Science Advances

Supplementary Materials for

Loss of Ten1 in mice induces telomere shortening and models human dyskeratosis congenita

Adrián Sanz-Moreno et al.

Corresponding author: Martin Hrabê de Angelis, martin.hrabedeangelis@helmholtz-munich.de

Sci. Adv. **11**, eadp8093 (2025) DOI: 10.1126/sciadv.adp8093

This PDF file includes:

Figs. S1 to S13 Tables S1 to S4

Deleted sequence

в

Fig. S1: *Ten1* mouse model was established with knockout of major part of exon 3. (A) Depiction of the deletion in *Ten1* exon 3 specifying the different primers used. (B) RT-qPCR of wildtype *Ten1* mRNA transcripts in cerebrum, cerebellum, liver, lung, and skin. (C) Genotype distribution at P0.5 in a cohort of 107 animals. Figure elements in (B) were created with BioRender.

A

Fig. S2: Protein abundance of the TEN1 interaction partners, CTC1 and STN1, measured by Sure-Quant mass spectrometry in (A) cerebrum, (B) cerebellum, (C) liver, and (D) lung. Figure elements were created with BioRender.

Fig. S3: Representative pictures of *Ten1* hom mice (arrows) and littermates at different ages.

Fig. S4: Decreased number of hypertrophic chondrocytes in the tibial growth plates of *Ten1* hom mice. Representative pictures of H&E-stained tibial growth plate sections at P5 (*n* wt/hom: 2/3) and P23 (*n* wt/hom: 3/3).

Fig. S5: Analysis stem cell marker expression in skin, small intestine and cerebellum of *Ten1* hom animals. (A) Sox9 IHC in skin, small intestine, and cerebellum at P5 and P32. (B) CK15 IHC in skin at P5 and P32. For (A) and (B): *n* wt/hom: P5 2/4; P32 1/1.

Fig. S6: *Trp53* and *Cdkn1a* expression levels by qPCR. *Trp53* (A) and *Cdkn1a/p21Cip* (B) gene expression levels upon *Ten1* deletion in cerebrum, cerebellum, liver, lung, and skin at the indicated time points. Figure elements were created with BioRender.

Fig. S7: Gene expression analysis of cellular senescence markers by qPCR. Transcripts of (A) *p16lnk4a*, (B) *p19Arf*, (C) *Lmnb1*, (D) *Bcl2*, and (E) *Bhlhe40* were measured by RT-qPCR in cerebrum, cerebellum, liver, lung, and skin isolated from *Ten1* hom vs. control mice. Figure elements were created with BioRender.

Fig. S8: DNA damage analyses at P23. (A) Representative western blot images and (B) quantitation of pH2AX are shown in liver, lung, and cerebrum (n wt/het/hom: 4/4/4). (C) IHC of pH2AX in different tissues (n wt/hom: 6/7). Arrows indicate example cells showing positive immunoreactivity. (D) IHC of pATM in small intestine (n wt/hom: 6/6). (E) Representative western blot images and (F) quantitation of pATR and pATM in liver and lung (n wt/hom: 6/6). Figure elements were created with BioRender.

Fig. S9: Effects of *Ten1* loss on gene expression levels of pro-inflammatory cytokines. Gene expression levels of (A) *Ifng*, (B) *II1b*, (C) *II6*, (D) *Tnf*, and (E) *CcI2* were determined in cerebrum, cerebellum, liver, lung, and skin derived from *Ten1* hom vs. control mice. Figure elements were created with BioRender.

Fig. S10: Effects of Ten1 loss on gene expression levels of anti-inflammatory cytokines. The mRNA abundance of three anti-inflammatory cytokines (A) II4, (B) II10, and (C) II13 was compared between Ten1 hom vs. control animals in cerebrum, cerebellum, liver, lung, and skin. Figure elements were created with BioRender.

Fig. S11: Transcription of transposable elements by qPCR. Transcriptional activities of (A) Line1, (B) MusD, (C) B1, and (D) B2 transposon classes were determined by RT-qPCR in cerebrum, cerebellum, liver, lung, and skin isolated from Ten1 hom vs. control mice. Figure elements were created with BioRender.

