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Longitudinal multi-view omics data offer unique insights into the temporal
dynamics of individual-level physiology, which provides opportunities to
advance personalized healthcare. However, the common occurrence of
incomplete views makes extrapolation tasks difficult, and there is a lack of
tailored methods for this critical issue. Here, we introduce LEOPARD, an
innovative approach specifically designed to complete missing views in multi-
timepoint omics data. By disentangling longitudinal omics data into content
and temporal representations, LEOPARD transfers the temporal knowledge to
the omics-specific content, thereby completing missing views. The effective-
ness of LEOPARD is validated on four real-world omics datasets constructed
with data from theMGHCOVID study and the KORA cohort, spanning periods
from 3 days to 14 years. Compared to conventional imputation methods, such
as missForest, PMM, GLMM, and cGAN, LEOPARD yields the most robust
results across the benchmark datasets. LEOPARD-imputed data also achieve
the highest agreement with observed data in our analyses for age-associated
metabolites detection, estimated glomerular filtration rate-associated pro-
teins identification, and chronic kidney disease prediction. Our work takes the
first step toward a generalized treatment of missing views in longitudinal
omics data, enabling comprehensive exploration of temporal dynamics and
providing valuable insights into personalized healthcare.

The rapid advancement of omics technologies has enabled researchers
to obtain high-dimensional datasets across multiple views, enabling
unprecedented explorations into the biology behind complex
diseases1. Each view corresponds to a different type of omics data, or

data acquired through a different platform, each contributing a partial
or entirely independent perspective on complex biological systems2.
While advancements in multi-omics measurements have increased
throughput and enabled the acquisition of multiple views in a single
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assay3, data preprocessing, analysis, and interpretation remain sig-
nificant and important challenges.

One of the most pressing challenges is the presence of missing
data4, which at its best (when missingness occurs at random) reduces
statistical power, and at its worst (when it is not random) can lead to
biased discoveries. Unlike missing data points that may be scattered
across the entire dataset, a missing view refers to the complete
absence of all features from a certain view, as shown in Fig. 1a. Missing

views or incomplete multi-omics profiles are a common challenge,
particularly in cohort studies5–7. In longitudinal studies that can span
decades, this issue becomes increasingly common due to factors such
as dropout in omics measurements, experimental errors, or unavail-
ability of specificomicsprofilingplatforms at certain timepoints6,8. The
incompleteness of these datasets hindersmulti-omics integration9 and
investigations into predisposing factors (such as age and genetics),
enabling factors (such as healthcare service and physical activity), and

Fig. 1 | Problem description and overview of LEOPARD architecture. a An
example of amissing view in a longitudinal multi-omics dataset. Here, some views at
Timepoint T are absent. The observed views may contain additional missing data
points. b An example of data density calculated from a variable in observed data
(Timepoint 1 and Timepoint T) and imputed data. The data density indicates a
distribution shift across the two timepoints. Imputation methods developed for
cross-sectional data cannot account for the temporal changes within the data, and
their imputation models built with data from one timepoint, such as Timepoint 1,
might not be appropriate for inferring data from another timepoint, such as Time-
point T. c Compared to Raw data, data of Imputation 1 may exhibit lower MSE than
data of Imputation 2, but Imputation 1 potentially lose biological variations present
in thedata.dThe architecture of LEOPARD.Omics data frommultiple timepoints are
disentangled into omics-specific content representation and timepoint-specific
temporal knowledge by the content and temporal encoders. The generator learns
mappings between two views, while temporal knowledge is injected into content

representation via the AdaIN operation. Themulti-task discriminator encourages the
distributions of reconstructed data to alignmore closely with the actual distribution.
Contrastive loss enhances the representation learning process. Reconstruction loss
measures the MSE between the input and reconstructed data. Representation loss
stabilizes the training process by minimizing the MSE between the representations
factorized from the reconstructed and actual data. Adversarial loss is incorporated
to alleviate the element-wise averaging issue of the MSE loss. e the performance of
LEOPARD is evaluated with percent bias and UMAP. The central line in the box plot
represents the median. The box spans the interquartile range (IQR), and whiskers
extend to values within 1.5 times the IQR. Data points outside this range are plotted
as outliers. The two-sided paired Wilcoxon test is used to compare percent bias
across methods. P-values are Bonferroni-adjusted, with significance denoted as: ns
(not significant), * ( < 0.05), ** ( <0.01), *** ( < 0.001). f several case studies, including
both regression and classification analyses are performed to evaluate if biological
information is preserved in the imputed data.
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biomarkers for diseases. In many medical studies, samples with
incomplete omics data are removed to facilitate statistical analysis and
ensure reliable results10,11. However, this reduces the sample size and
requires the remaining dataset to be sufficient to maintain adequate
statistical power.

Missing view completion refers to the estimation ofmissing omics
data in amulti-view context. The taskofmissing viewcompletion in the
multi-timepoint scenario ismorecomplex than cross-sectionalmissing
value imputation, as it needs to harmonize data distributions across
views12 and capture temporal patterns13. Generic methods, such as
PMM (Predictive Mean Matching)14, missForest15, and KNNimpute16,
learn direct mappings between views from observed data without
missingness. However, this strategy is inadequate or suboptimal17 for
longitudinal data, as it precludes investigations into temporal varia-
tion, which can be of great interest: the learned mappings may overfit
the training timepoints, making them unsuitable for inferring data at
other timepoints, especially when biological variations cause dis-
tribution shifts over time (Fig. 1b). To address the complexities of
longitudinal data, numerous effective imputation methods have been
developed based on the generalized linear mixed effect model
(GLMM)18. Existing studies have also explored the use of spline inter-
polation and Gaussian processes to extrapolate or interpolate missing
timepoints19–23. However, the typically limited number of timepoints in
current human cohorts can restrict the effectiveness of these long-
itudinal methods. Given these challenges, there is a growing need for
view completion methods that are specifically designed for multi-
timepoint omics data. While metrics like mean squared error (MSE)
and percent bias (PB) are commonly used to evaluate imputation
results24, these quantitative metrics alone may not fully capture data
quality in the context of omics data. As depicted in Fig. 1c, data
imputed by method 1 may have a lower MSE than that imputed by
method 2, but at a loss of biologically meaningful variations. Further
case studies would be helpful to evaluate imputation methods.

In this paper, we introduce LEOPARD (missing view completion
for multi-timepoint omics data via representation disentanglement
and temporal knowledge transfer), a neural network-based approach
that offers an effective solution to this challenge (Fig.1d). LEOPARD
extends representation disentanglement25 and style transfer26 techni-
ques, which have been widely applied in various contexts such as
image classification27, image synthesis28, and voice conversion29, to
missing view completion in longitudinal omics data. LEOPARD fac-
torizes omics data from different timepoints into omics-specific con-
tent and timepoint-specific knowledge via contrastive learning.
Missing views are completed by transferring temporal knowledge to
the corresponding omics-specific content.

We demonstrate the effectiveness of LEOPARD through extensive
simulations using humanproteomics andmetabolomics data from the
MGH (Massachusetts General Hospital) COVID study30 and the KORA
(Cooperative Health Research in the Region of Augsburg) cohort31

(Fig. 1e). Additionally, we perform multiple case studies using real
omics data to assesswhether biological information is preserved in the
imputed data, providing a comprehensive assessment of LEOPARD’s
performance in both regression and classification tasks (Fig.1f).

In this work, we make the following contributions:
• We propose LEOPARD, a method tailored for missing view com-
pletion in multi-timepoint omics data that innovatively applies
representation disentanglement and style transfer.

• Our study shows that generic imputation methods designed for
cross-sectional data are not suitable for longitudinal data,
emphasizing the need for tailored approaches. Additionally, we
highlight that canonical evaluation metrics do not adequately
reflect the quality of imputed biomedical data. Further investiga-
tions, including regression and classification analyses, can aug-
ment these metrics in the assessment of imputation quality and
preservation of biological variations.

• Our research reveals that omics data across timepoints can be
factorized into content and temporal knowledge, providing a
foundation for further explorations into biological temporal
dynamics. This insight offers a novel perspective for predictive
healthcare that extends beyond the problem of data imputation.

Results
Characterization of the evaluation datasets
We evaluate LEOPARD using four real longitudinal omics datasets.
These distinct datasets are designed based on data variations, time
spans, and sample sizes (Table 1, Methods).

Two mono-omics datasets and one multi-omics dataset are used
as benchmark datasets to evaluate the performance of LEOPARD and
established methods. The mono-omics datasets are constructed with
the proteomics data from the MGH COVID study and the metabo-
lomics from the KORA cohort, respectively. Views in both datasets
correspond to panels or biochemical classes. Missingness in these
datasets exemplifies a common issue encountered in longitudinal
studies where data from certain panels or biochemical classes are
incomplete in some but not all timepoints. The third dataset is amulti-
omics dataset consisting of both metabolomics and proteomics data
from the KORA cohort. In this dataset, views correspond to different
omics. This dataset exemplifies the situation where data of a type of
omics is incomplete. These three datasets comprise data of two
views or view groups (v1 and v2) from two timepoints (t1 and t2). The
samples from each dataset are split into training, validation, and test
sets in a 64%, 16%, and 20% ratio, respectively. We use Dsplit

v, t to denote
data split from different views and timepoints. The test data in v2 at t2
(i.e. Dtest

v= v2, t = t2) are masked for performance evaluation.
To further assess LEOPARD’s applicability to multi-timepoint

omics data, the Extend KORA metabolomics dataset is constructed to
span three timepoints. The test data Dtest

v= v2, t = t1 and Dtest
v= v1, t = t3 are

masked individually for evaluation (Methods).

CGAN architecture as a reference method
Existing neural network-based missing view completion methods32–34

have shown remarkable performance in the field of computer vision.
Given their inapplicability to omics data, we designed a conditional
generative adversarial network (cGAN) model specifically tailored for
omics data, as a reference method. This architecture is inspired by
VIGAN (View Imputation via Generative Adversarial Networks)35 and a
method proposed by Cai et al.36, both initially designed for multi-
modality image completion.

