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A short-term, high-caloric diet has prolonged 
effects on brain insulin action in men
 

Stephanie Kullmann    1,2,3  , Lore Wagner    1,2, Robert Hauffe2,4,5, 
Anne Kühnel    6, Leontine Sandforth1,2,3, Ralf Veit    1,2, Corinna Dannecker1,2, 
Jürgen Machann    1,2,7, Andreas Fritsche1,2,3, Nobert Stefan1,2,3, 
Hubert Preissl    1,2,3, Nils B. Kroemer    6,8, Martin Heni    9,10, 
André Kleinridders    2,4,5 & Andreas L. Birkenfeld    1,2,3

Brain insulin responsiveness is linked to long-term weight gain and 
unhealthy body fat distribution. Here we show that short-term overeating 
with calorie-rich sweet and fatty foods triggers liver fat accumulation 
and disrupted brain insulin action that outlasted the time-frame of its 
consumption in healthy weight men. Hence, brain response to insulin can 
adapt to short-term changes in diet before weight gain and may facilitate the 
development of obesity and associated diseases.

Insulin resistance is a common feature of obesity and type 2 diabe-
tes with detrimental effects in the periphery1 and the central nervous 
system2. In the healthy state, insulin acts in the brain in an anorexi-
genic fashion reducing appetite and food intake3, whereas in the 
insulin-resistant state, brain insulin action no longer properly regulates 
peripheral energy metabolism and feeding behaviour2,4,5. Concurrently, 
people with aberrant insulin response have higher visceral adipose 
tissue mass and impaired peripheral metabolism6–8 and regain more 
fat mass after a lifestyle intervention7. Furthermore, findings from 
numerous studies suggest that the disruption of insulin responsive-
ness in the human brain promotes metabolic, psychiatric and neuro-
degenerative diseases4,9. However, the developmental trajectory of 
brain insulin responsiveness in humans is currently unclear. To close 
this gap, we investigated the effect of a 5-day high-caloric diet (HCD) 
that included broadly available and commonly consumed, calorie-rich 
ultra-processed snacks in addition to the regular diet, compared with a 
regular diet on brain insulin action, body fat composition and periph-
eral insulin sensitivity. To study the brain-specific effects of insulin 
action, intranasal insulin (INI) application was used as a noninvasive 
method for the delivery of insulin to the brain in combination with 

functional magnetic resonance imaging (fMRI). Our primary aim was 
to assess brain insulin activity before, directly after the HCD compared 
with a normal caloric diet and 1 week after the return to a regular diet. 
Previous experimental findings indicate sex differences in the response 
to INI affecting appetite, metabolism and memory function3,10. Hence, 
we only evaluated brain insulin action in response to overeating in 
healthy weight male participants to investigate the temporal dynamics 
of brain insulin action in response to an unhealthy diet.

In a nonrandomized controlled design, a total of 29 male volun-
teers (age 19–27 years, body mass index (BMI) 19–25 kg m−2) enrolled 
to participate either in a 5-day HCD (n = 18) or a regular diet (n = 11; 
no additional calories) (Table 1). Participants completed three visits 
(baseline, follow-up 1 and follow-up 2) during an assessment period of 
approximately 3–4 weeks (see Fig. 1 for study design). Seventeen of the 
HCD group completed all three visits. The HCD group were instructed 
to increase their daily caloric intake by 1,500 kcal for five consecutive 
days with high-caloric ultra-processed snacks 5 days before follow-up 
1 visit. Thereafter, HCD group participants resumed their regular diet 
for 7 days before follow-up 2. Eleven participants maintained their 
habitual diet throughout the study. The food diary showed that the HCD 
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group (group-by-visit interaction, estimate of −0.11, 95% CI −0.19 to 
−0.03, P = 0.008; HCD group baseline versus HCD follow-up 1, esti-
mate of −0.3744, s.e. = 0.104, d.f. = 30.4, t = 3.6, P = 0.005; Extended 
Data Fig. 1), whereas it did not change in the control group (P = 0.958). 
No significant differences were identified for metabolic parameters 
(P > 0.05; Table 1), including peripheral insulin sensitivity based on 
the oral glucose tolerance test (oGTT)-derived Matsuda Index and the 
homeostasis model assessment insulin resistance (HOMA-IR), as well 
as inflammatory markers such as C-reactive protein (CRP), interleukin 
(IL)-6 (Table 1) and other cytokines (Extended Data Table 3).

