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Machine learning has become increasingly important in biomechanics. It allows to unveil hidden patterns
from large and complex data, which leads to a more comprehensive understanding of biomechanical processes
and deeper insights into human movement. However, machine learning models are often trained on a single
dataset with a limited number of participants, which negatively affects their robustness and generalizability.
Combining data from multiple existing sources provides an opportunity to overcome these limitations without
spending more time on recruiting participants and recording new data. It is furthermore an opportunity for
researchers who lack the financial requirements or laboratory equipment to conduct expensive motion capture
studies themselves. At the same time, subtle interlaboratory differences can be problematic in an analysis due
to the bias that they introduce. In our study, we investigated differences in motion capture datasets in the
context of machine learning, for which we combined overground walking trials from four existing studies.
Specifically, our goal was to examine whether a machine learning model was able to predict the original data
source based on marker and GRF trajectories of single strides and how different scaling methods and pooling
procedures affected the outcome. Layer-wise relevance propagation was applied to understand which factors
were influential to distinguish the original data sources. We found that the model could predict the original
data source with a very high accuracy (up to >99%), which decreased by about 15 percentage points when we
scaled every dataset individually prior to pooling. However, none of the proposed scaling methods could fully
remove the dataset bias. Layer-wise relevance propagation revealed that there was not only one single factor
that differed between all datasets. Instead, every dataset had its unique characteristics that were picked up by
the model. These variables differed between the scaling and pooling approaches but were mostly consistent
between trials belonging to the same dataset. Our results show that motion capture data is sensitive even to
small deviations in marker placement and experimental setup and that small inter-group differences should not
be overinterpreted during data analysis, especially when the data was collected in different labs. Furthermore,
we recommend scaling datasets individually prior to pooling them which led to the lowest accuracy. We want
to raise awareness that differences in datasets always exist and are recognizable by machine learning models.
Researchers should thus think about how these differences might affect their results when combining data
from different studies.

CCS Concepts: • Computing methodologies→ Neural networks; Supervised learning by classification; •
Applied computing → Life and medical sciences;

Additional Key Words and Phrases: datasets, dataset combination, neural networks, explainable AI, scaling,
biomechanics, motion capture, machine learning, LRP
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1 Introduction
The use of machine learning in biomechanics research has gained substantial popularity. It offers
possibilities to analyze large and complex data, uncover hidden patterns, and deepen our under-
standing of human movement [21]. For example, machine learning models have been applied to
characterize movement patterns [7], classify pathological gait [10], assess the risk of falls or injuries
[31, 56], predict human motion [62] or gain insights into the control of movement [12].

However, in most studies in which machine learning is applied to human movement data, only
a single dataset with few participants is used for model training and testing [21], which amplifies
the risk of overfitting [17]. One reason for the small sample sizes in biomechanical studies is the
high effort associated with data acquisition [33, 44]. Optical motion capture continues to be the
benchmark method for recording motion data [52], but is time-consuming and expensive [14].
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Pooling existing datasets can be an opportunity to solve the data scarcity problem without the
need to spend additional time and effort on recording new data. This requires datasets to be shared
publicly; however, the number of available datasets is still limited compared to the multitude of
biomechanical studies conducted in the past years [37]. Nevertheless, more and more researchers
have recognized the necessity and value of data sharing to create large-scale datasets [17, 21,
37, 54, 58, 61]. AddBiomechanics [58] is an example of a recent tool that aims to simplify the
processing and exchange of motion data. Training a machine learning model on a pooled dataset
that contains more and independent data can increase its accuracy and generalizability to new
data [17]. At the same time, data from different labs will most likely differ due to variations in
marker placement, measurement systems, or experimental protocols [8, 20], even if the same
motion was recorded. These interlaboratory differences in biomechanics have been broadly in-
vestigated [8, 11, 20], however not in the context of machine learning. While data heterogeneity
can improve model robustness, it might also negatively influence the performance of a machine
learning model due to the bias that is introduced by the data source [19, 60]. In other disciplines
like computer vision or systems biology, where large, open-source databases are already preva-
lent [45, 51] and merging datasets is more common [45], this problem is known as dataset bias
[53] or batch effect [23]. It means that data in a specific dataset has unique characteristics stem-
ming from factors like data collection procedures, which make them differentiable from other
datasets of the same domain [4]. Torralba and Efris [53] investigated dataset bias in the context
of object recognition using 12 often-used recognition datasets. Their classifier predicted the data
source of random images from each dataset with an accuracy of 39%, which increased to 61%
when using only images of a single class. The experiment showed that a machine learning model
was able to differentiate between image data sources; however, no objective explanation was
given which features of an image led to the correct classification [53] or what made the datasets
unique.

Explanatory methods can help to understand the decision-making process of machine learning
models. One popular method is layer-wise relevance propagation (LRP) [6]. It is more efficient
compared to other algorithms such as LIME [43] or SHAP [38] and has shown to be suitable for
time-series data [36, 55]. LRP computes a relevance score for each input feature of a neural network
indicating its importance for the model decision. In biomechanics, LRP has been used to identify
person-specific gait characteristics from joint angle and ground reaction force (GRF) trajectories
[28] or electromyography data [1]. The technique has further been applied to explain kinematic
differences [59] in running and to determine distinct [26] or overlapping [25] patterns among
runners. LRP is a promising method to overcome the black-box character of machine learning
models and gain insight into why a sample is classified into a certain class.

