h PG have a higher chance for remission 
to NGR needs to be formally proven. 

Tübingen Clusters of people at risk for diabetes 
Prediabetes has been linked to coronary artery disease, CKD, and all-cause mortality 
[2,3,107,108]. Still, the individual risk profile and severity of the developed type of prediabetes 
is not fully understood. A novel classification derived from the Tübingen Family Study (TÜF) of 
people at risk for T2D (Tübingen Clusters) includes people with a history of prediabetes, of ges-
tational diabetes mellitus, with family history of T2D, and/or a BMI > 27 kg/m2 (Figure 3) 
[107,109]. Initial hierarchical data-driven clustering used specific variables for risk cluster assign-
ment, including OGTT-based indices of insulin sensitivity (Matsuda-index) and insulin secretion 
[area under the curve (AUC)0–30c-peptide/AUC0–30glucose] as well as AUC0–120glucose for gly-
cemia. Furthermore, VAT and subcutaneous adipose tissue volume from magnetic resonance 
imaging (MRI) measurements, intrahepatic lipid content from 1 H-magnetic resonance spectros-
copy (1 H-MRS), high-density lipid (HDL)-cholesterol and triglycerides, and a genome-wide poly-
genic risk score for the differentiation between genetically determined beta-cell dysfunction and 
acquired beta-cell dysfunction were applied. In order to facilitate cluster assignment in clinical set-
tings, clustering was reproduced with easy-to-assess clinical proxy parameters in the Whitehall II 
cohort. Individuals were thus clustered according to differences in BMI, FPG, 2-h PG, fasting in-
sulin, 2-h insulin, and HDL-cholesterol and triglyceride levels. Amongst those individuals, six risk 
clusters with distinct phenotypes have been identified. Clusters 1, 2, and 4 have been identified to 
be low-risk clusters for T2D or related complications. Clusters 3, 5, and 6, however, have been 
identified as high-risk clusters. Individuals from cluster 3 have rather low insulin secretion, but a 
high genetic risk of T2D, leading to a high risk for T2D and CVD. Individuals from cluster 5 have 
a high liver fat content and a high risk for CVD, CKD, and T2D. Finally, individuals from cluster 6
CLUSTER 1 
Low Risk 

Overweight 
Low genetic risk 

Low risk for 
diabetes 

CLUSTER 2 
Very Low Risk 

Normal weight 
Low liver fat 

Very Low risk for 
diabetes 

CLUSTER 4 
Low Risk 

Obese 
Relatively low 
liver fat 

Low risk for 
diabetes 

TrendsTrends inin EndocrinologyEndocrinology & MetabolismMetabolism 

Figure 3. Overview with six risk clusters of people at risk for diabetes. In people with prediabetes, six risk clusters have been identified. Low-risk clusters are 1, 2, 
and 4 and high-risk clusters are 3, 5, and 6. All clusters are shown with phenotypic (within schematic person) and complications profile. Figure adapted from [141]. Clusters 
can be assigned by using the app of the Institute for Diabetes Research and Metabolic Diseases Tübingeniii . Abbreviation: CKD, chronic kidney disease.
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are characterized by a high VAT volume. As opposed to the other high-risk clusters, however, they 
have an intermediate T2D risk but high CKD risk. This reduced T2D risk can likely be explained by a 
high capability to secrete insulin, which overcomes insulin resistance, yet exposes individuals to 
high intrinsic insulin concentrations.

Therapeutic considerations: current approaches 
Prevention of T2D 
Several major randomized controlled lifestyle intervention (LI) trials examining the prevention of T2D 
have been conducted, including the Diabetes Prevention Program (DPP), the Finnish Diabetes Pre-
vention Study (DPS), the DaQing Diabetes Prevention Study (DQDPS), and the Indian Diabetes Pre-
vention Program (IDPP) [20–22,110]. The DPP examined >3000 individuals with IFG and IGT without 
T2D. Individuals were randomized to 850 mg of orally taken metformin once daily or placebo or LI with 
an aim of 7% body weight loss and at least 150 min of physical activity per week. Participants were 
followed up semi-annually for 4 years. Even though both LI and metformin were effective in preventing 
T2D, the LI group showed the lowest diabetes progression rates and the strongest weight loss, with 
one case of T2D prevented per seven persons treated for 3 years [28]. The Finnish DPS showed 
comparable results upon LI both after 4 years of active intervention and until 3 years after intervention 
[111]. A 6-year LI could reduce cardiovascular and all-cause mortality and diabetes incidence in 
Chinese individuals, achieving significance after a follow-up period of 23 years [112]. The IDPP 
showed a lower relative risk reduction of 28.5% over a median follow-up period of nearly 3 years 
with no additional benefit of metformin treatment in Indian individuals [108,110]. A recent study in 
Chinese individuals, however, showed that the combination of LI and metformin was even more 
effective than LI alone in preventing the progression from prediabetes to T2D [113]. 