In the training phase, the generator of the cGAN is trained on
observed data from the training set to capture the mappings between
two views. The discriminator guides the generator to produce data
with a distribution similar to that of actual data. The discriminator also
has an auxiliary classifier37 to ensure the generated data can be paired
with input data (Methods). In the inference phase, the generator uti-
lizes themappings it has learned from the observed data to impute the
missing view in the test set. Compared to methods PMM and mis-
sForest, our cGAN model has the potential to learn more complex
mappings between views. However, these three methods are not able
to capture temporal changes within longitudinal data and can only
learn from samples where both views are observed.

Overview of LEOPARD architecture
Instead of relying on learning direct mappings between views, LEO-
PARD captures and transfers temporal knowledge to completemissing
data, which also enables it to learn from samples even when only one
view is available. As illustrated in Fig. 1d, the LEOPARD architecture
comprises several hierarchical components. First, data of eachvieware
transformed into vectors of equal dimensions using corresponding
pre-layers. Subsequently, omics data of all views are decomposed into
content and temporal representations. The content encoder captures
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the intrinsic content of the views, while the temporal encoder extracts
knowledge specific to different timepoints. A generator then recon-
structs observed views or completes missing views by transferring the
temporal knowledge to the view-specific content using Adaptive
Instance Normalization (AdaIN)26. Lastly, we use a multi-task dis-
criminator to discriminate between real and generated data
(Methods).

The LEOPARDmodel is trained byminimizing four types of losses:
contrastive loss, representation loss, reconstruction loss, and adver-
sarial loss. An ablation test is performed to evaluate the contributionof
each loss (Methods). Minimizing the normalized temperature-scaled
cross-entropy (NT-Xent)-based contrastive loss38 optimizes the fac-
torization of data into content and temporal representation. For both
representations, minimizing the contrastive loss brings together the
data pairs from the same view or timepoint and pushes apart the data
pairs from different ones, so that the encoders learn similar intrinsic
content (or temporal knowledge) across timepoints (or views). The
representation loss, also computed on content and temporal repre-
sentations, measures the MSE of the representations factorized from
the actual and reconstructed data. LEOPARDminimizes this loss based
on the intuition that the representations of the actual and recon-
structed data should be alike. The reconstruction loss measures the
MSE between imputed and observed values. Previous studies39–41 have
demonstrated that the optimization of MSE loss often results in aver-
aged outputs, leading to blurring effects when generating images. In
our context, this might diminish biological variations present in omics
data. To alleviate this issue, we use adversarial loss to encourage the
predicted distribution to align more closely with the actual
distribution.

LEOPARD has three unique features compared to conventional
architectures formulti-view data completion. First, instead of focusing
on direct mappings between views, which can only be learned from
paired data where both views are present, LEOPARD formulates this
imputation task in terms of representation learning and style transfer.

This allows LEOPARD to utilize all available data, including observa-
tions present in only one view or timepoint. Second, it incorporates
contrastive loss todisentangle the representations unique to viewsand
timepoints, which enables the model to learn more generalized and
structured representations. Our experiments show that this is of
importance to improve data quality. Third, its multi-task discriminator
solves multiple adversarial classification tasks simultaneously by
yielding multiple binary prediction results, which has been proven to
be more efficient and effective than a discriminator for a multi-class
classification problem42.

The representation disentanglement of LEOPARD
We use the KORA multi-omics dataset to examine if LEOPARD can
effectively disentangle content and temporal representations from
omics data. In this analysis, the model is trained for 600 epochs to
ensure that the contrastive loss stabilizes and reaches full saturation
(Fig. 2a). We use the uniform manifold approximation and projection
(UMAP)43 for visualizing the content and temporal representations of
the validation set across different views and timepoints. As the training
progresses, we expect similar representations to gradually cluster
together in UMAP, while dissimilar ones form distinct clusters.

As the model trains, the contrastive loss decreases (Fig. 2a),
indicating that LEOPARD is increasingly able to encode the repre-
sentations for different views and timepoints. The content repre-
sentation embeddings (Fig. 2b) of observed v1 (in blue) and v2 (in
red) separate rapidly during training (epoch 5), but those of the
imputed v2 for t2 (in light red) do notmix with those of the observed
v2 at t1 (in dark red). This suggests that while LEOPARD can distin-
guish between v1 and v2 after only a few training epochs, it is not yet
capable of producing high-quality v2 for t2 that have similar content
information as the observed v2 at t1. After 30 epochs of training, the
content representation of v2 at t2 is better encoded, with its
embeddings mixing with those of v2 at t1. Similar trends are
observed in the temporal representations (Fig. 2c), where

Table 1 | Summary of the datasets used in this study

MGH COVID proteomics KORA metabolomics KORA multi-omics Extended KORA metabolomics

Omics type proteomics metabolomics metabolomics;
proteomics

metabolomics

View

v1 panel: Explore 384
cardiometabolic

biochemical class*: GPL omics: metabolomics biochemical class*: GPL

v2 panel: Explore 384
inflammation

biochemical class*: AC, SL,
AA, MS

omics: proteomics biochemical class*: AC, SL, AA, MS

Variable number Explore 384 cardiometabolic:
322,
Explore 384 inflammation: 295

GPL: 70,
AC: 15,
SL: 11,
AA: 9,
MS: 1

metabolites: 104,
proteins: 66

GPL: 69,
AC: 14,
SL: 11,
AA: 9,
MS: 1

Timepoint

t1 D0 F4 S4 S4

t2 D3 FF4 F4 F4

t3 FF4

Time span 3 days 7 years 7 years 14 years in total

Sample number

Total (100%) 218 2085 1062 614

Training (64%) 140 1335 680 393

Validation (16%) 35 333 170 98

Test (20%) 43 417 212 123

Masked data for
completion

inflammation proteins fromD3 non-GPL metabolites
from FF4

proteins from F4 completion 1: Non-GPL metabolites from
S4;completion 2: GPL metabolites from FF4

*The targetedmetabolites fromKORAareclassified intofive analyte classes, namelyglycerophospholipid (GPL), acylcarnitine (AC), sphingolipid (SL), aminoacid (AA), andmonosaccharide (MS).One
view group comprises metabolites from the glycerophospholipid class, while the other view group comprises metabolites from the other classes.
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Fig. 2 | The representation disentanglement process of LEOPARDon the KORA
multi-omics dataset. a The normalized temperature-scaled cross-entropy (NT-
Xent)-based contrastive loss is computed for content and temporal representa-
tions.b–cUniformmanifold approximation and projection (UMAP) embeddings of
content (b) and temporal (c) representations at various training epochs are
visualized for the KORA multi-omics dataset’s validation set. Representations
encoded from data of v1 and v2 (metabolomics and proteomics, depicted by blue
and reddots) at timepoints t1 and t2 (S4 andF4, depicted bydark- and light-colored
dots) are plotted.Thedata of v2 at t2 are imputeddataproduced after each training
epoch, while the other data are from the observed samples in the validation set.

LEOPARD’s content and temporal encoders capture signals unique to omics-
specific content and temporal variations. In b, as the training progresses, one
cluster is formed by the data of v2 at t1 and t2 (dark and light red dots), while the
other cluster is formed by the data of v1 at t1 and t2 (dark and light blue dots),
indicating that the content encoder is able to encode timepoint-invariant content
representations. Similarly, in (c), embeddings from the same timepoint cluster
together. One cluster is formed by the data of v1 and v2 at t1 (dark blue and red
dots), and theother is formedby thedata of v1 and v2 at t2 (light blue and reddots).
This demonstrates that LEOPARD can effectively factorize omics data into content
and temporal representations. Source data are provided as a Source Data file.
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embeddings of each timepoint (t1 and t2 in dark and light colors,
respectively) gradually form their corresponding clusters as training
progresses. We notice that the temporal representations take more
epochs than the content representations to form distinct clusters.
Even after 100 epochs, some temporal representation embeddings of
t1 are still mixed with those of t2. However, after around 450 epochs,
LEOPARD is demonstrably able to encode temporal information that
is unique to t1 and t2 (Fig. 2c).

Approach for benchmarking LEOPARD against conventional
methods
Due to the lack of established methods specifically designed for
missing view completion in multi-timepoint omics datasets, we
benchmark LEOPARD against three widely recognized generic impu-
tationmethods:missForest, PMM, andGLMM, aswell as a cGANmodel
designed for this study. The cGAN serves as a reference model to
demonstrate how existing neural network approaches, typically suited
for cross-sectional data, perform in longitudinal scenarios.MissForest,
as a representative non-parametric method, was chosen for its
robustness and ability to handle complex, non-linear relationships
among variables. PMM andGLMM, both implementedwithin theMICE
(Multivariate Imputation by Chained Equations)44 framework, repre-
sent established multiple imputation methods that not only address
missing values but also allow for the assessment of imputation
uncertainty. GLMM, with its ability to capture temporal patterns
inherent in longitudinal data, is particularly advantageous for data
imputation in longitudinal scenarios.

We assess the performance of LEOPARD, cGAN,missForest, PMM,
and GLMM on Dtest

v= v2, t = t2 of each of our benchmark datasets: MGH
COVID proteomics, KORA metabolomics, and KORA multi-omics
datasets. During training, the methods build models using data from
Dtrain

v= v1, t = t1, Dtrain
v= v2, t = t1, and Dtrain

v= v1, t = t2, along with different numbers of
training observations (obsNum) from the data block to be completed
(i.e. Dtrain

v= v2, t = t2 in this case). By varying obsNum, we assess how addi-
tional observed data from t2 affects their imputation performances.
When obsNum is zero, data of v2 at t2 are assumed as completely
missing, and GLMM cannot be trained due to limited longitudinal
information. In this scenario, we train a linear model (LM)45 to com-
plete the missing view (Methods). This additionally allows us to eval-
uate how the performance of GLMM compares to that of the simpler
LM method.