Fig. S12: *Ten1* het mice do not show the described phenotypes up to 1 month of age. (A) Representative picture of age-matched (P23) wt, het, and hom mice. (B) Body weight at P23. (C) Macroscopical pictures of hindpaws (n wt/het: 5/4) and (D) Fontana-Masson staining (n wt/het/hom: 6/6/6) revealed no skin hyperpigmentation in hets at P23. (E) p21 IHC in small intestine (n wt/het/hom: 6/6/7). Neither (F) tongue hyperkeratosis nor (G) aplastic anemia were found in het animals up to 32 days of age as shown by H&E staining (only n=1 at this late time point). (H) Thymus H&E staining at P23 show no abnormalities in hets (n wt/het/hom: 6/6/7). (I) Cerebellar hypoplasia was not found in P23 het animals as shown in these Calbindin IHC representative cerebellum images taken at the same magnification (n wt/het/hom: 6/6/7).

Fig. S13: TEN1 homology between different species (A) by sequence or (B) represented in a percent identity matrix.

Table S1. Effects of *Ten1* ablation on gene expression levels of cell cycle regulators in cerebrum, cerebellum, liver, and lung.

Target gene	Cerebrum	Cerebellum	Liver	Lung
Ccna1	\rightarrow	↑	\rightarrow	\downarrow
Ccna2	\rightarrow	↑	\downarrow	\downarrow
Ccnb1	\rightarrow	\rightarrow	\rightarrow	\rightarrow
Ccnb2	\rightarrow	\downarrow	\downarrow	\downarrow
Ccnc	\rightarrow	\rightarrow	\rightarrow	\rightarrow
Ccnd1	\rightarrow	\rightarrow	\downarrow	\downarrow
Ccnd2	\rightarrow	↑	\rightarrow	\downarrow
Ccnd3	\rightarrow	\rightarrow	\rightarrow	\rightarrow
Ccne1	\rightarrow	↑	\rightarrow	\rightarrow
Ccne2	\rightarrow	\downarrow	\rightarrow	\rightarrow

Ten1 homozygous mutant vs. wildtype control animals at 23 days of age were compared using two-sided t-tests.

 \rightarrow not significant, \uparrow increased, \downarrow decreased in *Ten1* hom mice

Table S2. Effects of *Ten1* ablation on gene expression levels of cell cycle regulators in the skin.

Ten1 homozygous mutant vs. wildtype control animals at 5 days, 10 days, and 23 days of age were compared using two-way ANOVA.

Target gene	Age x genotype interaction	Genotype	Age
Ccna1	No	\rightarrow	\rightarrow
Ccna2	No	\downarrow	\rightarrow
Ccnb1	No	\rightarrow	\rightarrow
Ccnb2	No	\rightarrow	\downarrow
Ccnc	No	\rightarrow	\rightarrow
Ccnd1	No	\rightarrow	\downarrow
Ccnd2	No	\rightarrow	\downarrow
Ccnd3	No	1	\downarrow
Ccne1	No	\downarrow	\downarrow
Ccne2	Yes	\downarrow	\downarrow

 \rightarrow not significant, \uparrow increased, \downarrow decreased in *Ten1* hom mice

Table S3. Primer sequences used for real-time quantitative PCR analyses.

