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Abstract: An increasing proportion of the world’s population lives in urban settings that have limited greenspace. Urbanization puts 
pressure on existing greenspace and reduces its access. Climate impacts, including increased temperature and extreme weather 
events, challenge the maintenance of urban vegetation, reducing its ecosystem services and benefits for human health. Although 
urban greenspace has been positively associated with numerous health indicators, the evidence for allergies and respiratory health 
is much less clear and mixed. To address these uncertainties, a workshop with 20 global participants was held in Munich, Germany, 
in May 2024, focusing on the impact of greenspace-related co-exposures on allergies and respiratory health. This narrative review 
captures key insights from the workshop, including the roles of urban greenspace in (1) climate change mitigation, (2) interactions 
with pollen, and (3) emissions of biogenic volatile organic compounds and their byproducts, such as ozone. Additionally, it pres-
ents research and stakeholder recommendations from the workshop. Future studies that integrate advanced greenspace exposure 
assessments and consider the interplay of greenspace with pollen and biogenic volatile organic compounds, along with their relevant 
byproducts are needed. Increased public awareness and policy actions will also be essential for developing urban greenspace that 
maximizes health benefits, minimizes risks, and ensures resilience amid a changing climate and rapid urbanization.
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Introduction
Currently, 56% of the world’s population lives in urban set-
tings, and this number is projected to increase to 70% by 
2050.1 As urban areas expand to accommodate larger popula-
tions, the increased need for housing, transportation, and other 

infrastructure places a severe threat on access to urban green-
space (Box 1) in cities. For example, on a global scale, imper-
vious surfaces within urban areas have increased from 24.3% 
to 25.9% (326,000 ha/year) over just 5 years (2012–2017). In 
contrast, the global average urban tree cover has decreased from 
26.7% to 26.5% (around 40,000 ha/year).2

In addition to the pressures from population growth and 
expansion of the built environment, urban greenspace is further 
challenged by a changing climate. According to a study pub-
lished in 2022,3 an estimated 56% and 65% of tree and shrub 
species, respectively, in 164 cities across 78 countries currently 
grow at suboptimal temperatures and precipitation conditions, 
and these pressures on vegetation are expected to increase under 
climate warming scenarios.

To maintain sufficient vegetation in urban areas, tree plant-
ing programs and other nature-based solutions, such as green 
roofs/walls, rain gardens, and constructed wetlands, have been 
implemented in cities worldwide4,5 and are at the forefront of 
many municipal climate mitigation actions.6 Urban greenspace, 
especially urban forests (i.e., forests or a collection of trees that 
grow within a city, town, or suburb),7 also have important roles 
in climate adaptation strategies, given their ability to mitigate 
urban heat islands (UHI).8

What this study adds:
This review enhances our understanding of the complex inter-
actions among urban greenspace, climate change, allergies, and 
respiratory health. In particular, it discusses the role of green-
space in an urbanizing world facing ongoing climate change, 
with particular attention to the significant yet underexplored 
impacts of co-exposures such as pollen and biogenic volatile 
organic compounds, along with their byproducts like ozone. 
Key recommendations for research and stakeholders are also 
provided, which were developed from a workshop with global 
experts in the field.
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Despite these beneficial roles, urban greenspace (Box 1) can 
also have negative impacts, such as increasing exposure to pes-
ticides and herbicides, serving as potential locations for crime, 
contributing to gentrification, harboring disease vectors, and 
releasing allergenic pollen.9 Indeed, although numerous studies 
support a beneficial relationship of urban greenspace on a broad 
range of human health indicators (Box 2),10,11 the evidence for 
allergies12,13 and respiratory health (Box 3),14 including lung 
function,15,16 is much less clear. These inconsistencies may be 
due to the largely unaddressed issues of plant species compo-
sition, as well as the often-neglected role of greenspace-related 
co-exposures, such as urban heat, pollen, and biogenic volatile 
organic compounds (BVOCs) plus their typical byproducts such 
as ozone. Thus, while it is possible that appropriate and equita-
ble greening may benefit many health outcomes and minimize 
health inequalities,17,18 poorly planned greening efforts may 

exacerbate allergic and respiratory health problems, especially 
under climate threats such as extreme heat events.19,20