Two evaluation metrics, PB and UMAP visualization, are used for
performance evaluation. PB quantifies the median absolute error ratio
between the observed and imputed values for each variable, offering a
variable-level assessment of imputation performance (Methods). In
contrast, UMAP visualization illustrates overall similarities between
observed and imputed datasets, providing a dataset-level evaluation.
For the multiple imputation methods, each individual imputation is
also evaluated using PB (Supplementary Fig. 1) and UMAP (Supple-
mentary Fig. 2).

Apart from missing views, the presence of missing data points in
observed views is also very common in omics analysis. Therefore,
LEOPARD is designed to tolerate a small number ofmissing data points
in the observed views (Methods). The benchmark datasets are further
used to evaluate the performanceof differentmethodswhenobserved
views containmissing values. We simulate missing values by randomly
masking 1%, 3%, 5%, 10%, and 20% of the data in the observed views
(maskObs) under the assumption that data points are missing com-
pletely at random (MCAR). The experiment is repeated 10 times for
each specified proportion, and the results are evaluated by PB and
UMAP. The PB values are averaged across 10 repetitions. The UMAP
plots visualize the repetition that exhibits the lowestmedianof PB.Due
to the exceptionally high computational demands of PMM and GLMM
on the MGH COVID proteomics dataset, these two methods are not
evaluated in this scenario.

Evaluation results on the mono-omics datasets
For the MGH COVID proteomics dataset, missForest overall exhibits
the lowest PB, whereas LEOPARD performs worse thanmissForest and
its neural network-based counterpart, cGAN (Fig. 3, upper row). When
compared to LM, GLMM does not show improved performance. As
obsNum increases, the PB values of all methods tend to decrease.
Specifically, when obsNum is 100, the UMAP representation (Fig. 4,
upper row) reveals that the clusters of the imputed data generated by
all five methods (green dots) closely approximated the actual data
(blue dots), indicating high similarity between the imputed and origi-
nal datasets.

Interestingly, we observe that missForest, despite yielding the
best performance for the MGH COVID dataset, produces unstable
results for the KORA metabolomics dataset with large interquartile
range (IQR) values. When obsNum is 0, missForest displays the largest
IQR of 0.186 with a median of 0.205, though it is not significantly
different from LEOPARD after Bonferroni adjustment (Fig. 3, middle
row). LEOPARD achieves the smallest IQR of 0.094 with a median of
0.209under the samecondition, while cGAN, PMM, and LMobtain IQR
values of 0.125,0.132, and0.166,with correspondingmedians of 0.229,
0.253, and 0.254, respectively. As obsNum increases to 200, LEOPARD,
cGAN, missForest, and PMM lower their median PB values to 0.142,
0.172, 0.177, and 0.204, respectively. However, GLMM obtains a
medianPBof0.291 anddoes not outperformLM.From theUMAPplots
generated from the data imputed under obsNum = 200, we notice a
large amount of the embeddings from D̂test

v= v2, t = t2 generated by mis-
sForest and PMM are mixed with those of Dtest

v= v2, t = t1, instead of
Dtest

v= v2, t = t2, implying that they overfit to t1 and do not generalizewell to
the second timepoint (Fig. 4, middle row). Moreover, the UMAP
embeddings of D̂test

v= v2, t = t2 from missForest, PMM, and GLMM only
partly overlapwith thoseofDtest

v= v2, t = t2, suggesting that somevariations
in the observed data have not been captured. In contrast, the
embeddings of thedata imputedby LEOPARDwidely spreadwithin the
embedding space of the observed data, which demonstrates that
LEOPARD has effectively learned and approximated the observed
data’s distribution.

Evaluation results on the KORA multi-omics dataset
In contrast to mono-omics datasets, where both views are from the
same omics type, multi-omics datasets require imputationmethods to
capture more intricate relationships between omics data to ensure
accurate results. In our evaluation of the KORA multi-omics data, all
methods show some extremely high PB values when obsNum is 0
(Fig. 3, lower row). Additionally, under this condition, there are no
significant differences in the results of LEOPARD, cGAN, and mis-
sForest. As obsNum increases to 200, LEOPARD greatly reduces its
median PB from 0.161 to 0.060, outperforming its closest competitor,
cGAN, which reduces its median PB from 0.158 to 0.076. In contrast,
the performances of missForest (from 0.156 to 0.159) and PMM (from
0.177 to 0.131) do not show similar improvements. GLMM reduces its
median PB from 0.176 to 0.164 as obsNum increases from 50 to 200.
The UMAP visualization further reveals a limited ability of missForest,
PMM, and GLMM to capture signals from the t2 timepoint, as their
embeddings of D̂test

v= v2, t = t2 cluster withDtest
v= v2, t = t1, notDtest

v= v2, t = t2 (Fig. 4,
lower row). LEOPARD’s performance is further validated by a high
similarity between the distributions of the imputed and observed data
embeddings in the UMAP space.

Analysis on imputed data with extremely high PB values
We then investigate the extremely high PB values (>0.8) observed in
the KORA multi-omics dataset. Under obsNum = 0, we notice that
proteins with low abundance ( < 4.0) tend to exhibit extremely high PB
in the imputed values (Fig. 5). For instance, SCF (stem cell factor), with
a median abundance of 9.950, has a PB of 0.090 calculated from the
LEOPARD-imputed data. In contrast, NT3 (Neurotrophin-3), with a
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much lowermedianabundanceof 0.982, showsa PBof 1.187 calculated
from the same imputed data. Increasing obsNum can substantially
lower these extremely high PB values for LEOPARD and cGAN, but
makes no similar contributions for missForest, PMM, and GLMM.

Evaluation on observed views with missing data points
We further evaluate how different methods perform when observed
views contain missing values. Evaluated on the KORA metabolomics
dataset, which has the largest sample size, our findings indicate LEO-
PARD andmissForest are robust to the missing data points in terms of
PB (Supplementary Fig. 3). In contrast, cGAN and GLMM exhibit high
sensitivity to those missing values. Method cGAN does not show
similar improvement with the increase of obsNum as it performs in
Fig. 3 (middle row) and is gradually surpassed by missForest. GLMM
overall exhibits higher PB than the other methods. The UMAP plots
(Supplementary Fig. 4) further demonstrate that LEOPARD’s perfor-
mance remains comparable to scenarios with no missing data in the
observed views (Fig. 4, middle row), unlike the other methods which
display overfitting or a great loss of data variation. Although LEOPARD
outperforms other methods, we observed a change in the distribution
of the imputed data (blue dots): as maskObs increases, these blue dots
begin to shrink toward their center and become more concentrated.

This leads to a reduced coverage of the outer areas of the ground truth
embeddings (green dots) and suggests that the imputed data might
not capture the full variability of the data when the proportion of
missing data is high. The results on the MGH COVID proteomics and
the KORAmulti-omics datasets are shown in Supplementary Figs. 5−8.

Case studies for regression analysis on the KORA-derived
datasets
Several case studies, covering both regression and classification tasks,
are performed to investigate whether biological signals are preserved
in the imputed data obtained at obsNum = 0. The regression models
are fitted using the observed data and different imputed data corre-
sponding to Dtest

v= v2, t = t2. To assess the robustness of the imputation
methods in preserving original data characteristics, we evaluate the
consistency of the effect signs, the Spearman correlation of effect
sizes, and the agreement of significant variables between imputed and
observed data. The performance of LEOPARD, cGAN, and missForest
are evaluated on their imputed data directly, while two multiple
imputation methods, PMM and LM, are evaluated by pooling their
multiple estimates using Rubin’s rules45 (Methods).

We use the KORA metabolomics dataset to identify metabolites
associated with age, controlling for sex. The models are fitted

Fig. 3 | Percent bias of imputed results for the test sets of three benchmark
datasets. Percent bias is evaluated on Dtest

v= v2, t = t2 of the three benchmark datasets:
MGHCOVID proteomics dataset (upper row), KORAmetabolomics dataset (middle
row), and KORA multi-omics dataset (lower row), under various numbers of train-
ing observations (obsNum) from the data block to be completed. Please note that
LM is used for imputation instead of GLMMwhenobsNum=0. Eachdot in the plots
represents a percent bias value for a variable. The value below each box indicates
the median, which is also represented by the central line in each box plot. The box

extends from the first quartile to the third quartile, capturing the interquartile
range (IQR). Whiskers extend to the smallest and largest values within 1.5 times the
IQR from the quartile boundaries. Data points outside this range are plotted as
outliers. The two-sidedpairedWilcoxon test is used to comparepercent bias across
methods, with LEOPARD as the reference group. P-values are adjusted for multiple
comparisons using the Bonferroni method, and significance is annotated based on
cutpoints: not significant (ns), P <0.05 (*), P <0.01 (**), and P <0.001 (***). Source
data are provided as a Source Data file.
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separately to each of the 36 metabolites (N = 417). LEOPARD and
cGAN each demonstrate 88.9% of metabolites with matching effect
signs, followed by LM 75.0%, and both missForest and PMM 69.4%.
The Spearman correlation between effect sizes from the observed
and imputed data also varies across methods, with LEOPARD show-
ing the highest correlation of 0.708, followed by PMM (0.440), cGAN
(0.319), and GLMM (0.110). In contrast, missForest shows a negative
correlation of −0.074. Of the 18 metabolites significantly associated
with age after a Bonferroni correction for multiple testing (P < 0.05/
36) in the observed data, 17 are also significant in the data imputed by
LEOPARD (see Fig. 6a). Among these 17 metabolites, several,
including C14:1 (Tetradecenoylcarnitine), C18 (Octadecanoylcarni-
tine), C18:1 (Octadecenoylcarnitine), and Orn (Ornithine), have
been validated by previous research46–49 showing that they might
be particularly relevant in aging and age-related metabolic condi-
tions. In contrast, only one metabolite is significantly associated with
age in the data imputed by missForest. No metabolite is identified as
significant in the data imputed by cGAN, PMM, and LM. The results
on each imputation of PMM and LM are shown in Supplemen-
tary Fig. 9.