The primary aim of the study was to assess insulin-induced brain 
activity before (baseline), directly after the HCD (follow-up 1) and  
1 week after a normal caloric diet was resumed (follow-up 2) com-
pared with a control group maintaining their regular diet. The absolute 
change of cerebral blood flow (CBF) was used as a proxy for neural 

group increased their daily total caloric intake on average by 1,200 kcal 
between the baseline and follow-up 1 visit (P < 0.05; Extended Data 
Table 1). No within-HCD group differences were observed between 
baseline and follow-up 2 visit (P < 0.05). Total caloric intake, includ-
ing major macronutrient composition, did not differ between HCD 
and the control group at baseline and at the follow-up 2 study visit (no 
main effect of group or group-by-visit interaction; P > 0.05; Extended 
Data Table 1). There was a significant main effect of visit (baseline ver-
sus follow-up 2) for total caloric intake and all major macronutrient 
compositions (P < 0.05), with lower reported food intake at follow-up 
2 compared with the baseline for both groups. State questionnaires 
on mood, desire to eat and food cravings showed no group differences 
across visits in the fasted state (Extended Data Table 2). Body weight 
and body composition did not differ between the groups and visits 
(P > 0.05; Table 1). However, liver fat content increased in the HCD 

Table 1 | Participants’ metabolic characteristics

Control HCD

Baseline Follow-up 1 Baseline Follow-up 1

Body composition

Body weight (kg) 73.9 ± 7.1 74.6 ± 7.0 72.3 ± 9.1 72.8 ± 9.4

BMI (kg m−2) 22.15 ± 1.4 22.35 ± 1.3 21.82 ± 2.4 21.95 ± 2.5

Waist-to-hip ratio 0.85 ± 0.1 0.86 ± 0.1 0.86 ± 0.1 0.86 ± 0.04

Total adipose tissue, MR-derived (l) 18.85 ± 5.7 18.16 ± 5.2 16.93 ± 4.7 17.43 ± 4.6

Subcutaneous adipose tissue, lower extremity, MR-derived (l) 8.74 ± 2.5 8.40 ± 2.3 8.04 ± 2.2 8.28 ± 2.1

Visceral adipose tissue, MR-derived (l) 1.60 ± 0.7 1.63 ± 0.6 1.70 ± 0.87 1.69 ± 0.9

Liver fat, 1H-MRS-derived (%)a 1.08 ± 0.6 1.22 ± 1.1 1.55 ± 2.2 2.54 ± 3.5

Metabolic parameters

At follow-up 2: only fasting insulin, glucose, CRP and γ-glutamyl transferase were available

Baseline
Follow-up 1

Baseline
Follow-up 1

Follow-up 2 Follow-up 2

HbA1c (%) 5.16 ± 0.2 5.15 ± 0.2 5.08 ± 0.3 5.09 ± 0.2

HbA1c (mmol mol−1) 32.82 ± 2.3 32.82 ± 2.5 32.12 ± 2.6 31.94 ± 1.9

Matsuda insulin sensitivity index (oGTT-derived) 18.15 ± 6.9 15.70 ± 5.7 18.12 ± 6.5 16.27 ± 6.2

HOMA-IR 1.9 ± 0.8
2.1 ± 0.7

1.7 ± 0.7
1.9 ± 0.7

1.6 ± 0.9 1.7 ± 0.5

Fasting insulin (pmol l−1) 54.82 ± 22.5
61.09 ± 18.1

47.44 ± 17.8
54.67 ± 18.6

46.60 ± 23.5 48.65 ± 14.3

Fasting glucose (mmol l−1) 4.68 ± 0.4
4.77 ± 0.4

4.77 ± 0.3
4.64 ± 0.3

4.67 ± 0.3 4.61 ± 0.3

Fasting glucagon (pg ml−1) 84.18 ± 6.3 85.82 ± 7.3 85.78 ± 5.8 83.5 ± 5.7

Fasting triglycerides (mg dl−1) 69.18 ± 23.1 68.36 ± 29.1 65.61 ± 22.2 73.11 ± 33.1

IL-6-HS (pg ml−1) 1.08 ± 0.70 0.96 ± 0.62 1.01 ± 0.92 0.84 ± 0.43

CRP (mg l−1) 0.04 ± 0.06 0.07 ± 0.13 0.06 ± 0.08
0.05 ± 0.06

0.10 ± 0.17

γ-Glutamyl transferase (U l−1) 21.00 ± 6.6 19.82 ± 7.3 21.39 ± 15.7
19.94 ± 13.1

20.24 ± 15.9

Testosterone (nmol l−1) 17.49 ± 4.2 17.51 ± 4.5 19.18 ± 7.1
19.08 ± 5.2

18.76 ± 5.4

Indirect calorimetry

Resting energy expenditure (kcal) 2,115 ± 219 2,166 ± 216 2,195 ± 260 2,155 ± 275

Respiratory quotient 0.85 ± 0.1 0.89 ± 0.1 0.86 ± 0.1 0.88 ± 0.1

Data are presented as mean ± s.d. aFor liver fat, we observed a significant group-by-visit interaction of P = 0.008. MR, magnetic resonance; HbA1c, glycated haemoglobin; MRS, magnetic 
resonance spectroscopy. n = 29.
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activity. We analysed the difference in brain insulin activity between 
the HCD and control groups at follow-up 1 and follow-up 2, adjusted 
for the individual baseline measurement (Fig. 2a). The HCD group 
had significantly higher insulin activity in parts of the right insular 
cortex, left rolandic operculum and right midbrain/pons (Fig. 2b) at 
follow-up 1 adjusted for baseline compared with the control group 
(PFWE < 0.05, whole-brain corrected, where FWE indicates family wise 
error; Extended Data Table 4). At the second follow-up, 7 days after 
resuming the regular diet, the HCD group showed significantly lower 
brain insulin activity in the right hippocampus and bilateral fusiform 
gyrus compared with the control group (Fig. 2c; PFWE < 0.05, whole-brain 
corrected; Extended Data Table 4). No differences were observed in 
hypothalamic response to insulin between the HCD and control groups 
at both follow-up time points (P > 0.05). At the baseline visit, no group 
differences were observed for the absolute change of CBF from before 
to after INI (PFWE > 0.05). Independent of INI, we observed no differences 
between the HCD and the control group in regional CBF or global CBF 
(CBF before nasal spray application HCD versus controls; PFWE > 0.05).