Overall, the etiology of allergies and respiratory diseases is 
complex, including genetic predispositions and environmental 
factors, such as exposure to ambient air pollution and greens-
pace.12–16 To address this uncertainty, in May 2024, a workshop 
involving 20 participants from around the world—including 
Europe, Asia, the Middle East, North America, and Oceania—
was held in Munich, Germany, with the aim of exchanging 
knowledge and ideas on the impact of greenspace-related 
co-exposures on associations between greenspace and health. 
The workshop focused on allergies, asthma, and lung function, 
given the highly heterogeneous literature regarding the impact 
of greenspace on these health outcomes.12–16 By critically exam-
ining the existing literature and identifying future research pri-
orities, this workshop aimed to inform urban greening efforts so 
that greenspace can be designed to maximize population health 
benefits while minimizing negative impacts. Further details on 
the workshop and the methodology of this review can be found 
in the Supplemental Digital Content; http://links.lww.com/EE/
A329.

This report summarizes the key points of this meeting and 
provides an in-depth discussion of the multifaceted relationships 
between greenspace, its related exposures, climate change, and 
allergies as well as respiratory health. Organized across five sec-
tions, this narrative review covers greenspace’s effects on climate 
change mitigation, interactions with pollen, and dynamics with 
BVOCs and one of their key byproducts, ozone. Additionally, 
this review outlines research priorities and stakeholder rec-
ommendations. The framework of this review is illustrated in 
Figure 1.
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Box 1. Urban greenspace

Urban greenspace, including forests, meadows, residential 
yards, parks, grassy lawns, and green roofs, offers a wide 
range of ecosystem services to humans and the environ-
ment.21,22 They reduce urban heat, absorb greenhouse gases, 
mitigate pollution, and manage stormwater to prevent floods. 
They also support habitats for urban wildlife and contribute 
to biodiversity conservation.23 Urban greenspace also plays a 
significant role in promoting human health.10,11

Box 2.  Greenspace and health: epidemiological methodolo-
gies and pathways

Numerous epidemiological studies support a beneficial rela-
tionship between urban greenspace and a broad range of 
human health indicators, from perceived health and quality 
of life to mental well-being, obesity, cardiovascular health, 
and mortality.10,11

Metrics used to evaluate greenspace exposure include 
subjective measures like self-reported exposure and visits to 
nature and objective measures such as the normalized dif-
ference vegetation index (NDVI), percentage of greenspace 
in a specific area, or proximity to the nearest greenspace.10,11

Three primary pathways have been proposed to explain 
the links between greenspace and improved health:9 (1) 
reducing harmful exposures, including decreasing air pol-
lution, temperature, and noise levels; (2) restoring capac-
ities, by reducing stress and improving cognitive attention 
through natural environments; and (3) building capacities, 
such as promoting physical activity and increasing microbial 
diversity.24

Box 3. Allergies and respiratory health

Allergies and respiratory diseases, such as asthma and 
chronic obstructive pulmonary disease, contribute to a high 
global disease burden. The World Health Organization 
estimates that 235 million people worldwide suffer from 
asthma, which is one of the leading causes of hospitaliza-
tion among children.25 The Global Burden of Disease Study 
ranks chronic respiratory diseases among the top causes of 
disability-adjusted life years globally.26 The economic burden 
of these conditions is also substantial due to healthcare costs, 
lost productivity, and reduced quality of life.

http://links.lww.com/EE/A329
http://links.lww.com/EE/A329
www.environepidem.com
mailto:Tianyu.Zhao@med.uni-muenchen.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Greenspace and a changing climate

Greenspace as a mitigator of climate change

One of the primary ways that greenspace mitigates climate change 
impacts is by reducing the UHI effect.27 Urban areas with a dense 
concentration of buildings and impervious areas tend to be much 
warmer than surrounding rural areas with a similar climate, and 
the extreme UHI intensity is even 10 °C–15 °C higher.28 Urban 
greenspace helps counteract the UHI effect by providing shade 
and facilitating cooling through evapotranspiration, which can 
lower ambient temperature29 and reduce the risk of morbidity 
and mortality due to heat-related health issues.27 For example, a 
study across 93 European cities estimated that increasing urban 
tree coverage to 30% could reduce temperatures by 0.4 °C and 
prevent 2644 premature deaths.27 This cooling effect not only 
improves comfort and liveability outdoors in urban areas but also 
reduces the need for air conditioning, thereby lowering energy 
consumption and consequently greenhouse gas emissions.30,31 
Interestingly, it appears that fragmented instead of aggregated 
greenspace layout may be more effective at reducing heatwaves 
in cities.32 However, researchers have also observed that wooded 
tree-covered areas can be warmer at night,33,34 and that a few 
types of greenspace, especially open grassland, may lead to colder 
temperatures in winter than what is observed in urban areas, 
although this effect appears to depend on latitude.35 Nonetheless, 
whether those inconsistent functions of greenspace are relevant 
for urban areas is unclear.