We then use the KORA multi-omics dataset to identify proteins
associated with the estimated glomerular filtration rate (eGFR), con-
trolling for age and sex. Each model is individually fitted to one of the
66proteins (N = 212). The percentages ofproteinswithmatching effect
signs across different methods are as follows: LEOPARD demonstrates
92.4%, missForest 87.9%, cGAN 74.2%, PMM 68.2%, and LM 57.6%.
LEOPARD obtains the Spearman correlation score of 0.539, followed
by LM (0.473), PMM (0.421), missForest (0.317), and cGAN (0.277). In
the observed data, 28 proteins are significantly associated with eGFR
after a Bonferroni correction (P <0.05/66). Of these, 10 remain

significant in the data imputed by LEOPARD (see Fig. 6b), while one is
significant in the data fromcGAN, and none are identified as significant
in the data from missForest, PMM, and LM. Among the 10 proteins
detected from the LEOPARD-imputed data, eight (TNFRSF9, IL10RB,
CSF1, FGF21, HGF, IL10, CXCL9, and IL12B) havebeen validatedbyprior
research50. The results on each imputation of PMM and LM are shown
in Supplementary Fig. 10.

Case studies for classification analysis on the KORA-derived
datasets
For the classification tasks, we employ balanced random forest (BRF)51

classifiers to predict chronic kidney disease (CKD) using both the
KORA metabolomics and multi-omics datasets. The classifiers are
individually fitted using the observed and different imputed data of
Dtest

v= v2, t = t2, corresponding to 36 metabolites from the KORA metabo-
lomics dataset (N = 416, one sample removed due to a missing CKD
label) and 66 proteins from the KORA multi-omics dataset (N = 212).
CKD cases are defined as having an eGFR <60mL/min/1.73m2[52. In the
two datasets, 56 and 36 individuals are identified as CKD cases,
respectively. We train the classifiers using identical hyperparameters
and use leave-one-out-cross-validation (LOOCV) to evaluate their
performance. The models for LEOPARD, cGAN, and missForest are
trained using their respective imputed data, while themodels for PMM
and LM are trained on the average estimates across their multiple
imputations (Methods).

For the KORA metabolomics dataset, the observed data obtain
an F1 Score of 0.439, and the data imputed by LEOPARD achieves the
closest performance with an F1 Score of 0.358 (Fig. 7a, Supple-
mentary Table 1). LEOPARD also outperforms its competitors in
terms of accuracy, sensitivity, precision, AUROC (area under the

Fig. 4 | UMAP representations of the imputed values and corresponding
observed data from the benchmark datasets. Uniform manifold approximation
and projection (UMAP) models are initially fitted with the training data from the
MGH COVID proteomics dataset (upper row, t1: D0, t2: D3), KORA metabolomics
dataset (middle row, t1: F4, t2: FF4), and KORA multi-omics dataset (lower row, t1:
S4, t2: F4). Subsequently, the trained models are applied to the corresponding
observed data (represented by red and green dots for t1 and t2) and the data

imputed by different methods (represented by blue dots) under the setting of
obsNum = 100 for the MGH COVID dataset and obsNum = 200 for the two KORA-
derived datasets. The distributions of red and green dots illustrate the variation
across the two timepoints, while the similarity between the distributions of blue
and greendots indicates the quality of the imputed data. A highdegree of similarity
suggests a strong resemblance between the imputed and observed data. Source
data are provided as a Source Data file.
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receiver operating characteristic curve), and AUPRC (area under the
precision-recall curve). The proteins from the KORA multi-omics
dataset perform better than the metabolites from the metabolomics
dataset for this task. The F1 Score increases to 0.544 for the
observed data of the KORA multi-omics dataset. LEOPARD outper-
forms its competitors with an F1 Score of 0.403, an AUROC of 0.725,
and an AUPRC of 0.435 (Fig. 7b, Supplementary Table 2). The pre-
diction results on each individual imputation of PMM and LMM are
displayed in Supplementary Figs. 11 and 12.

Case studies on the MGH COVID proteomics dataset
We additionally use the observed and imputed data corresponding to
Dtest

v= v2, t = t2 (N = 43) of the MGH COVID dataset to identify proteins
associated with neutralization levels and to predict neutralization

levels. These analyses are adapted from those conducted in the origi-
nal study of this dataset30.

For each protein, we fit a logistic regression model using the
proteomics data as the predicator and neutralization levels as the
response. Bonferroni correction is used for multiple tests (P < 0.05/
295). Surprisingly, no proteins reach statistical significance even in the
observed data (Supplementary Fig. 13 a), which contradicts the results
of the original study. The 10 proteins with the lowest P-values are
highlighted in the volcano plots. We observe that patterns in the
missForest-imputed data are more similar to those in the observed
data compared to data imputed by other methods.

For the prediction of neutralization level, we use the proteomics
data from Day 3 to predict the same day’s neutralization levels. We
build BRF models using the same settings as in our previous

Fig. 5 | Proteins with low abundance tend to exhibit high percent bias in the
imputed values. The proteins with low abundance (median concentration <4.0)
tend to exhibit extremely high percent bias ( > 0.8) in the imputed values obtained
under numbers of training observations (obsNum) is zero. The extremely high

percent bias values of LEOPARD can be lowered by increasing obsNum. Please note
that LM is used for imputation instead of GLMMwhen obsNum=0. Source data are
provided as a Source Data file.
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experiments. The model built on the observed data achieved an
AUROCof0.776 (Supplementary Fig. 13b),while themodels trained on
missForest- and PMM-imputed data outperform the observeddata and
achieve AUROC of 0.788 and 0.779, respectively.

The discrepancies between our findings and those of the original
studymight result from the limited sample size of our analysis.While the
original study analyzed the complete dataset of 218 samples, our eva-
luation is restricted to a test set of only 43 samples. This substantial
reduction in sample size can limit the statistical power, leading to non-
significant results and inconsistent findings. Additionally, single impu-
tations tend to underestimate the original variation in the data, poten-
tially resulting in better predictive performance than observed data.

These findings highlight the challenges associated with per-
forming and evaluating imputation, as well as the potential
biases introduced by imputation methods. While these
results should be interpreted with caution and may not reflect
underlying biological reality, we include them to emphasize the
complexities of imputation and to support reproducibility in sci-
entific research.

Minimum training samples for robust view completion
To reveal LEOPARD’s utility and adaptability in different analytical
scenarios, we further explore howmany training samples are required
for LEOPARD to have robust view completion. The evaluation is per-
formed on Dtest

v= v2, t = t2 of our three benchmark datasets by varying the
number of training samples from 20 to 160 and obsNum from 0 to 50.
Each condition is tested 10 times with different samples randomly
selected from the training sets. The performance is evaluated by PB
averaged across these repetitions. Figure 8 simplifies the boxplot and
shows themedian and the IQR of the averaged PB values calculated for
the variables in the imputed data.

Across all datasets, average PB generally decreases with more
training samples, indicating an improvement in view completion.
Consistent with our previous evaluation, PB values decrease as
obsNum increases. Additionally, we notice that the average PB steadily
decreases for the MGH COVID proteomics dataset, which exhibits the
smallest variation between the two timepoints in our UMAP plots
(Fig. 4). In contrast, the average PB for the other two datasets shows
some fluctuations, particularly for the KORA multi-omics dataset,
which shows the most obvious variation between two timepoints.
When obsNum = 0, the MGH COVID proteomics and the KORA meta-
bolomics datasets require about 120 training samples to obtain stable
results; the KORAmulti-omics dataset, however, exhibits a wide range
of PB under this condition. When we increase obsNum to 20, the
performance stabilizes with approximately 50 to 80 samples used for
training LEOPARD. Based on our evaluation, at least 80 training sam-
ples may be required for robust view completion.

Arbitrary temporal knowledge transfer
In computer vision, arbitrary style transfer enables the blending of any
style with a content image. Here, we explore whether LEOPARD
inherits this property and can complete views “arbitrarily”. For this
evaluation, Dtest

v= v2, t = t1 and Dtest
v= v1, t = t3 from the Extended KORA meta-

bolomics dataset (S4 as t1, F4 as t2, and FF4 as t3) are masked sepa-
rately—one to complete data at an earlier timepoint, and the other to
complete the first view. For each completion, LEOPARD is trained
using data from the other view but at the same timepoint (Dtrain

v= v1, t = t1 or
Dtrain

v= v2, t = t3, respectively) alongwith varying obsNumanddata fromone
or two additional timepoints (Methods).

In both tasks, some metabolites exhibit high PB values at
obsNum = 0, particularly for completing Dtest

v= v1, t = t3 (Fig. 9) due to
low metabolite concentrations. While different completions show

Fig. 6 | Regression analyses with the data imputed by different methods.
a Volcano plots display age-associated metabolites detected in the Dtest

v = v2, t = t2 and
D̂test

v= v2, t = t2 (obsNum= 0) of the KORAmetabolomics dataset (N = 417). Associations
are assessed using linear regression, with P-values adjusted for multiple compar-
isons via the Bonferroni method. 18 significant metabolites (P <0.05/36) identified
in the observed data are shown in blue. Replicated metabolites from the data
imputed by different methods are marked with labels. Solid dots represent vari-
ables where the observed and imputed data have matching signs for the estimate,

while hollow dots represent mismatched signs. b Volcano plots display eGFR-
associated proteins detected in the Dtest

v= v2, t = t2 and D̂test
v= v2, t = t2 (obsNum = 0) of the

KORA multi-omics dataset (N = 212). Associations are also tested using linear
regression with Bonferroni-adjusted P values. 28 significant metabolites (P <0.05/
66) identified in the observed data are shown in blue. Replicatedmetabolites from
the data imputed by different methods are marked with labels. Solid dots indicate
sign matches between the observed and imputed data, while hollow dots indicate
mismatches. Source data are provided as a Source Data file.
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variability in their performances, PB generally decreases as
obsNum increases. Our results also show that including data from
additional timepoints into training can improve imputation,
especially for obsNum = 0. We additionally use UMAP to visualize
the content and temporal representations disentangled from the
three-timepoint observed data (Supplementary Fig. 14). The
UMAP illustrates LEOPARD’s capability to process data spanning
more than two timepoints.