We further evaluated whether the HCD alters reward and pun-
ishment sensitivity. Compared with the control group, the HCD 
reduced reward sensitivity (t(27) = −3.6, Pboot < 0.001, where boot 
indicates bootstrapping) and increased punishment sensitivity 
(t(27) = 2.6, Pboot = 0.002) at follow-up 1 (Extended Data Fig. 2). Nota-
bly, this pattern was still evident at follow-up 2, although the effects 
on each parameter were not significant anymore (reward sensitivity, 
t(26) = −1.7, Pboot = 0.06; punishment sensitivity, t(26) = 1.7, Pboot = 0.07). 

Correlation analyses showed that higher insulin activity at follow-up 1 was  
significantly associated with fold change in liver fat, the change in 
reward learning and the food diary reported fold change in fat and 
saturated fatty acid intake, especially in the pons/midbrain (Fig. 2d) 
(P < 0.05; Extended Data Table 5). Lower insulin responsiveness in 
the fusiform gyrus 1 week after resuming a regular diet significantly 
correlated with the food diary reported fold change in carbohydrate 
intake and the hippocampal change in responsiveness to insulin cor-
related with the fold change in fat intake and saturated fatty acid intake 
(P < 0.05; Extended Data Table 5). Fractional anisotropy (FA) and mean 
diffusivity (MD) are summary measures of white matter diffusivity. 
The HCD group had significantly lower FA values mainly located on the 
inferior fronto-occipital fasciculus, genu of the corpus callosum and 
anterior corona radiata (Extended Data Fig. 3; P < 0.05; threshold-free 
cluster enhancement (TFCE)-corrected) as well as higher MD values in 
the superior corona radiata at follow-up 2 compared with baseline. No 
significant differences were observed at follow-up 1 compared with 
baseline. No group differences were observed at baseline for global 
FA values. However, significant group differences were observed for 
global MD values at baseline (P < 0.05). The control group showed 
higher MD values.

The current study demonstrates that brain insulin responsive-
ness adapts to short-term dietary changes after overconsumption of 
broadly available sweet and fatty ultra-processed snacks in addition to 
their regular diet, in healthy weight men, in the absence of changes in 
body weight, peripheral insulin sensitivity and food craving. Liver fat 
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Study design
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Day 1 Day 5Baseline visits
(1–3 days apart)Assessment 
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Whole-body MRI
oGTT

Follow-up 1 visits

Days 6 and 7

Brain-MRI
insulin spray

Day 14

Follow-up 2 visit

Brain-MRI testing day

Overnight 
fast

MRI-1

–30'

Insulin

160 
IU

0'

MRI-2

30' 90'

Reward-
learning task

Day –14

Blood sample

Brain-MRI
insulin spray

Brain-MRI
insulin spray

Whole-body MRI
oGTT

–35'

Fig. 1 | Schematic overview of the study design. After initial screening, healthy 
weight male participants underwent two baseline assessment days after an 
overnight fast at ~08:00. On the brain MRI testing day, diffusion-weighted 
imaging and CBF responses to 160 IU INI were acquired to investigate white 
matter integrity and brain insulin action (∆CBF = CBF MRI-2 − CBF MRI-1), 
respectively, followed by a reward-learning task. On a separate testing day (1–3 
days apart), whole-body MRI for measurement of body fat mass and distribution 
and oGTTs for measurement of peripheral insulin sensitivity were performed. 
Afterwards, 18 participants were instructed to increase their daily caloric 

intake by 1,500 kcal for five consecutive days with high-caloric snacks. Eleven 
participants maintained their regular diet. Both testing days were repeated 
immediately after the 5-day HCD or regular diet period at follow-up 1. At follow-
up 2, the brain MRI testing day was repeated 7 days after resuming a regular diet. 
Eating behaviour questionnaires were acquired during all testing days. Between 
visits, participants recorded their food intake and daily step activity. The timing 
of the follow-up visits was adapted to the first day of the HCD recording. Figure 
created in BioRender50.
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content, however, substantially increased after this HCD, which was 
directly related to the initially augmented response to brain insulin of 
food reward pathways. Moreover, reward learning was also disrupted as 
indicated by a decreased sensitivity for rewards and increased sensitiv-
ity for punishments. These initial alterations normalized 1 week after 