Category	Target gene	Primer forward	Primer reverse
Cellular proliferation	Ccna1	GGGTGTTGACTGAAAATGAGC	CACGTTTGGCTGGTTCATTG
	Ccna2	GTCCTTGCTTTTGACTTGGC	ACGGGTCAGCATCTATCAAAC
	Ccnb1	CTGACCCAAACCTCTGTAGTG	CCTGTATTAGCCAGTCAATGAGG
	Ccnb2	CCTCAGAACACCAAAGTACCAG	CCTTCATGGAGACATCCTCAG
	Ccnc	GCATTTGTATCAGGGCAAGC	GAAACTTTAGGTCCTTTTGGCG
	Ccnd1	GCCCTCCGTATCTTACTTCAAG	GCGGTCCAGGTAGTTCATG
	Ccnd2	GTGTTCCTATTTCAAGTGCGTG	AGCCAAGAAACGGTCCAG
	Ccnd3	GCGTGCAAAAGGAGATCAAG	GATCCAGGTAGTTCATAGCCAG
	Ccne1	GCGAGGATGAGAGCAGTTC	AAGTCCTGTGCCAAGTAGAAC
	Ccne2	GACGTTCATCCAGATAGCTCAG	TCCCATTCCAAACCTGAAGC
	Mki67	TGCCCGACCCTACAAAATG	GAGCCTGTATCACTCATCTGC
	Cdkn2a/p16Ink4a	CCCAACGCCCCGAACT	GCAGAAGAGCTGCTACGTGAA
	Cdkn2a/p19Arf	CTCTGGCTTTCGTGAACATG	TCGAATCTGCACCGTAGTTG
Collular conosconco	Cdkn1a/p21Cip	CAGATCCACAGCGATATCCAG	AGAGACAACGGCACACTTTG
Cellular seriescence	Lmnb1	CCTCAGAGATGAACACTTCCAC	TCCTTTCCAAACACGCTCTAG
	Bcl2	GAGGAACTCTTCAGGGATGG	GTTCAGGTACTCAGTCATCCAC
	Bhlhe40	CAACCACCTCCTACCTGC	GTGCGGCAGTTTGTAAGTTTC
	Ccl2	AAGAGATCAGGGAGTTTGCT	CTGCCTCCATCAACCACTTT
	lfng	CTTTGGACCCTCTGACTTGAG	TCAATGACTGTGCCGTGG
	ll1b	GAAGAAGAGCCCATCCTCTG	TCATCTCGGAGCCTGTAGTG
Inflammation	114	GCATTTTGAACGAGGTCACAG	TGGAAGCCCTACAGACGAG
mammauon	<i>ll6</i>	AGTCCGGAGAGGAGACTTCA	ATTTCCACGATTTCCCAGAG
	<i>II10</i>	AGCCGGGAAGACAATAACTG	GGAGTCGGTTAGCAGTATGTTG
	<i>ll</i> 13	ACCAAAATCGAAGTAGCCCAC	GCAAAGTCTGATGTGAGAAAGG
	Tnf	CTTCTGTCTACTGAACTTCGGG	CAGGCTTGTCACTCGAATTTTG
	Line1	GCGGTTCCTCAGAAAATTGG	TGCCAGGAGAGGTATTGCT
Transposons	MusD	ATAGAGGCCGCTTCTTTGC	TGAGACTCCACCAAATGTCC
	B1	CATGGTGGCGCACGCCTTTAATCC	CCAGGCTGGCCTCGAACTCAGAAA
	B2	GGGCTGGAGAGATGGCTCAGTGGT	GCCACCATGTGGTTGCTGGGAATTG
Ten1	Ten1	CCTGGTGCTGACAATGTTGC	GGAGCGTGCCATGTCATAGA
Reference	Actb	CCCTGAAGTACCCCATTGAAC	CCATGTCGTCCCAGTTGGTAA

Table S4. Peptide sequences used for Sure-Quant mass spectrometry-based analyses.

Protein/Unique Peptide (a,c)	Precursor ion (m/z)	Product ions used for quantitation (b)	Retention times (min)
CST complex subunit CTC1			
VALQFTGLGGQTESASK (light)	565.296698+++	(y9, y6, y4)	34.79
VALQFTGLGGQTESASK (heavy)	567.968097+++	(y9, y6, y4)	34.76
ALGLSPSEWSSILEHAR (light)	618.323247+++	(y9, y8, y7)	42.52
ALGLSPSEWSSILEHAR (heavy)	621.659336+++	(y9, y8, y7)	43.01
THEPLTLLLR (light)	596.856055++	(y8, y7, b2)	33.12
THEPLTLLLR (heavy)	601.860189++	(y8, y7, b2)	33.41
CST complex subunit STN1			
LSNAESSSDPAILSTAR (light)	859.931405++	(y13, y12, y8)	27.56
LSNAESSSDPAILSTAR (heavy)	864.935539++	(y13, y12, y8)	27.45
DNLDLAGLTSLLSEK (light)	794.92506++	(y10, y9, b2)	44.36
DNLDLAGLTSLLSEK (heavy)	798.932159++	(y10, y9, b2)	44.33
NALQLLQEK (light)	528.806031++	(y7, y5, b2)	31.03
NALQLLQEK (heavy)	532.81313++	(y7, y5, b2)	31.02

^aHeavy peptides are labelled at the C-terminal of Arginine (R) or Lysine (K) and highlighted in bold. ^bFragments used for quantification are indicated and they are singly charged. ^cQuantitation is based on the L/H ratios of the peptides.