Our evaluation demonstrates that LEOPARD can transfer extrac-
ted temporal knowledge to different content representations in a
flexible and generalized way. Incorporating additional observations
from the incomplete view or additional timepoints into training can
contribute to robust results, particularly for metabolites with low
concentrations.

Discussion
In this study, we introduce LEOPARD, an architecture for missing view
completion designed for multi-timepoint omics data. The perfor-
mance of LEOPARD is comprehensively assessed through simulations
and case studies using four real human omics datasets. Additional
interesting findings emerged from our evaluation.

As illustrated in the UMAPplots, theMGHCOVIDproteomics data
(Fig. 4 upper row) from D0 (t1, in red) and D3 (t2, in blue) show rela-
tively low variation, while the KORA metabolomics data (Fig. 4 middle
row) from F4 (t1, in red) and FF4 (t2, in blue) exhibit more substantial
variations, potentially due to biological variations spanning seven
years and technical variation from different analytical kits in the KORA
data. In the MGH COVID dataset, we observed that LEOPARD is

outperformed by its competitors. This can be attributed to the inher-
ent differences in the representation learning process of LEOPARDand
its competitors. By directly learning mappings between views, the
methods developed for cross-sectional data can exploit the input data
to learn detailed, sample-specific patterns, while the representation
learning in LEOPARD primarily focuses on more compact and gen-
eralized structures related to views and timepoints, potentially
neglecting detailed information specific to individual samples. The
MGH COVID dataset, having a high similarity between the data from
D0 and D3, allows the cross-sectional imputation methods to effec-
tively apply the mappings learned from one timepoint to another. As
the data variation between two timepoints increases, LEOPARD’s
advantages become increasingly evident, while its competitors tend to
overfit the training data and fail to generalizewell to the new timepoint
(Fig. 4, middle and lower rows).

For the KORA multi-omics dataset, we observed that the extre-
mely high PB values are associated with low analyte abundances. For
the same absolute error in imputed values, a variablewith a low analyte
abundance will have a higher absolute error ratio, leading to a higher
PB than those variables with high abundances. Additionally, protein
levels quantified using the Olink platform are represented as relative
quantities. Data from different measurements also contain technical
variations that arise from experimental factors and normalization
methodsused for relative quantification.WhenobsNum is0, LEOPARD
is trained without any data from v2 at t2, and thus cannot account for
the technical variations exclusive to that part. By incorporating a few
observed samples fromthe second timepoint into the trainingprocess,
the model can better capture the data distribution and technical

Fig. 7 | Classification analyses with the data imputed by different methods.
Chronic kidney disease (CKD) classification evaluated using Dtest

v= v2, t = t2 and
D̂test

v= v2, t = t2 (obsNum = 0) from (a) the KORA metabolomics dataset (N = 416,
Npositive = 56, Nnegative = 360) and (b) the KORA multi-omics dataset (N = 212,
Npositive = 36, Nnegative = 176). Models are trained using the balanced random forest
(BRF) algorithmwith identical hyperparameters and evaluated using leave-one-out-

cross-validation (LOOCV). Evaluation metrics in the bar plot include accuracy
(ACC), F1 score, truepositive rate (TPR, also knownas sensitivity), true negative rate
(TNR, also known as specificity), and positive predictive value (PPV, also known as
precision). The dashed lines in the ROC and PR curves represent the performance
of a hypotheticalmodelwith no predictive capability. Source data are provided as a
Source Data file.
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variation of the missing part, which contributes to a substantial
reduction in high PB values.

As data imputation inevitably incurs a loss of information, we
conducted case studies to assess the preservation of biological infor-
mation in the imputed data. Despite all five imputation methods pro-
ducing similar PBwhenobsNum is 0 (Fig. 3 lower row), the case studies
showed that the data imputed by LEOPARD provided performance
closest to the observed data, while the data imputed by cGAN, mis-
sForest, PMM, and LM showed a substantial loss of biological infor-
mation (Figs. 6 and 7). This outcome highlights the importance of case
studies for a reliable evaluation of imputed data.

Arbitrary style transfer, a concept from the computer vision field
underpinning LEOPARD, allows the style of one image to be trans-
ferred to the content of another. This study demonstrates that
LEOPARD inherits this capability and has the potential for arbitrary
temporal knowledge transfer. While the minimum sample size for
robust performance depends on specific data characteristics, our
experiments demonstrate that LEOPARD yields robust results with
approximately 60 to 80 samples on the benchmark datasets used in
this study. Moreover, LEOPARD not only completesmissing views for
downstream analyses, but also facilitates the exploration of temporal
dynamics. By analyzing the extracted temporal embeddings, LEO-
PARD could enable the inference of the temporal ordering of omics
changes, which would be particularly valuable when there is a dis-
crepancy between biological and chronological order. As the number

of data timepoints increases, LEOPARD is expected to offer new
opportunities in predictive healthcare with multi-timepoint
omics data.

While LEOPARDhas been evaluated on real-world omics data with
simulated missing views, it has not yet been applied to real-world
studies with actual missing views. Additionally, it is important to
consider the limitations and caveats of this study: (1) To alignwith real-
world settings, we defined QC criteria based on existing studies when
constructing our evaluation datasets, and consequently, only themost
detectable proteins and metabolites were selected. This could inflate
the metrics of both LEOPARD and other methods reported in this
study. Theperformanceon these selected variablesmaynot accurately
reflect that of the overall proteins and metabolites, especially those
showing more variability in their abundance. (2) LEOPARD typically
requires observed views to be complete so that temporal and content
representations can be extracted. Considering the common occur-
rence ofmissing values in real-world omics data, LEOPARD is designed
to tolerate a small proportion while maintaining optimal robustness.
However, we observed that LEOPARD struggles to capture the full
diversity present in the ground truth as maskObs increases to 20%
(Supplementary Figs. 4 and 8). It is preferable for the input data for
LEOPARD to contain less than 10% missing data points. Higher pro-
portions ofmissing values are ideally addressed by generic imputation
methods before processing with LEOPARD. Additionally, we assumed
that themissing data wereMCAR. Additional bias could be introduced

Fig. 9 | Performance of arbitrary temporal knowledge transfer. LEOPARD is
evaluated on Dtest

v= v2, t = t1 and Dtest
v= v1, t = t3 from the Extended KORA metabolomics

dataset. Timepoints t1, t2, and t3 correspond to the KORA S4, F4, and FF4 studies,
respectively. For each completion, LEOPARD is trainedwith the data from the other
view at the same timepoint (Dtrain

v= v1, t = t1 for Dtest
v= v2, t = t1 and Dtrain

v= v2, t = t3 for Dtest
v = v1, t = t3)

alongwith varyingobsNumand thedata fromoneor two additional timepoints. For
the samecompletion task, the evaluation shows that percent bias canbe loweredby
increasing obsNum or including additional timepoints into training. Each dot
represents a percent bias value for a variable. Source data are provided as a Source
Data file.

Fig. 8 | Evaluation of minimum number of training samples required for LEO-
PARD. For each benchmark dataset, the average percent bias is evaluated on
Dtest

v= v2, t = t2 across 10 repeated completions for each combination of training sample
sizes andnumbersof trainingobservations (obsNum). Thebar indicates themedian
and the interquartile range (IQR) of the average percent bias values for different

variables. In each repetition, the samples are selected randomly. Please note that
the maximum obsNum cannot exceed the number of training samples, and the full
training set of the MGH COVID proteomics dataset contains only 140 samples.
Source data are provided as a Source Data file.
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if data points are missing at random (MAR) or missing not at random
(MNAR) in real-world scenarios. (3)Our experimentswere restrictedby
data availability to three timepoints, but in principle LEOPARD can
accommodate additional timepoints and is well-suited for cohort
studies involving multiple omics with samples collected at shared
discrete timepoints. As LEOPARD is not designed to learn varying
temporal changes directly, it is not applicable to datasets with con-
tinuous or unaligned time intervals. (4) Due to data availability, this
study does not include evaluations on large-scale transcriptomics or
untargeted omics datasets with thousands of variables acrossmultiple
timepoints.

With advancements in omics measurement technology and the
growing availability of longitudinal data, missing view in multi-view,
multi-timepoint data is becoming a prominent issue. Our study
demonstrates that established generic methods, originally developed
for missing data points or cross-sectional data, do not produce robust
results in this new context. This highlights the necessity for specialized
methods, and our method, LEOPARD, represents an early attempt to
address this issue. We anticipate further developments in imputation
methods that exhibit high generalization ability, robustness to low
analyte abundance, and preservation of biological variations.

Methods
Ethical compliance and approval
TheMGHCOVIDstudyprocedureswereapprovedby theMassGeneral
Brigham (formerly Partners) Human Research Committee, the gov-
erning institutional review board atMassachusetts General Hospital. A
waiver of informedconsentwas approved in compliancewith theCode
of Federal Regulations (45CFR 46, 2018 Common Rule). Our study did
not involve any direct interaction with study participants nor new data
collection.

The KORA studies were all conducted in accordance with the
Declaration of Helsinki. The participants provided written informed
consent. The protocol of the KORA study was approved by the Ethics
Committee of the Bavarian Chamber of Physicians.

Terminology
The following outlines the terminology used throughout this study.

• Multi-view: different representations extracted from different
data sources or several modalities collected in one cohort2. It is
common for samples to be examined from multiple perspectives
using different platforms or technologies, yielding different views
of the data.

• Mapping: the transformation that amodel learns to apply from an
input space to an output space.

• Embeddings: low-dimensional representations of high-
dimensional data.

• Arbitrary style transfer: a technique in computer vision field that
allows the visual style from any source image to a target image,
irrespective of their content differences. LEOPARD adapts this
technique and has the potential to perform arbitrary temporal
knowledge transfer.

• Representation disentanglement: the process of decomposing
complex data into distinct underlying factors of variation, where
each factor is represented independently of the others.