Urban greenspace also mitigates extreme weather events, 
such as flooding, and their health impacts. For instance, 
greenspace can absorb rainwater through permeable sur-
faces, reducing water runoff and decreasing flood risks.36,37 
However, studies have also highlighted that urban greenspace 
in larger and separate areas may exacerbate flood risks.36 
Depending on tree and shrub cover density and structure, 
greenspace can also act as natural windbreaks, lowering 
wind speeds and contributing to climate resilience in urban 
environments.38

These few aforementioned examples highlight the complex 
role of greenspace as a mitigator of climate change impacts 
and emphasize that various pathways are likely to be involved, 
depending on the greenspace characteristics (e.g., size, shape, 

and composition), geography, and other relevant factors (e.g., 
socioeconomic status of the residents in an urban area).

Greenspace under climate change

Climate change poses significant challenges to health and the 
functionality of plants that make up greenspace in urban envi-
ronments. Higher temperatures, altered precipitation patterns, 
and increased frequency of extreme weather events, including 
floods and droughts, can stress plant species, leading to reduced 
or stunted growth, increased vulnerability to pests and diseases, 
and higher plant mortality.39,40 Elevated carbon dioxide (CO2) lev-
els can also make plants more appealing to certain sap-sucking 
pests, such as aphids, borers, and moths, by increasing the solu-
ble carbohydrates in the plants.41,42 For instance, the emerald ash 
borer, an invasive beetle, has devastated ash trees across North 
America, leading to significant economic and ecological conse-
quences. Donovan et al.43 highlighted how such tree loss can affect 
the urban population, including reduced air quality and increased 
heat stress, further exacerbating health issues. Moreover, increased 
temperatures or changing climatic conditions can accelerate the 
spread of pests and diseases that affect vegetation on a broad 
scale.44,45 As an example, Biscogniauxia mediterranea Kuntze, usu-
ally seen as harmless endophytic fungi, may cause charcoal dis-
ease on drought-stressed oaks (Quercus spp.).46,47 Overall, these 
changes compromise the ability of greenspace to provide cooling, 
air purification, and other ecosystem functions.

Climate change can also shift vegetation composition within 
urban greenspace, even resulting in a decline in its quality and 
diversity.39 By 2050, projections indicate that 2387 of 3129 
assessed urban tree species will be at risk of poor growth and 
mortality due to shifts in mean annual temperatures, while 
2220 species will suffer from changes in annual precipitation.3 
On the other hand, while some plant species may become less 
viable under changing climate conditions, others that are more 
resilient to heat and drought may proliferate,48–50 especially 
drought-tolerant plants including olive (Olea europaea L.) 
and oak (Quercus ilex L.). Plant composition can be relevant 
to the production and emission of pollen51 and/or BVOCs.52 
These two aspects are discussed in detail in the following sub-
sections. Finally, changes in vegetation composition may also 

Figure 1. Pathways through which greenspace and its associated co-exposures may influence allergies and respiratory health in a changing climate.
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impact the esthetic and recreational value of greenspace,53 
which are essential for mental health and cognitive function 
health benefits.54,55

Health effects of greenspace with co-exposure to 
pollen

Greenspace and pollen

As climate conditions change, the composition of vegetation 
in greenspace may shift,39 leading to influences on pollen 
distribution.51,56–59 While essential for plant reproduction, 
pollen can be a significant source of allergens as well as 
a carrier of microorganisms and pollutants.60–62 Allergenic 
plants, such as trees (birch, alder, hazel, oak, hornbeam, 
chestnut, and beech),63 grasses, and weeds, are commonly 
found in urban greenspace, making them an important 
source of allergenic pollen.64 Concerningly, ongoing climate 
change is changing the distribution, amount, timing, length, 
and severity of the pollen season, which will have import-
ant health impacts.51,56–59 Rising temperatures and increased 
levels of CO2 enhance plant growth and extend growing 
seasons.65 Climate change can also alter the timing of pol-
len seasons.59,66,67 Warmer temperatures are causing plants 
to start pollinating earlier in the year and can extend the 
duration of pollen seasons.51,68 These dynamics have already 
been observed in the pollen of trees, such as birch and oak, 
as well as grasses.69–71 Climate shifts will also expand the 
geographic range of allergenic plants.71,72 Ragweed, for 
example, is projected to spread into northern and eastern 
Europe under all climate scenarios, potentially increasing 
“high allergy risk” areas by 27%–100% by 2100.73