When comparing different LI studies, the German Prediabetes Lifestyle Intervention Study (PLIS) 
was the first to investigate the intensity of LI in high- and low-risk phenotypes as a first step to in-
dividualized therapy [114,115]. PLIS has been conducted as a multicenter study by the German 
Center for Diabetes Research in nine clinical centers in Germany in the years 2012 to 2016, with 
follow-up still ongoing. A high-risk phenotype was characterized by relative beta-cell dysfunction 
and/or insulin resistance combined with MASLD and assigned individuals had higher BMI and 
higher age than low risk individuals. Low-risk participants were randomized to control LI or conven-
tional (DDP-like) LI, whereas high-risk individuals were randomized to conventional or intensified LI. 
No medical intervention was performed, thereby being an easy-to-introduce program in the clinical 
outpatient setting. Individuals at high risk benefitted more from intensified LI but could not surpass 
individuals at low risk with standard LI only in terms of remission to NGT [114]. Thus, individuals at 
high risk can achieve a stronger risk reduction by adhering to intensive LI than to less intensive LI, 
but cannot reduce the risk to similarly low levels as persons at low risk with a standard therapy. 
These data suggest that preventive interventions in people with prediabetes need to start as 
early as possible to have the strongest effect on the absolute risk of progressing to T2D. When 
the PLIS intervention was evaluated within the Tübingen Clusters, high-risk clusters 3 and 6 
benefitted particularly, which was dependent on the change in liver fat content in cluster 5 [116]. 
These data suggest that the amount of liver fat content and the change during a preventive LI 
plays an important role in mediating the success of the preventive strategy in high-risk cluster 5. 

Prevention studies have been able to show the effectiveness of LI in diabetes prevention. Thus, 
two community-based programs have been set up in the USA: Young Men’s Christian Associa-
tion (YMCA) Diabetes Prevention Program (DPP)and the National Diabetes Prevention Program 
(NDPP) [117,118]. Even though LIs do not achieve as much weight loss in the participants as 
medical interventions, they bring less harm with them and might be more cost effective [119]. 
Recent studies have shown that incretin-based therapies are effective in inducing weight loss
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mediating the reversal to NGR in individuals with obesity and prediabetes [120,121]. Still, main-
taining NGR seems to remain challenging, specifically in the off-treatment period. Furthermore, 
the amount of required weight loss seems to differ between individuals [122]. 

Prediabetes remission 
In light of the fact that a prediabetes diagnosis already indicates the presence of significant patho-
physiological alterations, such as insulin resistance and/or beta-cell dysfunction, as discussed earlier, 
it is crucial to reverse these changes as early as possible to safeguard beta-cell function early and sus-
tainably and to reduce the sequelae of long-standing insulin resistance (i.e., organ damage). 

Therefore, while the remission of prediabetes indicates that most of these pathophysiological al-
terations have been (at least temporarily) reversed, weight loss without reversion to NGR is not 
associated with the same risk reduction as weight loss in combination with reversion to NGR 
[123]. The term remission has been proposed in T2D for reverting glucose levels to non-
diabetic ranges (HbA1c < 6.5%) by an ADA expert group [124]. In people with T2D, DiRECT 
allowed for in-depth mechanistic insight into remission of T2D. Here, the increase in insulin secre-
tion plays a major role [125]. Interestingly, both first-phase and maximal insulin secretion were in-
creased in individuals who returned from T2D to prediabetes or NGT (‘diabetes responders’). 
DiRECT reported a reduction in hepatic and pancreatic fat content upon LI but no differences be-
tween responders and non-responders in the context of T2D remission [126]. In prediabetes, pi-
oneering work from the DPP Outcome Study (DPPOS) was the first to describe the effect of 
returning 2-h plasma glucose or fasting plasma glucose levels in people with prediabetes to nor-
mal levels (<140 mg/dl, <7.8 mmol/l) or normal FPG (<100 mg/dl, <5.6 mmol/l) on the risk of de-
veloping T2D. T2D incidence remained 56% lower after 3 years in people who regressed at least 
once to normal 2-h glucose levels. Nevertheless, longitudinal mechanistic insight, as in DiRECT, 
was not provided by DPPOS. Moreover, people reverting to NGR in DPPOS lost nearly twice as 
much body weight during the DPP phase, compared with those not reverting to NGR. Therefore, 
the impact of weight loss compared with reaching NGR was not finally solved. 