Problem formulation
In our missing view completion problem, we are given a generalized
dataset XN

V ,T that includes omics data from N individuals across mul-
tiple views (V ) and timepoints (T). For simplification, we consider data
from two timepoints ft1, t2g, categorized into two view groups fv1, v2g.
Either v1 or v2 includes complete views, with the other includes
incomplete views. The dataset is split into training, validation, and test
sets, denoted as Dsplit

v, t . The task is to complete Dtest
v= v2, t = t2. To achieve

this, we attempt to develop a model that captures the mappings

between v1 and v2, while simultaneously extracting temporal knowl-
edge from t1 and t2 using all observed data in the training set. Further,
the model should be capable of accommodating data frommore than
two timepoints.

Data preprocessing
MGH COVID dataset The MGH COVID study includes plasma proteins
measured for patients at three timepoints: on day 0 (D0) for all
patients on the day they were hospitalized for COVID, and on days 3
(D3) and 7 (D7) for patients still hospitalized then. We utilize pro-
teomics data from D0 (t1) and D3 (t2), which have the largest sample
sizes (N = 218, one duplicated sample removed), to construct the first
mono-omics dataset.

The proteomics data from the MGH COVID study were obtained
using plasma samples and the Olink® Explore 1536 platform (Olink
Proteomics, Watertown, MA, USA), which consists of 1472 proteins
across four Olink® Explore 384 panels: inflammation, oncology, car-
diometabolic, and neurology30. The platform enables relative quanti-
fication of analyte concentrations in the form of log2-scaled
normalized protein expression (NPX) values, where higher values
correspond to higher protein levels. We selected proteins listed in the
Cardiometabolic and Inflammation panels to construct the two views
for the MGH COVID proteomics dataset, and the inflammation view
was assumed to be incomplete. The proteins are processed based on
the following quality control (QC) criteria: (1) no missing values; (2) at
least 50%ofmeasured sample values are equal to or above the limits of
detection (LOD). After quality inspection (Supplementary Data 1), a
total of 322 and 295 proteins from the Cardiometabolic (v1) and
Inflammation (v2) panels were selected.

KORA datasetsData from the KORA study are extracted from the
baseline survey (S4, examined between 1999 and 2001), the first
follow-up study (F4, 2006–2008), and the second follow-up study
(FF4, 2013–2014)53,54. We use metabolomics data (N = 2085) from F4
(t1) and FF4 (t2) from the KORA cohort to construct the secondmono-
omics dataset.We additionally usemetabolomics and proteomics data
(N = 1062) from the KORA S4 (t1) and F4 (t2) to construct the multi-
omics dataset.

The metabolite profiling of the KORA S4 (March–April 2011), F4
(August 2008–March 2009), and FF4 (February–October 2019) serum
samples spans over a decade, during which analytical procedures have
been upgraded several times. The targeted metabolomics data of F4
weremeasuredwith the analytical kit AbsoluteIDQ® p150, while S4 and
FF4 data were quantified using the kit AbsoluteIDQ® p180 (Biocrates
Life Sciences AG, Innsbruck, Austria). To assess the technical variation
introduced by different kits, samples from 288 individuals from the F4
were remeasured (September–October 2019) using the p180 kit. Three
manufacturer-provided QC samples were added to each plate to
quantity the plate effect. Additionally, five external QC samples were
added to each plate when measuring using the p180 kit. The p150 and
p180 kits allow simultaneous quantification of 163 and 188 metabo-
lites, respectively55. Only metabolites meeting the following QC
criteria56,57 were selected: (1) overlap between p150 and p180; (2) no
missing values; (3) at least 50% ofmeasured sample values are equal to
or above the LOD of corresponding plates; (4) median relative stan-
dard deviation (RSD) of QC samples <25%; (5) Spearman correlation
coefficients between theKORAF4 (remeasured, p180) and F4 (original,
p150) > 0.5. After QC procedures, the metabolites values were further
normalized using TIGER (Technical variation elImination with ensem-
ble learninG architEctuRe)55 with its default setting to remove the plate
effects. For the multi-omics dataset, TIGER was also used to remove
the technical variation introduced by different kits following our pre-
vious protocol58.

The proteomics data from the KORA cohort are available at two
timepoints, S4 and F4, and are measured using plasma (S4, February
2020) and serum (F4, December 2016–January 2017) samples with the
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Olink® Target 96 Inflammation panel (Olink Proteomics, Uppsala,
Sweden)50. The panel includes 92 proteins, and only proteins pass the
following QC criteria were selected: (1) no missing values; (2) at least
75% of measured sample values are equal to or above the LOD. TIGER
was then used to remove the technical variation introduced by dif-
ferent kits following our previous protocol55,58.

For the KORA metabolomics dataset, 106 targeted metabolites
satisfy all criteria (Supplementary Data 2) and are categorized into five
analyte classes: acylcarnitine (AC), amino acid (AA), glyceropho-
spholipid (GPL), sphingolipid (SL), and monosaccharide (MS). Two
view groups are constructed by 70 metabolites from GPL (v1) and 36
metabolites from theother four classes (v2). For theKORAmulti-omics
dataset, 104metabolites (v1) and 66 proteins (v2) satisfy all QC criteria
(Supplementary Data 2 and 3) and are selected to construct two views.

To evaluate LEOPARD’s capability for arbitrary temporal knowl-
edge transfer, we further constructed the Extended KORA metabo-
lomics dataset to include data from the baseline study (S4, as t1) and
the second follow-up study (FF4, as t3), spanning approximately 14
years. We divided the metabolites data into two views using the same
strategy as we used for the original KORA metabolomics dataset. Due
to different QC results across the two analytical kits, two metabolites,
specifically PC aa C38:1 in v1 and C16:2 in v2, were excluded (see
Supplementary Data 2). This Extended KORA metabolomics dataset
comprised 104 metabolites (69 in v1 and 35 in v2) with 614 individuals
who have data at all timepoints. These samples were divided into
training, validation, and test sets with a ratio of 64%, 16%, and 20%,
respectively, corresponding to 393, 98, and 123 samples. The data in
Dtest

v= v2, t = t1 and Dtest
v= v1, t = t3 are masked for performance evaluation.

Training the cGAN model
Architecture implementation The cGAN59 extends the original GAN60

model by introducing additional information into the generation
process, thereby providingmore control over the generated output. In
our context, the completion of missing views is conditioned on the
data from observed views. Moreover, we enhanced the baseline cGAN
model with an auxiliary classifier37 to ensure that the imputed view can
be paired with the corresponding observed view.

Specifically, the generator GcGAN learns the complex mappings

betweenDtrain
v= v1, t andDtrain

v= v2, t , with t = t1 in our case. The reconstruction
loss Lrec cGAN quantifies the differences between the actual and
reconstructed data. The discriminator DcGAN computes the adversarial

loss Ladv cGAN by distinguishing if data are real (Dtrain
v= v2, t = t1) or gener-

ated (D̂train
v= v2, t = t1). DcGAN also has an auxiliary classifier that computes

the auxiliary lossLaux cGAN by predicting whether the pairs of views are

real, i.e., Dtrain
v= v1, t = t1,Dtrain

v= v2, t = t1

� �
, or fake, i.e., hDtrain

v= v1, t = t1, D̂
train
v= v2, t = t1i.

The final loss is defined as:

LcGAN =wrec cGAN ×Lrec cGAN +wadv cGAN ×Ladv cGAN

+waux cGAN ×Laux cGAN
ð1Þ

where wrec cGAN, wadv cGAN, and waux cGAN are weights for the corre-
sponding losses. After training, the generator GcGAN is applied to
Dtest

v= v1, t = t2 to generate D̂test
v= v2, t = t2.

The generator of the cGAN model consists of several residual
blocks61 and uses the parametric rectified linear unit (PReLU)62 as its
activation function. Each residual block includes batch normalization63

as necessary. MSE loss serves as Lrec cGAN. Both the MSE loss and the
binary cross-entropy (BCE) loss are considered for Ladv cGAN and
Laux cGAN, determined by the hyperparameter tuning experiments.
MSE and BCE losses are defined as:

LMSE =
1
N

xi � x̂i
��� ������ ���2

2
ð2Þ

LBCE = � 1
N

XN
i= 1

yi logðŷiÞ+ 1� yi
� �

logð1� ŷiÞ
h i

ð3Þ

where N is the number of samples, xi and x̂i represents the true and
estimated values for the i-th sample, while yi and ŷi represents the true
and predicted labels for the i-the sample.

The cGANmodel is trainedwith theAdamoptimizer64, with amini-
batch size of 16 for the MGH COVID dataset and 32 for the two KORA-
derived datasets. The model is implemented using PyTorch65 (v1.11.0),
PyTorch Lightning66 (v1.6.4), and tensorboard67 (v2.10.0), and run on a
graphics processing unit (GPU) operating the compute unified device
architecture (CUDA, v11.3.1).

Hyperparameter optimization We utilized the training (64%) and
validation (16%) sets from the KORA metabolomics dataset, which has
the largest sample size among our evaluation datasets, to optimize the
hyperparameters.We employed a grid search over various combinations
of hidden layer size, numbers of residual blocks, batch normalization,
and weights for different losses. We determined the number of training
epochs based on early stopping triggered by the MSE reconstruction
accuracy calculated on the observed data from the validation sets. Our
experiments included variations in the number of hidden neurons for
both the generator and discriminator, with options including 32, 64, 128,
and 256. The number of residual blocks spanned from 2 to 6.

The final hyperparameters comprised five residual blocks of 64
neurons each for the generator and three hidden layers of 128 neurons
each for the discriminator. Batch normalization was incorporated into
the first four residual blocks of the generator and the last two layers of
the discriminator to stabilize the learning process and accelerate
convergence. A weight of 0.5 to Lrec cGAN and a weight of 0.25 to
Ladv cGAN and Laux cGAN were determined. The MSE loss was selected
for both Ladv cGAN and Laux cGAN. The determined hyperparameters
were fixed and used in all evaluations.