participants returned to their regular diet. Notably, insulin sensitivity 
of cognitive-related brain regions and markers of brain integrity were 
lower in the HCD compared with the control group after the HCD group 
resumed their regular diet. These data suggest that a short-term HCD, 
rich in sugar and saturated fat, has prolonged effects on the brain that 
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Fig. 2 | Disrupted brain insulin action after short-term overeating with 
calorie-rich snacks. a, Changes in brain insulin activity at follow-up 1 (directly 
after the 5-day HCD or regular diet) and follow-up 2 (1 week after resuming the 
regular diet) in HCD compared with the control group. Regions with significant 
changes in CBF after INI application in the HCD group compared with the control 
group and adjusted for the baseline measurement day are shown. Colour maps 
correspond to t-values (P < 0.001, uncorrected for display). b, Areas in the brain 
showing significantly higher insulin activity at follow-up 1 in the HCD compared 
with the control group adjusted for baseline measurement (PFWE < 0.05, whole-
brain cluster level corrected). n = 29 at baseline and follow-up 1. c, Areas in the 
brain showing significantly lower insulin activity at follow-up 2 in the HCD 

compared with the control group adjusted for baseline measurement day  
(PFWE < 0.05, whole-brain cluster level corrected). n = 29 at baseline, n = 28 
at follow-up 2. Box plots show at the centre the median values indicated by 
thick horizontal lines; upper and lower hinges correspond to first and third 
quartiles (25th and 75th percentiles). The whiskers extend from the hinges to the 
minimum and maximum value, which is 1.5 × interquartile range of the hinge. 
d, Higher brain insulin responsiveness at follow-up 1 (adjusted for the baseline 
visit) significantly correlated with the fold change in liver fat (n = 28; r = 0.434, 
P = 0.02), the food diary reported fold change in saturated fatty acid (SFA) 
intake (n = 29; r = 0.531, P = 0.003) and the change in reward sensitivity (n = 29) 
(r = −0.460, P = 0.01) at follow-up 1 adjusted for baseline.
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outlast the time-frame of its consumption. Habitual daily intake of 
sweet and fatty snacks for 8 weeks has been shown to increase neural 
responses to food, while decreasing the preference for low-fat food 
independent of changes in body weight and metabolism11. In persons 
with obesity-associated insulin resistance, higher responsiveness 
to insulin has been observed in the insular cortex12 and midbrain13, 
similar to the increased response that we observed after HCD. More-
over, studies in people with obesity found poorer performance in 
dopamine-dependent reward-learning paradigms14,15. We could identify 
a similar alteration in the present study in healthy weight men after 
overconsumption of high-caloric food, providing evidence that altered 
reward learning and increased activity of the reward associated brain 
regions to insulin may be present before weight gain. After resuming 
a normal diet, we found a diminished response to brain insulin in the 
hippocampus and fusiform gyrus in the HCD group. Insulin activity 
in these regions plays an important role in attenuating the neural 
response to visual food cues16 and memory processes3. Under healthy 
conditions, INI improves performance on learning and memory tasks3 
and increases hippocampal blood flow17 and hippocampal functional 
connectivity18,19. Of note, the diminished response to insulin in the hip-
pocampus and fusiform gyrus outlasted the consumption of the HCD. 
Notably, hippocampal insulin resistance can develop independent of 
peripheral insulin sensitivity20, as identified in rodent models20 and in 
postmortem brain tissue of patients with Alzheimer’s disease21. Like-
wise, in the current study, diminished brain insulin responsiveness in 
the hippocampus was present without notable perturbations in periph-
eral metabolism, suggesting that diet-induced changes in brain insulin 
responsiveness precede peripheral insulin resistance. Together, these 
findings add a novel facet to our understanding of the possible develop-
ment of brain insulin resistance and suggest that the detrimental effects 
of a HCD persists even after cessation of the unhealthy nutritional 
stimulus. Initial evidence indicates that, particularly in women, hip-
pocampal insulin sensitivity decreases with age17. Whether our findings 
can be extended to women needs to be investigated in future studies. 
Besides insulin resistance, there are a multitude of factors that sub-
stantially contribute to the pathophysiology of obesity. Particularly, 
abdominal obesity is a source of inflammation22 and dietary excess can 
trigger inflammation in the brain in the preclinical model, involving 
non-neural populations such as astrocytes, microglia and tanycytes in 
the hypothalamus23,24 as well as the orbitofrontal cortex25. While less is 
known about inflammation in the brain in humans, initial imaging stud-
ies point to structures of the hypothalamus and reward pathways being 
vulnerable to obesity-associated inflammation26,27. Likewise, in the 
current study, we found reductions in white matter integrity between 
reward and cognitive regions after participants resumed their regular 
diet, similar to changes in individuals with obesity28. Based on the 
nature of the MRI signal, these alterations in white matter integrity are 
based on changes in brain water content, which is known to be mediated 
by obesity-associated inflammation26. Whether systemic inflammation 
contributed to these changes cannot be answered in the current study. 
However, no changes in cytokines were observed immediately after 
the HCD. Clearly, further studies are needed to disentangle the role of 
brain insulin responsiveness and inflammation in the development of 
obesity and associated diseases, as subclinical low-grade inflammation 
is well known to affect metabolic regulation.