Furthermore, climate change may also affect pollen allerge-
nicity. Air pollutants, such as ozone, can damage plant cells and 
promote the release of allergens from plants, such as pollen- 
associated lipid mediators, thereby enhancing their allerge-
nicity.74 For example, a study of birch pollen collected from  
various locations in Munich found that the content of Bet v 1, 
the primary birch allergen, was positively correlated with ozone 
levels, and that extracts from these high-ozone areas triggered 
significantly larger wheal and flare reactions in skin prick tests 
compared with extracts from low-ozone areas.75 Elevated ambi-
ent CO2 levels were also shown to induce a stronger allergic 
response to ragweed.76

Finally, the increase in extreme weather events, particularly 
thunderstorms during pollen season, can provoke the sudden 
rupture of pollen into subpollen particles that are tiny enough to 
penetrate deeper into the airways, thereby increasing the inten-
sity of asthma attacks in pollinosis patients, referred to as poten-
tially fatal “thunderstorm asthma.”77,78

Inconsistent health effects of greenspace with pollen

The health effects of greenspace as a potential source of pol-
len are substantial as 40% of the European population is sen-
sitized to pollen allergens60 and thus at risk of hay fever (i.e., 
allergic rhinitis) symptoms and allergic asthma.79,80 However, 
most epidemiological studies investigating the effects of 
greenspace on allergies and respiratory health have not con-
sidered the types of plants in the greenspace and their aller-
genic potential, although pollen concentrations have been 
measured in some.81,82 Exceptions to this include Markevych 
et al.83 who linked childhood exposure to allergenic trees to 
an increased risk of allergic rhinitis in adulthood and a recent 
study, which reported that living close to birch trees, a com-
mon allergenic plant, is associated with poorer lung function 
in adults.84 These studies suggest that greenspace dominated 
by allergenic plant species poses respiratory health risks to 

individuals with pollen allergies, whereas those with a more 
diverse mix of species (i.e., fewer allergenic species in propor-
tion) may provide a more balanced array of health benefits. 
Future studies, including pollen and/or allergenic tree expo-
sure measures, are likely to shed light on the contradictory 
associations observed to date between greenspace and aller-
gic and respiratory health outcomes.83,85,86 This approach is 
especially important when considering how climate change is 
likely to affect pollen-producing plants and pollen.

Moreover, while the triggering effects of pollen exposure on 
allergic symptoms and asthma are well established by numerous 
short-term effect studies,79,80 the adverse role of pollen exposure 
in causing long-term health effects is not well-known.82,87,88

Health effects of greenspace with co-exposure to 
biogenic volatile organic compounds and ozone

Greenspace, biogenic volatile organic compounds, and 
relevant byproducts

In addition to pollen, plants emit a wide range of BVOCs, 
which are primarily produced through metabolic processes 
occurring on the leaf surface. Isoprene is a BVOC predomi-
nantly emitted by broad-leaved deciduous trees, such as oak, 
poplar, and willow. Evergreen trees like pines, spruces, and 
firs release the BVOC monoterpenes, which can give these 
coniferous trees their characteristic pine scent.89 Similar to 
pollen, the production of BVOCs is being altered by a chang-
ing climate, given that BVOCs play crucial roles in biotic 
defence mechanisms against herbivores and pathogens, and 
for protection from abiotic stress such as heat, drought, 
extreme weather events, high atmospheric CO2, ozone, and 
enhanced ultraviolet radiation.90

Increasingly, studies have indicated that BVOCs are import-
ant precursors of secondary air pollutants.91,92 For instance, 
some tree species, such as oaks and eucalyptus, release BVOCs 
at high levels.93 In urban environments with high nitrogen 
oxides (NOx), these BVOC emissions can lead to increased 
ozone formation, potentially offsetting any air purification of 
anthropogenic ozone by greenspace.94,95 One research group 
reported that BVOCs, specifically biogenic terpenoids, account 
for approximately 60% of ozone and secondary organic aerosol 
(SOA) formation potential in Los Angeles during the summer, 
with this contribution expected to rise significantly as tempera-
tures increase.92 A Chinese study found a slightly different result: 
isoprene made up the greatest contributions to ozone formation, 
while monoterpenes were responsible for the highest biogenic 
SOA production.91 The BVOCs-related secondary air pollutants 
are influenced not only by the relative abundance of biogenic 
and anthropogenic volatile organic compounds (VOCs) but also 
by the ratio between total VOCs and NOx.91