Training the LEOPARD
Architecture implementation View-specific pre-layers Ev

pre are used to
embed input data xi

v, t 2 Dtrain
v, t of different views into dimensionally

uniform embeddings z preiv, t . Here, i represents the data from the i-th
individual. The representation disentangler of LEOPARD comprises a
content encoder Ec and a temporal encoder Et , both shared by input
data across different views and timepoints. This module learns a
timepoint-invariant content representation z contentiv, t and temporal
feature z temporaliv, t from z preiv, t . Following the encoding process,
the generator G employs the AdaIN technique to re-entangle content
representation and temporal knowledge:

AdaIN z contenti, z temporali
� �

=σ z temporali
� �

×
z contenti � μ z contenti

� �
σ z contenti
� � +μ z temporali

� �

ð4Þ

where μ and σ denote the mean and standard deviation operations,
respectively. View-specific post-layers Ev

post convert the re-entangled
embeddings back to omics data x̂i

v, t . The discriminator D is trained to
classifywhether an input is a real sampleor a generatedoutput coming
from G and Ev

post. D produces the same number of outputs as the
source classes of the observed data, each corresponding to one view at
one timepoint. For a sample belonging to the source class cv, t , we
penalize D during the update cycle of D if its output incorrectly
classifies a real data instance as false or a generated data instance as
true for cv, t ; when updating G, we only penalize G if D correctly
identifies the generated data instance as false for cv, t .

In our study, we defined the contrastive loss Lcon as the mean of
the NT-Xent losses calculated separately for content and temporal
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representations. The NT-Xent loss is formulated as follows:

LNT�Xent zi, zj
� �

= � log
exp sim zi, zj

� �
=τ

� �
P2N

k = 11 k≠i½ � exp simðzi, zkÞ=τ� � ð5Þ

where zi and zj are embeddings of a positive pair (i, j), τ is a tem-
perature factor that scales the similarities, and 1 k≠i½ � is an indicator
function that equals 1 when k ≠ i and 0 otherwise. And sim �ð Þ denotes
cosine similarity, defined as:

sim a, bð Þ= a � b
jjajj2jjbjj2

ð6Þ

In each training iteration, we generate data for the missing
view before calculating the loss. This allows the generated data
to be factorized into corresponding content and temporal repre-
sentations, further facilitating loss minimization. For the LNT�Xent cal-
culated on content representations, positive pairs are defined
as hz contentiv= v1, t = t1, z contentiv= v1, t = t2i and hz contentiv= v2, t = t1,
z dcontent

i
v= v2, t = t2i, which are the same kind of content embeddings

from the same individuals across different timepoints. Similarly, the
positive pairs of temporal representations are hz temporaliv= v1, t = t1,
z temporaliv= v2, t = t1i and hz temporaliv= v1, t = t2, z

dtemporal
i

v= v2, t = t2i.
The representation loss Lrep is the mean of the MSE losses calculated
for content and temporal representations. For each type of repre-
sentation, LEOPARD measures the MSE between the representation
factorized from the actual data and reconstructed data. The recon-
struction loss Lrec quantifies the discrepancies between the actual
and reconstructed data. Any missing values in the observed view are
encoded as the mean values across each specific variable, and these
mean-encoded values are excluded from the computation of Lrec

during back-propagation. This strategy enhances the robustness of
LEOPARD in scenarios where input data contain missing values. The
generator can arbitrarily produce data for any source classes given
the content and temporal representations. To ensure the repre-
sentation disentangler can capture the highly structured data
pattern, we only compute the Lrec on the data generated from
content and temporal representations derived from different
source classes. For instance, hz contentiv= v1, t = t1, z temporaliv= v2, t = t1i or
hz dcontent

i
v= v2, t = t2, z temporaliv= v1, t = t1i. Data generated from repre-

sentation pairs of the same views and timepoints, such as
hz contentiv= v1, t = t2, z temporaliv= v1, t = t2i are not used for optimization.
This design imposes additional restraints, and LEOPARD is tamed to
learn more generalized representations, which helps prevent over-
fitting. Similar to the cGANmodel described in the previous section, the
adversarial loss Ladv is also computed based on the MSE. The final loss
of LEOPARD is defined as:

LLEOPARD =wcon ×Lcon +wrep ×Lrep +wrec
×Lrec +wadv ×Ladv ð7Þ

where wcon, wrep, wrec, and wadv are the weights of the losses.
The encoders, generator, and discriminator of LEOPARD are built

fromblocks of layerswithout skip connections. Eachblock startswith a
dense layer. An instance normalization layer68 is added after the dense
layer for the content encoder. The encoders and generator use the
PReLU as their activation functions, while the discriminator uses the
sigmoid function. A dropout layer69 is incorporated after the activation
layer, where necessary.

The LEOPARD model is trained with the Adam optimizer, with a
mini-batch size of 64. The model is implemented under the same
computational environment as the cGAN model.

Ablation test We conducted a comprehensive ablation study to
assess the individual contributions of the four distinct losses incor-
porated into our LEOPARD architecture. By excluding each loss, we
benchmarked the performance against a baseline setting that only

utilizes reconstruction loss. The ablation test was performed with the
training andvalidation sets from theKORAmetabolomicsdataset. Grid
search was used to determine the optimal weights for the losses, and
the median of PB computed from the validation set was used to
quantify the performance. The network layer numbers and sizes were
consistent during the evaluation. We used three hidden layers for the
generator and encoders, with each layer containing 64 neurons.
The weight for reconstruction loss was fixed at 1, while the weights for
the other three losses varied across 0.01, 0.05, 0.1, 0.5, and 1. The
number of training epochs was determined by the model’s saturation
point in learning, which is when the median of PB computed on the
validation set ceased to decrease significantly. Our experiments show
that all four losses contribute to lowering PB in the imputed data. The
optimal weights includewrec = 1,wcon =0:1,wrep =0:1, andwadv = 1. The
performance of each loss combination at their optimal weights is
summarized in Supplementary Fig. 15.

Further hyperparameter optimization The training and valida-
tion sets from the KORA metabolomics dataset were further used to
optimize LEOPARD’s hyperparameters, aiming to effectively capture
data structure for existing data reconstruction and achieve robust
generalization for missing data imputation. The weights for different
losses have been determined in the ablation test. We then conducted a
grid search across various combinations of hidden layer size, hidden
layer number, dropout rate, projection head, and temperature for
contrastive loss.

The number of hidden neurons within the encoders, generator,
and discriminator varied across 32, 64, 128, and 256, with the number
of layers ranging from 2 to 4, and dropout rates of 0%, 30%, and 50%.
Our findings show that higher numbers of hidden neurons and layers
tended to yield worse performance in terms of median PB (Supple-
mentary Fig. 16). LEOPARDwas configuredwith three 64-neuron layers
incorporated into both content and temporal encoders and the gen-
erator. The discriminator included two hidden layers, each having 128
neurons. Dropout was not used.

The projection head and temperature are two important hyper-
parameters that control the performance of contrastive learning. The
projection head is a compact network consisting of one full connected
hidden layerwith the same layer size as the input dimension, a rectified
linear unit (ReLU)70 and one output layer. The temperature is a scalar
that scales the similarities before the softmax operation. Some pre-
vious experiments performed on image datasets emphasized the
importance of the projection head and reported different output sizes
yielded similar results38. We evaluated the performance of LEOPARD
both without a projection head and with a projection head of the
output size varying across 16, 32, 64, 128, 256, and 512. The tempera-
ture is fined-tuned across 0.05, 0.1, 0.5, 1, 5, 10, and 30. Based on our
experiments, LEOPARD is trained with a temperature of 0.05 and
without using a projection head (Supplementary Fig. 17).

The determined hyperparameters, including loss weights,
remained unchanged in all our performance evaluations.

Representation disentanglement
The disentanglement of content and temporal representations was
evaluated using the KORA multi-omics dataset. LEOPARD was trained
for 600 epochs, for each of which the disentanglement progress was
visualized with the following steps: First, content and temporal
representations were factorized from the metabolomics (S4 and F4)
and proteomics data (S4). Then the generator imputed the proteomics
data (F4) by incorporating the temporal information from the meta-
bolomics data (F4) into the content representation from the pro-
teomics data (S4). The generated proteomic data (F4) were then fed to
the content and temporal encoders to extract the corresponding
representations. Subsequently, these content or temporal repre-
sentations of both the observed and imputed data were standardized
to ensure all latent variables had a mean of zero and a standard
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deviation of one. Afterward, two separate UMAP models were built
using the R package umap71, each fitted to the content and temporal
representations, with a configuration of n_neighbors = 15 and min_d-
ist =0.1. Lastly, scatter plots were generated using the R packages
ggplot272 and ggsci73. Each point in the plot represents an individual
sample, and the color indicates the data sources. The visualization
epochs were selected experimentally to illustrate the progress of
representation disentanglement during the training process.

Performance evaluation
The LEOPARD and cGAN models were trained using the hyperpara-
meters previously described. For missForest, the imputation was per-
formed using a 100-tree random forest74 model, with the maximum
number of iterations (maxit) set to 10. Multiple imputations by PMM,
LM, and GLMM were performed using the R packages mice44 and
micemd75. Each method’s imputations were performed five times
(m = 5) with a maxit value set to five. The PMM model was built using
the argumentmethod = “pmm”. When obsNum = 0, data of v2 at t2 are
assumed to be completely missing. In this scenario, the LM method
was trained usingmethod = “norm”. When obsNum is a non-zero value,
the GLMM model was built using method = “2 l.glm.norm”.