In conclusion, we show that short-term overeating with commonly 
used ultra-processed high-caloric snacks can trigger liver fat accumu-
lation and short-term disrupted brain insulin action that outlast the 
time-frame of the HCD in men. We postulate that the brain response 
to insulin adapts to short-term changes in diet before weight gain and 
may facilitate the development of obesity and associated diseases.

The small sample size of our study limits the generatability of our 
results and may be the reason why we did not identify impairments in 
peripheral insulin sensitivity after the 5-day HCD. Furthermore, we 
did not investigate whole-body insulin sensitivity based on the gold 

standard (hyperinsulinaemic euglycaemic clamp). Knudsen et al.29 
were able to observe changes in whole-body insulin sensitivity after 
just 3 days of overeating and physical inactivity, before changes in 
body weight29. This could indicate that inactivity facilitates a more 
rapid decrease in peripheral insulin sensitivity than the HCD alone. 
Furthermore, with the current study design, we cannot disentangle the 
effect of excessive calories on the brain versus the influence of exces-
sive calories of specific macronutrients. Whether excessive intake of 
healthy calories or physical inactivity impacts brain insulin activity 
is the subject of future studies. For follow-up 2, no liver fat measure-
ment and no blood sampling during oGTT were available. Hence, we 
cannot conclude whether the liver fat accumulation, inflammation or 
free fatty acid species play an important role beyond the HCD. Also, 
the study duration was too short to evaluate long-term effects of the 
HCD. We investigated the effect of HCD exclusively in male participants. 
Sex-specific findings of insulin action on appetite, metabolism and 
memory have been reported3, which depend in part on the menstrual 
cycle10. It is likely that adaptations of brain insulin activity to diet addi-
tionally depend on hormonal fluctuations in women.

Methods
Participants
Twenty-nine male participants were aged 19–27 years, were healthy 
weight (BMI 19–25 kg m−2), nonsmokers, of stable weight for at least 
3 months before the study visits, nondieters, not vegan or vegetarian 
dieters, without food allergies, exercising less than 2 h a week, not work-
ing at night, not taking medication, and with no history of diabetes, 
eating disorders, illicit drug use or other medical diagnoses. Gender 
was determined based on self-report and supported by testosterone 
measurements. In a nonrandomized controlled design, 18 participants 
were enrolled to participate in a 5-day HCD (snacks in addition to their 
regular diet) and 11 participants were enrolled as the control group 
(to maintain their regular diet with no additional calories). Data col-
lection and analysis were not performed blind to the conditions of 
the experiments. Participants provided written informed consent in 
compliance with the University of Tübingen ethical committee. The 
study (813/2017BO2) received approval by the local ethics commit-
tee in January 2018 (Ethics Committee of the Medical Faculty of the 
Eberhard Karls University and the University Hospital Tübingen) and 
was conducted according to the relevant guidelines and regulations. 
The study is a basic experimental study involving humans and was reg-
istered at ClinicalTrials.gov (NCT03590561). A compensation of €600 
was provided after completion of the study (total of 23 h over six visits).

A previous study investigating brain insulin action6, showed a large 
effect size of Cohen’s d > 1 could be achieved with 18 participants per 
group to detect obesity-associated insulin resistance (healthy weight 
versus obese). Assuming a two-sided t-test of α = 0.05 and 80% power, a 
sample size of at least 25 people was calculated for the total sample size.

Study overview
Brain insulin action was assessed by fMRI combined with intranasal 
administration of insulin to the brain before, directly after the HCD or 
regular diet, and 1 week afterwards. The timing of the follow-up visits 
was adapted to the first day of the consumption of the HCD. Food intake 
and physical activity were recorded during the course of the study. 
Moreover, participants underwent two five-point 75 g oGTTs according 
to the methods of Matsuda and DeFronzo30 to assess peripheral insulin 
sensitivity, whole-body MRI for body fat distribution/intrahepatic fat 
content, and performed a reward-learning task (see Fig. 1 for study 
overview). For each study visit, participants arrived at the study centre 
at ~08:00 after an overnight fast of 12 h. Blood samples were taken dur-
ing the oGTT and once before each fMRI measurement. Participants 
were instructed by a nutritionist to record their food intake into a diary 
and provide pictures of all their meals and instructed to walk fewer than 
4,000 steps a day, monitored using a Fitbit watch (Fitbit Inspire or Fitbit 
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Inspire HR; Fitbit LLC, USA). High-caloric snacks were provided to the 
participants based on palatability ratings obtained before the baseline 
visit. Only participants who habitually consumed high-caloric snacks 
(at least four times a week) were included.

High-caloric diet
Based on the participant specific palatability ratings, a nutritionist 
prepared packages for 5 days containing 1,500 kcal each with different 
snacks (including for example, Snickers, brownies and chips, with a 
nutritional composition equivalence of 47–50% fat and 40–45% car-
bohydrates; see Supplementary Table 1).

Food diaries
Participants in the HCD group completed food diaries on three consecu-
tive days before the intervention, five consecutive days during the inter-
vention, and again three consecutive days at the end of the assessment 
period before follow-up 2. The control group completed food diaries 
for three consecutive days at two time points corresponding to the 
time between the baseline/follow-up 1 and follow-up 2 visits. Diet com-
position was estimated with a validated software (DGE-PC 3.0; German 
Nutrition Society). In addition, all consumed food was photographed 
by the participants to validate the information provided in the diary.