While trees emit BVOCs that are important ozone precur-
sors, they can also directly absorb or react with ozone, lower-
ing ambient ozone levels.96,97 This dual role of plants as both a 
sink and a source of ozone formation precursors is influenced by 
various factors, including the physiological status of the trees,93 
which adds further complexity to the relationship between 
greenspace and ozone. Indeed, current studies have been unable 
to disentangle the complexities of what greenspace means for 
ozone levels, as these may depend on BVOC formation as well 
as the anthropogenic ozone absorption potential of the local 
vegetation.52,93

The structure of greenspace can also trap pollutants, includ-
ing ozone, leading to higher localized concentrations.98,99 Dense 
canopies and restricted air circulation, particularly in areas like 
tree-lined busy roads,100 may exacerbate this trapping issue, 
potentially resulting in different health outcomes compared 
with more open or well-ventilated areas. In summary, beyond 
plant species, the structure of greenspace and its interactions 
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with the surrounding biotope and environment significantly 
affect the functions of greenspace.

Inconsistent health effects of greenspace with biogenic 
volatile organic compounds and ozone

Associations between BVOCs and potential human health 
effects are largely unknown and contrasting observations have 
been reported in experimental studies.101,102 Epidemiological evi-
dence on BVOC-related health effects is thus far lacking, and it 
is unclear whether and to what extent BVOCs influence asso-
ciations between greenspace and allergic or respiratory health 
effects.

While the byproducts of BVOCs, biogenic SOA and ozone, 
have been investigated,93,103 they received limited attention 
in epidemiological studies. However, given that exposure to 
high levels of ozone has been linked to various adverse health 
outcomes, including respiratory issues,104,105 allergies,106,107 
cardiovascular problems,108 and mental health,109 it is plausi-
ble that greenspace-related ozone may confound associations 
between greenspace and allergic or other respiratory health 
effects. A deeper understanding of the interactions between 
greenspace, BVOC levels, and the resulting formation of 
ozone and other byproducts requires more detailed informa-
tion about the greenspace composition (such as tree species 
and the physiological or health status of plants)93 as well as 
advanced modeling techniques to accurately assess BVOC 
exposures.

Challenges and opportunities for research

Advanced greenspace exposure assessment

Given the above complexities in estimating associations 
between greenspace and health under a changing climate, there 
is a clear need for more specific measurements of greenspace 
and its related co-exposures. Currently, the most used measures 
for greenspace are the NDVI and soil-adjusted vegetation index. 
While NDVI and similar metrics per se are not able to identify 
allergenic species, they can be utilized effectively by aligning 
them with pollen seasons and integrating local botanical surveys 
that can help map high-pollen-risk areas accurately.110 More 
recently, street view imagery has been used to develop the Green 
View Index, and satellite imagery acquired through the Google 
Earth Engine, for instance, may provide global spatial coverage, 
low data acquisition and processing costs, and longitudinal cov-
erage over time.111

High-precision sensors, coupled with advancements in data 
science, facilitate the development of more granular spatial 
greenspace exposure metrics.112–114 Examples include the 1-m 
resolution RGB imagery (images in which each pixel is deter-
mined by the intensity of red, green, and blue colors) from 
Maxar WorldView and the 3-m resolution multispectral imag-
ery from PlanetScope missions, which have been used to identify 
individual trees of allergenic species.115 Additionally, airborne 
sub-1-m and spaceborne 10-m resolution LiDAR (Light 
Detection and Ranging) sensors provide vertical measurements 
using information from aircrafts (like drones or plants) and sat-
ellites, respectively, and spaceborne radar sensors additionally 
offer cloud-penetrating capabilities. While accessing data from 
these sensors typically incurs costs and requires expertise from 
data scientists for processing, they enable detailed analysis and 
mapping of greenspace characteristics that are relevant to aller-
gens and BVOCs. Moreover, multispectral satellite imagery and 
street view imagery have been used to classify crops.116,117 For 
instance, to monitor flowering periods on a large scale, recent 
studies have shown the effectiveness of using geotagged and 
dated photos from online platforms like Flickr.118