All methods used only the data in the training sets to build
imputation models. Their performance was evaluated on Dtest

v= v2, t = t2.
Different imputation methods may require specific data structures for
input: cGAN and LEOPARD first build imputationmodels using training
data, then apply the builtmodels to test set to completemissing views.
In contrast, the input data for other methods can be an incomplete
matrix with missing values coded as NA. We adapted the input data
accordingly to accommodate these specific requirements:

• Method cGAN only learns from samples where both views are pre-
sent. Therefore, its training data only included training data from
the first timepoint (Dtrain

v= v1, t = t1 and Dtrain
v= v2, t = t1) and data of different

obsNum from the second timepoint (Dtrain
v= v1, t = t2 and Dtrain

v= v2, t = t2).
• LEOPARD can additionally learn from data where only one view is
available. In addition to Dtrain

v= v1, t = t1 and Dtrain
v= v2, t = t1, the entire

Dtrain
v= v1, t = t2 was included in its training. The variation of obsNum

only affected the number of observed samples from Dtrain
v= v2, t = t2.

• The input data for missForest combined training data (including
Dtrain
v= v1, t = t1, D

train
v= v2, t = t1, D

train
v= v1, t = t2, and data of different obsNum

from Dtrain
v= v2, t = t2) and test data (Dtest

v= v1, t = t2), with NA filling the
masked data in the matrix.

• For the multiple imputation methods in MICE family, the input
data were constructed with training data (identical to that used
for missForest) and test data (including Dtest

v= v1, t = t1, D
test
v= v2, t = t1 and

Dtest
v= v1, t = t2). To ensure test data remained unused for model

training, a logical vector with TRUE assigned to test samples was
passed to the argument ignore. Masked values were filled with NA
in the matrix.

• When building the GLMM model, the input data additionally
contained sample IDs and timepoint labels. A constant residual
error variance is assumed for all individuals. Building a GLMM
model for a large dataset is extremely time-consuming; thus, for
the MGH COVID dataset, we selected the top 100 highly
Spearman-correlated proteins for each protein requiring imputa-
tion. The selected proteins were incorporated into the imputation
process by passing to the argument predictorMatrix.

PB was selected as a performance metric as it quantifies the
relative deviation of imputed values fromactual observations, offering
a more straightforward interpretation compared to metrics like RMSE
and MAE. PB was calculated for each variable using the formula:

PBi =
1
m

Xm
imp= 1

median
x̂i
ðimpÞ � xi

��� ���
xi

0
@

1
A ð8Þ

where x̂iðimpÞ is the imputed value for the i-th variable from the imp-th
imputation, while m is the number of imputations. For single
imputation methods, LEOPARD, cGAN, and missForest, m = 1. PB
results for each imputation method were visualized using dot and box
plots, with each dot representing a variable in the specific dataset.
Bonferroni correction was used for multiple testing adjustment. The
exact P-values of the comparison are provided in Supplementary
Table 3.

For the evaluation usingUMAP,wefirstfitted aUMAPmodel using
the data of Dtrain

v= v2, t = t1 and Dtrain
v= v2, t = t2. We then used the fitted model to

embed the data of Dtest
v= v2, t = t1, Dtest

v= v2, t = t2, and D̂
test
v= v2, t = t2, where

D̂
test
v= v2, t = t2 represents the imputed data for Dtest

v= v2, t = t2 produced by
different imputation methods. Training UMAP models only with
training data can improve themodel’s generalization andmake it serve
as a fixed reference. As observed data and different imputed data from
test sets are transformed into embeddings in the same way, the
structural similarities or discrepancies of their embeddings are more
directly related to the data, rather than to variations of different
dimension reduction processes. This approach reduces the possibility
of obtaining similar-looking embedding plots from dissimilar datasets
and guarantees robust evaluations.

For PMM, LM, andGLMM, D̂
test
v= v2, t = t2 is the average of all estimates

from their multiple imputations. An imputation method is considered
effective if the distribution of D̂

test
v= v2, t = t2 embeddings is highly similar

to that of the Dtest
v= v2, t = t2 embeddings. The UMAP models were fitted

with the identical configurations described in the prior section.

Regression analyses
We used observed and imputed test set data from the KORA meta-
bolomics and multi-omics datasets for two regression analyses. We
employed multivariate linear regression models for each of the
observed or imputed data. The imputed data of LEOPARD, cGAN,
missForest, PMM, and LM were obtained under the setting of
obsNum = 0.

For the KORA metabolomics dataset, we used the concentration
of each metabolite as the response variable and age as the predictor
variable, while controlling for sex, to detect age-associated metabo-
lites. For the KORA multi-omics dataset, we used NPX values of each
protein as the response and eGFR as the predictor, controlling for sex
and age, to detect eGFR-associated proteins. In both analyses, we
applied a Bonferroni correction to adjust the P-value significance
threshold to mitigate the risk of false positives in multiple testing.

Classification analyses
We also used observed and imputed test set data from the KORA
metabolomics andmulti-omics datasets forCKDprediction. CKDcases
were determined based on their eGFR values, which were computed
from serum creatinine, sex, race, and age, using the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) equation76. The data
imputed by LEOPARD, cGAN,missForest, PMM, and LMwere obtained
under the setting of obsNum = 0.

For each type of raw or imputed data, we trained a BRF model
using the Python library imbalanced-learn77. This model was specifi-
cally selected to address the dataset imbalance and reduce the risk of
overfitting to the majority class. All models were trained with default
hyperparameters (criterion = “gini”,min_samples_split = 2,min_samples_
leaf = 1, max_features = “sqrt”, bootstrap = True), except for n_estima-
tors = 1000 and class_weight = “balanced_subsample”. Due to the lim-
ited sample size, we validated the performance using the LOOCV
strategy, allowingmaximal use of data for both training and validation.
Performance metrics were calculated using the R package caret78.
These metrics provided a comprehensive understanding of the pre-
dictive power of the observed and imputed data.

The ROC curves were plotted to illustrate the trade-off between
sensitivity and 1-specificity at varying decision thresholds. Considering
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the imbalance in our dataset, and with our primary interest in the
positive class, which is also the minority, we further plotted PR curves
to depict the trade-off between precision and recall at different
thresholds for the classifiers trained with the different data. For PR
curves, the baseline performance of a non-discriminative model was
determined by the proportion of positive cases (56/416 =0.135 for the
KORA metabolomics dataset and 36/212 = 0.170 for the KORA multi-
omics dataset). Both the ROC and PR curves were plotted using the R
package precrec79.

Case studies on the MGH COVID proteomics dataset
The neutralization level is a binary response indicating “LOW” or
“HIGH” for each sample. The imputed proteomics data of LEOPARD,
cGAN, missForest, PMM, and LM were obtained under the setting of
obsNum = 0. Bonferroni correction is used to adjust the P-value sig-
nificance threshold for logistic regression.

For the task of predicting neutralization level, the original study
used NPX values from D0 to predict neutralization levels at D3.
However, as our imputation evaluation involves only D3 data, we
instead used D3 proteomics (from both observed and imputed data)
to predict neutralization levels on the same day. This task is theo-
retically easier than the one in the original study, as both predictors
and outcomes are from the same timepoint. The BRF models were
trained using the same hyperparameters as in the previous experi-
ments. For PR curves, the baseline performance of a non-
discriminative model was determined by the proportion of positive
cases (30/43 = 0.698).

Arbitrary temporal knowledge transfer
In the previous evaluation, we assessed the performance of each
methodonDtest

v= v2, t = t2 from thebenchmarkdatasets.We then extended
our analysis by evaluating LEOPARD’s performance on individually
masked test sets Dtest

v= v2, t = t1 and Dtest
v= v1, t = t3 from the Extended KORA

metabolomics dataset with varying obsNum. This approach allows us
to assess LEOPARD’s capability to arbitrarily complete any views at any
timepoints within this dataset. LEOPARD was trained using the same
hyperparameters as we used in the previous experiments.

When completing Dtest
v= v2, t = t1, the training data initially include

Dtrain
v= v1, t = t1 and varying obsNum from Dtrain

v= v2, t = t1. If timepoint 3 is
observed, the training data also includeDtrain

v= v1, t = t3 andDtrain
v= v2, t = t3, with

Dtrain
v= v1, t = t2 and Dtrain

v= v2, t = t2 added if timepoint 2 is observed as well.
Similarly, when completing Dtest

v= v1, t = t3, the training data initially
include Dtrain

v= v2, t = t3 and varying obsNum from Dtrain
v= v1, t = t3. If timepoint 1

is observed, Dtrain
v= v1, t = t1 and Dtrain

v= v2, t = t1 are added. As with the previous
case, Dtrain

v= v1, t = t2 and Dtrain
v= v2, t = t2 are further included if timepoint 2 is

also observed. For this three-timepoint scenario, we used UAMP to
visualize the representations disentangled from the observed and
imputed data during training. The UMAP model was configured with
the same parameters previously employed to examine representation
disentanglement using the KORA multi-omics dataset (see Repre-
sentation disentanglement).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The proteomics data, published by the original authors, are freely
available for investigators from Mendeley Data (https://doi.org/10.
17632/nf853r8xsj). Toprotect the identity of individual subjects, public
posting of patient-level demographic information is limited as
required by the Mass General Brigham Human Research Committee.
The MGH COVID proteomics dataset constructed in this study is
available at our GitHub repository (https://github.com/HAN-Siyu/
LEOPARD). The KORA data are governed by the General Data

Protection Regulation (GDPR) and national data protection laws, with
additional restrictions imposed by the Ethics Committee of the
Bavarian Chamber of Physicians to ensure data privacy of the study
participants. As a result, the data cannot be made freely available in a
public repository. However, researchers with a legitimate interest in
accessing the data may submit a request through an individual project
agreement with KORA via the online portal (https://www.helmholtz-
munich.de/en/epi/cohort/kora). Upon receipt of the request, the data
access committee will review the application and, subject to approval,
provide the researcher with a data usage agreement. The expected
timeframe for processing requests and theduration of data access vary
depending on the project and are determined by the data access
committee. Researchers will receive this information upon submission
of their request. Source data are provided with this paper.

Code availability
The source code and implementation details of LEOPARD canbe freely
accessed on our GitHub repository (https://github.com/HAN-Siyu/
LEOPARD) and are also available via Zenodo (https://zenodo.org/
records/14927694)80. Detailed documentation and examples can be
found in the Manual, which is also available at this repository.
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