Whole-body MRI for quantification of adipose tissue 
compartments
T1-weighted fast spin-echo images with a 1-cm slice thickness and 
an interslice gap of 1 cm were acquired from the entire body on a 3T 
whole-body scanner (Magnetom Vida; Siemens Healthineers) in the 
early morning after overnight fasting31. After MRI, single-voxel MR 
spectroscopy was performed in the posterior part of segment 7 of the 
liver for quantification of IHL, which was calculated by the ratio of lipid 
signal and water plus lipid signal32.

Whole-brain MRI measurement and preprocessing
Scanning was conducted at a 3T whole-body Siemens scanner (Mag-
netom Prisma) with a 20-channel head/neck coil. Brain insulin respon-
siveness was quantified by application of INI in combination with fMRI 
recordings. Measurements were performed under fasting conditions. 
After the basal measurement, 160 U insulin spray was administered 
intranasally (Insulin Actrapid; Novo Nordisk). After 30 min, a second 
fMRI measurement was performed. To acquire CBF maps, pulsed arte-
rial spin labelling images with a PICORE-Q2TIPS sequence (proximal 
inversion with control for off-resonance effects—quantitative imag-
ing of perfusion by using a single subtraction) using a frequency off-
set corrected inversion pulse and echo planar imaging readout for 
acquisition6,33. In addition, high-resolution T1-weighted anatomical 
images were obtained. Image preprocessing was performed using the 
ASLtbx with SPM12 (Wellcome Trust Centre for Neuroimaging). Func-
tional images were motion corrected, co-registered to the individual 
anatomical image and smoothed (full width half maximum 6 mm). 
Perfusion images were generated by calculating the control-tag differ-
ences by using surround subtraction. For accurate CBF quantification 
(ml 100 g−1 min−1), we used unique M0 values extracted from a region 
of interest in the cerebrospinal fluid34. We used the general kinetic 
model for absolute perfusion quantification. Recent reliability stud-
ies and our measurements show high reproducibility and reliability 
for CBF maps34,35.

Diffusion-weighted images were acquired at each visit before 
INI administration, to investigate white matter integrity. An echo pla-
nar imaging sequence (70 axial slices, field of view of 220 mm2, slice 
thickness of 2 mm, TE = 54 ms and TR = 6,500 ms) with 35 directions 
(b = 1,000 s mm−2) and GRAPPA acceleration factor 2 was acquired. 
Moreover, 11 interspersed nondiffusion weighted volumes (b0) 
were recorded. To improve signal-to-noise ratio two averages were 
performed. The measurement lasted a total of 8 min 3 s. Standard 

preprocessing and statistical analyses were performed using FMRIB 
(Functional Magnetic Resonance Imaging of the Brains, Oxford Univer-
sity) Software Library (FSL v.6.0). For all FA images, a nonlinear registra-
tion in MNI152 space was conducted using the FMRIB58_FA template 
as target image. The mean FA image pooled over all participants and 
sessions was computed and the skeleton representing the main white 
matter tracts was created. Thereafter, the aligned four-dimensional 
skeletonized FA images were thresholded (FA ≥ 0.2) to reduce par-
tial volume effects. For the nonlinear registration of the MD images 
into MNI space, the transformation parameters of the FA images were 
applied and skeletonized. One participant was excluded from the 
analyses because of imperfect slice positioning cutting parts of the 
white matter tracts.

Statistics
Unless otherwise stated, data are presented as mean ± s.d. The primary 
analysis was to assess insulin-induced changes in brain activity before 
(baseline) and twice after the intervention (follow-up 1 and follow-up 2).  
To this end, the absolute change of CBF of each participant before and 
after INI spray application was used for further statistics (∆CBF, CBF 
30 min after nasal spray − CBF before nasal spray). Whole-brain analy-
ses were performed using a voxel-wise approach in SPM12. ∆CBF of the 
baseline measurement day was subtracted from the follow-up visits 
(∆CBFfollow-up 1/2 − ∆CBFbaseline) and entered into a flexible factorial design 
to investigate the difference in brain insulin responsiveness between 
the HCD and control groups at follow-up 1 and follow-up 2, while taking 
into account within-subject variability (within-subject factors, subject 
ID and visit (follow-up 2 and follow-up 1); between-subject factor, group 
(HCD and control)). A statistical threshold of P < 0.001 uncorrected 
and PFWE < 0.05 cluster level corrected for multiple comparisons was 
applied on a whole-brain level.

To investigate differences in white matter integrity between 
the HCD and control group, FA and MD values from the baseline to 
follow-up 1 and follow-up 2 (follow-up 1/2 − baseline) were calcu-
lated for each participant on the skeletonized data using fslmaths. 
A two-sample unpaired t-test was performed between the HCD and 
the control group for FA and MD values, respectively. We included the 
global FA/MD values as a covariate of no interest. For tract-based spatial 
statistics, we used the module randomize in FSL, which is a nonparamet-
ric permutation test for inference on statistical maps36. For detecting 
significant clusters corrected for multiple comparisons, we selected 
the TFCE method optimized for TBSS analyses37. Statistical maps were 
thresholded at P < 0.05 (TFCE corrected). The number or permutations 
was set to 5,000. Tract labels were assigned using JHU ICBM-DTI-81 
white matter labels or the HCP white matter probability tracts.