To close this gap in our understanding of prediabetes remission and to identify underlying mecha-
nisms, these mechanisms were investigated in PLIS, as described earlier [114]. Deep phenotyping, in-
cluding five-point OGTT, whole-body MRI to assess body fat distribution, and 1 H-MRS to assess liver 
fat content was conducted in all patients at baseline and at the end of the LI at 12 months. To under-
stand pathophysiological mechanisms that drive weight loss-induced remission of prediabetes, in par-
ticipants who achieved the weight loss goal of at least 5% body weight loss, those who returned to 
NGR (‘responders’) were  defined, compared with those who stayed in the prediabetic range (‘non-re-
sponders’). This was termed prediabetes remission, defined by normal FPG (<100 mg/dl, <5.6 mmol/ 
l), NGT (2-h plasma glucose level <140 mg/dl, <7.8 mmol/l), and HbA1c <39 mmol/mol (<5.7%), with-
out glucose-lowering medication for at least 3 months, according to ADA criteria [127]. Responders 
and non-responders had similar BMI, fat mass, and WHR at baseline. Weight loss was similar between 
responders and non-responders and hepatic fat content and skeletal muscle fat mass were reduced 
in a comparable manner in both groups. Still, responders showed a stronger reduction of both WHR 
and VAT than non-responders. Stronger VAT reduction was associated with higher proportions of pre-
diabetes remission in a ‘dose-dependent’ manner (i.e., the stronger the VAT loss, the higher the pre-
diabetes remission rate). Improvement in insulin sensitivity as determined by OGTT-derived indices 
was stronger in responders than in non-responders (Figure 4, Key  figure). These findings were vali-
dated in a comparable subgroup of DPP participants who lost at least 5% of the initial body weight. 
While insulin secretion did not change in both groups, beta-cell function increased numerically, but 
not significantly, in responders. Thus, the major driver of prediabetes remission seems to be insulin 
sensitivity, which is an important difference to remission of T2D. It seems to open a window of
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opportunity to tackle metabolic disease at a time-point when beta cells are not yet severely and per-
sistently damaged. 

Importantly, in PLIS participants who returned to NGR, the risk of developing T2D within 3 years after 
study initiation was reduced by 73% (Figure 4). Urine albumin-to-creatinine ratio was lower in re-
sponders at 3 years after study initiation, possibly reflecting a lower risk for future nephropathy. Fur-
thermore, raster scan optoacoustic mesoscopy (RSOM) as a measurement of epidermal small-
vessel morphology revealed more junction-to-endpoint branches and dermis-vessel density, 
reflecting a better small-vessel integrity in responders compared with non-responders in a subgroup 
of PLIS participants after the intervention. 

Weight loss and glycemic goals for the prevention of T2D 
The presented data prompt the question of whether prediabetes remission is more effective than the 
currently recommended strategies for the prevention of T2D and its associated complications in the 
ADA Standards of Care for the prevention and delay of T2D [29]. Here, individuals with overweight 
and obesity and at risk of developing T2D are advised to lose a minimum of 7% of body weight.
Key figure 

Weight loss induced prediabetes remission and related risk reduction
through returning to normal glucose tolerance 
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Outstanding questions 
Can we establish effective, population-
specific predictive biomarkers  for  
prediabetes remission in people of 
different ancestries? 

How can population-specific differ-
ences in the risk of diabetes be ad-
dressed by deploying precision 
medicine? 