Large-scale datasets managed by specialized organiza-
tions facilitate cost-efficiency in data acquisition and pro-
cessing as well as enhance research replicability. Examples of 
such datasets include the Meta Canopy Height Model at 1 
m resolution,119 the US EnviroAtlas Meter-scale Urban Land 
Cover by the United States Environmental Protection Agency, 
which offers a 1-m resolution map distinguishing between 
trees, shrubs, and grass across 30 urban areas in the United 
States,120 and the UK Ordnance Survey Mastermap (https://
www.ordnancesurvey.co.uk), which provides vegetation cover 
data at a 1–2-m resolution for deciduous and nondeciduous 
trees, scrub, and grassland throughout the United Kingdom. 
The newly available Europe pollen reanalysis data gives daily 
modeled pollen concentrations for all of Europe for sev-
eral decades and is one example of a large-scale dataset on 
pollen.121

Finally, some larger cities, such as Munich, Vienna, 
Melbourne, and New York, monitor vegetation through manual 
measurement in public spaces,83 capturing data on tree counts, 
species identification, and vegetation health. However, field 
campaigns are costly, time-consuming, and typically exclude 
private green spaces.114 The potential to develop tree registries 
via voluntary reporting data on the OpenStreetMap platform is 
also promising.122

Suggestions for future research

Studies on pollen and greenspace-related pollutants

Implementing advanced monitoring techniques to measure both 
pollen and plant emissions (e.g., BVOCs) at high temporal and 
spatial resolution in various types of greenspace will provide 
more accurate data that go beyond assessing only the presence 
and quantity of greenspace. As mentioned earlier, combining 
ground-based sensors with remote sensing technologies can help 
track spatial and temporal variations in pollen and other poten-
tial pollutants for use in epidemiological studies.

Multidisciplinary research

Multidisciplinary research that bridges environmental science, 
urban planning, geography, remote sensing, botany, ecology, and 
public health is crucial. Studies should consider not only the 
direct health impacts of greenspace but also the implications 
of types of plants, microclimates, geographic factors, and cli-
mate change on the function of the greenspace and its effects on 
human health.

Geographic bias

The current knowledge of the health effects of greenspace is 
mainly based on studies from Europe, North America, Australia, 
and more recently also from China and other parts of Asia. 
However, there are limited studies from the African and South 
American continents published to date,10,11 which confines the 
generalizability of current knowledge. Notably, our workshop 
also lacked participants from these regions. In general, low- and 
middle-income countries are undergoing massive urbaniza-
tion, and how urban greenspace is shaped in these areas has 
the potential to influence health to a large degree and can, for 
example, work toward reaching the sustainable development 
goals established by the United Nations.123,124

Potential “negative side effects” of greenspace

As aforementioned, greenspace might be associated with 
adverse impacts, such as the spread of disease vectors, the 
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use of pesticides and herbicides, and places for crime.9 These 
“negative side effects” of greenspace could explain some of 
the inconsistent findings in epidemiological studies and require 
further attention.

Suggestions for stakeholders

Health education and health promotion

Increasing public awareness about the effects and interactions 
of climate change, pollen, and BVOCs and their byproducts, like 
ozone, on greenspace and health can empower individuals to 
take proactive measures. As an example, health professionals 
can provide guidance on managing allergies and asthma before 
and during peak pollen seasons.

Monitoring and forecasting

Climate change models and environmental monitoring systems 
can provide valuable information about expected temperature 
increases, precipitation changes, and extreme weather events.125 
Enhanced monitoring and forecasting of climate conditions 
and their impacts on greenspace and pollen can guide the man-
agement and design of greenspace and help mitigate the health 
effects of climate change.

Policy and urban planning implications

Policymakers and urban planners can build on existing knowl-
edge of greenspace, pollen, BVOCs, and their byproducts to 
design and manage urban greenspace that optimize health 
benefits while minimizing potential risks. Meanwhile, these 
approaches should also consider species diversity and economic 
considerations.98 Box 4 summarizes some of the main points as 
examples.

Conclusions
Greenspace is essential for urban environments and human health. 
However, the allergic and respiratory health effects of greenspace 
are likely to depend on its characteristics, which have been largely 
ignored to date, and will be influenced by climate change as well 
as the direct and interactive effects of pollen, BVOCs, and rele-
vant byproducts, including ozone. Comprehensive research and 
multidisciplinary approaches are needed to better understand 
these relationships, with a focus on utilizing advanced greens-
pace exposure assessments and considering the interplay of these 
various environmental factors under climate change scenarios. 
Increased public awareness and policy interventions are necessary 
to design and manage urban greenspace that maximizes health 
benefits, mitigates risks, and ensures resilience in the face of a 
continuously changing climate and rapid urbanization.
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