Secondary analyses were conducted using R (v.4.3.3.). Groups, 
visits as well as group-by-visit interactions were tested by linear 
mixed-effects models employing the lmer function of the lme4 pack-
age in R. Participants were included as random factors to account for 
within-subject correlations. Groups and visits were considered as fixed 
effects. Normal distribution was investigated by visual inspection and 
QQ plots. In exploratory analyses, correlations were used to associate 
metabolic and behavioural changes with changes in brain insulin action 
(P < 0.05 uncorrected for multiple comparisons).

Questionnaires
Participants reported impulsivity (Barratt impulsiveness scale38),  
eating behaviour (food craving questionnaire – trait)39 and the 
three-factor eating questionnaire40; German version, fragebogen zum 
essverhalten41). Furthermore, eating disorders (eating disorder exami-
nation42), depression (Becks-depressions-inventar43) and psychiatric 
disease (patient health questionnaire44) were ruled out. Before and 
after the INI, participants rated their mood (positive and negative affect 
schedule questionnaire45) and their subjective feeling of hunger on a 
visual analogue scale (0, not hungry at all to 10, very hungry).
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Go/no-go learning task
We investigated reward learning with an established valence-dependent 
go/no-go learning paradigm46. Participants were asked to learn correct 
approach (go) or inhibitory (no-go) responses to cues that predicted 
reward or punishment. With this task, participants learned state–
action contingencies and received rewards or punishments. Each 
trial consisted of three stages; 240 trials in total, consisting of 120 go 
trials and 120 no-go trials, each with 60 trials for each condition (for 
example, win or avoid loss); the task duration was 15 min. Using a laptop 
computer, fractal cues (state) were presented out of a set of four dif-
ferent fractals per session. Fractals were randomized to one of the four 
possible combinations of the go × win two-factorial design of the task. 
Participants completed a target detection task and either respond by 
pressing a key (go) or withhold their response (no-go). The outcome 
of the state–action combination is visualized on the screen, which 
was either a win (5 cents), punishment (−5 cents) or an omission (no 
win/punishment, 0 cents). Using trial and error, participants learned 
which action following each fractal was best in terms of maximizing 
wins or minimizing losses. Outcomes were presented probabilistically, 
as follows: 80% chance to win after correct state–action sequences; 
20% chance to win after incorrect sequences for rewarded trials; 80% 
chance to avoid losses after correct; and 20% chance to avoid losses 
after incorrect sequences for punished trials. Participants were told 
about the probabilistic nature of the task and that either go or no-go 
responses could be correct for a given fractal. There was no change in 
the contingencies over time. To ensure that participants understood 
the task, they performed a practice run at the beginning.

Reinforcement learning model
We used computational modelling to test the effects of the HCD on 
specific processes of value-based decision-making. To this end, we fit 
previously reported reinforcement learning models that are exten-
sions of standard Q-learning models46. In brief, specific action (a) 
values (Q) are updated for the shown stimulus (s) at each trial t with 
the Rescorla–Wagner rule:

Qt(st,at) = Qt−1(st,at) + α(ρrt −Qt−1(st,at)).

The speed of learning is modified by the learning rate α (α ϵ [0,1]) 
and individual reward sensitivity is scaled by ρ, a free, positive param-
eter. Obtained rewards rt are coded as −1, 1 or 0 if participants received 
a punishment, reward or neither, respectively. To account for Pavlovian 
effects on learning, action-independent values (V) for each stimulus 
are learned with the same Rescorla–Wagner rule to indicate whether 
a stimulus leads to punishment or reward:

V(st) = Vt−1(st) + α(ρrt − Vt−1(st))

Both action values (Q) and stimulus values (V) are then combined 
to action weights (W) at each trial:

Wt(a, s) = {
Qt (a, s) + b + πVt(s), a = go

Qt(a, s), else

Here, b (>0) reflects the constant tendency to choose the go option 
and Pavlovian tendencies are parameterized by π, a positive free param-
eter that captures impaired learning in trials with incongruent Pavlo-
vian and instrumental behaviour (for example, go-to-avoid 
punishment). Last, the action probability (p) at each trial is determined 
using a softmax function where a noise parameter (ξ ∈ [0, 1]) scales 
how much influence learned values have on decisions:

p (at|st) = [ exp (W (at|st))
∑a exp(W (a′|st))

] × ξ + ( 1 − ξ
2 )