How can preventive prediabetes 
remission strategies be implemented, 
also taking cultural and socio-economic 
factors into account? 

Can prediabetes remission reduce 
long-term vascular, malignant, and 
neurodegenerative outcomes? 

Does prediabetes remission have a 
‘legacy’ (preventive) effect on future 
comorbidities? 

Can prediabetes remission to normal 
glucose regulation be cost-effective 
to prevent T2D and its comorbidities?
This notion is primarily based on findings from DPP and comparable studies. It was thus tested if 
guideline-based weight loss of ≥7% with targeted prediabetes remission to NGR is more effective 
than the same weight loss without remission in individuals with prediabetes in DPPOS. Results indicate 
that weight loss and targeted prediabetes remission reduced the relative risk of developing T2D by 
76% (absolute risk: –10.1%). It would be of high clinical relevance to determine if prediabetes remission 
to NGR in conjunction with guideline-recommended weight loss also reduces the incidence of compli-
cations compared with similar weight loss without remission [128]. Thus, not only weight loss, but also 
targeting NGR should be considered in the treatment of prediabetes to prevent T2D. To achieve this 
goal, additionally increasing physical exercise needs to be considered, as positive effects of exercise on 
reducing VAT have also been shown [127,129,130]. As weight loss is an effective and straightforward 
way to achieve prediabetes remission, a general aim of losing at least 7% body weight and  further until  
the personal threshold of the return to NGR is reached has been proposed [122,131]. Given these 
data, prediabetes remission holds the potential to be more effective than current concepts in the global 
fight against the ever-increasing incidence of T2D. Prediabetes remission as a treatment target is a 
clear goal assessable on a global scale [103,123]. 

Concluding remarks and future perspectives 
Prediabetes is a condition associated with heterogeneous complications. Some individuals with pre-
diabetes are at elevated risk for complications such as CVD and CKD, even without the progression 
to T2D, and others have a high risk of developing overt T2D over the course of their lifetime [107]. The 
individual risk profile is associated with specific phenotypic characteristics such as high visceral and/ 
or high liver fat, but also with brain insulin resistance, often in connection with a chronic inflammatory 
state. These phenotypic alterations may be influenced by lifestyle aspects such as nutrition and phys-
ical activity, but can partly be determined by genetic disposition. As peripheral and brain insulin resis-
tance seem to influence each other, manipulation of brain insulin signaling has been shown to regulate 
and/or disrupt glucose and lipid metabolism in several peripheral tissues [132]. Upon LI, brain insulin 
sensitivity is a significant predictor for VAT loss and individuals with higher brain insulin sensitivity main-
tain this reduction for a longer period of time than brain insulin-resistant persons [133]. First evidence 
shows that brain insulin resistance can be overcome by physical exercise and pharmacological inter-
ventions, such as sodium-glucose co-transporter 2 (SGLT2) inhibition, making it an important 
target for future interventional strategies [134,135]. 

To reduce the risk of complications and T2D, targeted prediabetes remission or NGR together 
with guideline-based weight loss should be the primary therapeutic objective in the future [123]. 
Intervention programs, taking cultural and socio-economic factors into account, should be 
made broadly accessible. Depending on the individual phenotype and risk profile, specific thera-
peutic interventions could be considered, while low-risk individuals may benefit from close mon-
itoring [136]. In this regard, it will be important to determine the precise responses of the Tübingen 
Clusters of people at risk for diabetes for preventive measures and therapeutic interventions. As 
weight loss remains the most effective strategy, different means to induce weight reduction are 
currently being investigated in these clusters [137]. Furthermore, knowledge is needed on how 
prediabetes remission impacts long-term outcomes such as major adverse cardiovascular 
events (MACE), major adverse renal events (MARE), cancer incidence, and mortality (see 
Outstanding questions). Finally, one of the most pressing questions is how ethnicity-related 
and cultural differences in the risk of T2D can be addressed by prediabetes remission to NGR 
and if and how prediabetes remission can be implemented in different parts of the world. Poten-
tially, the 1-h PG threshold may help improve remission responses. In order to facilitate its imple-
mentation, it will be important to determine if a single, cheap, and readily available biomarker can 
be used in the future to ascertain that prediabetes remission was achieved. Current studies ad-
dressing this pressing question are ongoing. 
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