In addition, we fit two further models disentangling valence spe-
cific effects by estimating either reward sensitivity, or reward sensitiv-
ity and learning rate separately for reward and punishment. To test 
whether valence effects were specific for reward sensitivity versus 
learning rates47, we also explored a model that separated learning 
rates, but not reward sensitivity based on outcome valence. As the 
model that included a valenced learning rate did not converge, it pre-
cluded further analyses. As previously described, we used hierarchical 
expectation maximization to fit the models48. Using this method, indi-
vidual parameters and the group distributions of the parameters are 
estimated iteratively, so that at each iteration, the current group-level 
distributions are used as priors for individual parameter estimation 
(Laplace approximation). Consequently, group-level distributions are 
updated integrating the new individual estimates and their uncertainty. 
To avoid systematic bias, we treated each repeated sessions (baseline, 
follow-up 1 and follow-up 2) as an independent measurement. To pre-
vent exaggerating differences between both groups, we fit one under-
lying distribution over all participants and repeated measurements. 
We compared models using group-level integrated BIC (iBIC48), which 
combines model fit and model complexity across all measurements. To 
constrain parameters to their theoretical range, we log-transformed 
reward sensitivity and Pavlovian bias and used an inverse sigmoid 
transformation for the learning rate and irreducible noise.

We evaluated intervention effects by comparing changes in 
parameter estimates between the HCD and the control group using 
independent-sample t-tests with a significance threshold of P < 0.05 
(two-tailed). As model parameters might not be normally distributed, we 
used bootstrapping with 1,000 samples to compare changes in param-
eter estimates at follow-up 1 and follow-up 2 between groups. Moreover, 
we corrected for multiple comparisons across the six parameters in the 
winning computational model analysis using Bonferroni correction. We 
performed data analyses using MATLAB v.2016a (computational model).

To evaluate whether HCD alters reward and punishment sensitiv-
ity, we fitted computational reward-learning models46 that dissoci-
ate sensitivity in response to wins or losses as outcomes. In line with 
Guitart-Masip et al.49, a model including six parameters with valenced 
(reward/punishment) reward sensitivities provided a better model 
fit compared with the standard five-parameter model (∆iBIC = −184). 
In this model, HCD had opposing effects on reward and punishment 
sensitivity at both post intervention time points (Extended Data Fig. 2). 
We also explored a model only including a valenced learning rate but 
not a valenced reward sensitivity as previously described47. However, 
while this model provided a slightly better model fit compared with the 
winning model (∆iBIC = −74) at the group level, it only provided a more 
parsimonious account at the individual (iBIC) level for 23 out of 86 runs. 
Nonetheless, there were no significant differences between groups at 
both times, neither for the single reward sensitivity nor the valenced 
learning rates, indicating that effects were specific for reward sensitivity.

Detection of cytokines
Cytokines were quantified using a combination of Bio-Plex Pro Human 
Cytokine Plex Panels (Luminex; Bio-Rad Laboratories). Multiplex assay 
was performed on a Luminex 200 system in accordance with the manu-
facturer’s instructions. Samples were measured at two different time 
points on different plates. Hence, values were time-point-normalized 
for statistical analyses.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Statistical maps of the brain effects are uploaded to Neurovault (https://
neurovault.org/collections/MYQHVMQE/). Source data are provided 
with this paper.
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Code availability
No custom code was used.
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Extended Data Fig. 1 | Liver fat content in the control and high-caloric diet 
group (HCD) at baseline and 5-days after the high-caloric or regular diet 
intervention (follow-up 1). Liver fat content increased in the HCD group: 
baseline versus follow-up 1: p = 0.005, while it did not change in the control group 

(p = 0.958). Presented are box plots with whiskers indicating 1.5 interquartile 
range and line diagram; Control: N = 11 at baseline and follow-up 1; HCD: N = 17 at 
baseline and N = 18 follow-up 1. Abbreviations: HCD, high-caloric diet group.

http://www.nature.com/natmetab


Nature Metabolism

Brief Communication https://doi.org/10.1038/s42255-025-01226-9

Extended Data Fig. 2 | HCD reduced reward sensitivity and increased 
punishment sensitivity. Bootstrapped density plots of the difference between 
groups in changes of parameter estimates at follow-up 1 and follow-up 2 

compared to baseline (pre), respectively. Lines indicate 95% confidence intervals. 
HCD = high-caloric diet group; RewS = Reward Sensitivity, Pav = Pavlovian, 
 LL = log-likelihood.
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Extended Data Fig. 3 | Change in white matter organization at follow-up 
2. Change in white matter organization at follow-up 2 in the high-caloric diet 
compared to the control group. The panel shows the fractional anisotropy 
skeleton (in green) representing the major white matter tracts of all participants 
overlayed on a MNI standard brain. White matter fibre tracts showing a 
significantly lower fractional anisotropy (FA) at follow-up 2 in the high-caloric 

diet compared to the control group are shown in red, orange and yellow  
(p-corr <0.05). Lower FA values are mainly located on inferior fronto-occipital 
fasciculus, genu of the corpus callosum and anterior corona radiata (white 
circles). Colorbar represents 1-p value (tfce-corrected). Tracts in yellow displayed 
smaller p value or more significant results. N = 27.
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Extended Data Table 1 | Food Diary
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Extended Data Table 2 | State Questionnaires on Brain MRI day in the fasted state
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Extended Data Table 3 | Inflammatory markers
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Extended Data Table 4 | Changes in brain insulin activity (CBF) from before to after the intervention
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Extended Data Table 5 | Correlation between change in brain insulin responsiveness and metabolic and behavioural 
changes
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