Furthermore, in machine learning, it is common to scale the input data before feeding it into
the network. This speeds up the training process and reduces the impact of varying scales, which
enhances the convergence of the model. However, while scaling is a standard practice in prepro-
cessing biomechanical data for machine learning applications, there is no universally accepted
procedure for how to scale biomechanical data for machine learning classification tasks [9]. It is
also unknown how scaling affects the dataset bias when data from different sources is combined
and to what extent scaling before or after pooling the datasets influences the outcome.

The purpose of this study was to explore dataset bias in biomechanical gait datasets and possi-
bilities for combining data from existing studies. Similar to Torralba and Efros [53], we aimed to
investigate whether a machine learning model could identify the original data source when we
pooled motion capture data from multiple studies. However, we were not only interested in, but
also why the model predicted that a trial stemmed from a specific dataset. Specifically, we applied
LRP to analyze which factors in the datasets, which all measured overground walking, caused
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Fig. 1. High-level overview of the individual steps of the proposed method. (1) First, we extracted and
preprocessed marker and GRF data from recordings of overground walking from four different datasets,
resulting in 2,825 individual strides from 145 participants. (2) We compared three different data scaling
methods and pooling WFs. (3) A neural network was used to classify the original data source of a stride. (4)
We applied LRP to compute the importance of each input variable to the model prediction.

differences between the original data sources. Furthermore, we explored how different scaling
techniques influenced the prediction and whether we could recommend a specific scaling technique
that might reduce the dataset bias when data from different studies are combined.

This led to the following research questions:

—Can a machine learning model predict the original data source from marker and GRF force
trajectories when we pool data from several datasets that all measure overground walking?

—Which variables in the data are crucial for the classification of the individual trials of a dataset?
—Can we reduce the dataset bias by applying different scaling techniques, and can we recom-
mend a specific scaling technique when pooling datasets?

To answer these questions, we used data from four datasets and proposed different workflows
(WFs) to pool and scale the data. We then trained neural networks to predict the data source and
applied LRP to explain the results (Figure 1).

2 Methods
2.1 Datasets
We used gait data from three open source datasets [28, 30, 34, 39] and one internal dataset used
in earlier research [15], which we named according to the respective first author. All datasets
measured overground walking of healthy participants at multiple speeds and provided marker and
GRF trajectories. However, the experimental protocol differed between the studies. For details on
the data acquisition and the original purpose of the data, the reader is referred to the individual
accompanying journal publications [15, 28, 35, 48].

We excluded data from children (age 0–17) as well as trials from the Moissenet dataset falling
within the slowest speed range (0–0.4 ms−1) because we considered the speed difference to all other
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Table 1. Composition of the Pooled Dataset Used for This Study

Original dataset Number of participants Included walking speeds Number of used trials

Dorschky [15] 9 (0 female, 9 male) 0.9–1.0 ms−1 265
1.2–1.4 ms−1

1.8–2.0 ms−1

Horst [29] 57 (29 female, 28 male) Self-selected speed 1,136

Moissenet [39] 50 (24 female, 26 male) 0.4–0.8 ms−1 894
0.8–1.2 ms−1

Self-selected speed
Fast self-selected speed

Lencioni [34] 29 (14 female, 15 male) Self-selected speed 530
Slow walking
Fast walking

Pooled dataset 145 (67 female, 78 male) 2,825

datasets as too large. Furthermore, trials with clear measurement errors were discarded after a
visual inspection. The remaining trials from all datasets were combined into one large gait dataset
that was used for further analysis. Table 1 provides an overview of how the final, pooled dataset
was composed.

2.2 Data Preparation
We extracted sagittal-plane marker and GRF data from all trials. Eleven markers were chosen,
which were located at the same anatomical position in all original datasets: fifth metatarsal head
(MT5), heel (HEE), lateral malleolus (ANKL), lateral femur epicondyle (KNE), and greater trochanter
(GTRO) of both sides of the body as well as the acromion (SHO) on the side of the leading limb. As
the Dorschky dataset provided only GRF data from one force plate, kinetic data from only one foot
was used for all trials in the pooled dataset.

The knee and ankle markers in the Horst dataset, as well as the hip marker in the Lencioni dataset,
had been removed before the dynamic trials. The trajectories of these markers were reconstructed
in OpenSim [13, 49] using a three-dimensional model with 37 degrees of freedom based on the
model by Hamner [22]. To do so, the model was scaled from the static trial and an inverse kinematic
analysis was performed. For every time step, the position of the virtual marker corresponding to
the missing experimental marker was extracted, and the resulting time series was then used as the
experimental marker trajectory. This was possible because the original position of those markers
on the body was known from the static trials.

The trajectories were filtered with a bidirectional second-order Butterworth filter with a 10 Hz
cut-off frequency and cut to one gait cycle, starting and ending at heel strike (HS). Each trial thus
corresponded to one stride, which is why we use these terms interchangeably. For the Lencioni
dataset, the data was already cut. The start of the stride was defined as the first sample with GRF
data. However, they did not mention which GRF threshold they used nor how the end of the stride
was defined, as they only used two force plates. For all other datasets, we determined HS using a
vertical GRF threshold of 10N to match the method used in the Lencioni dataset. If no force plate
data was available for a step, HS was defined as the time of the minimum vertical position of the
heel marker. In the article, we refer to the trajectories of the leading leg and the following leg by “_1”
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and “_2,” respectively. Every stride was resampled to 101 data points. The ANKL marker position at
the first HS was used as the origin of all global coordinate systems to remove any dependency on
the laboratory setup and allow for comparison between laboratories.

All trajectories were made dimensionless by dividing by body height or mass to enable a better
comparison between subjects and to remove anthropometric influences [24]. Furthermore, all
marker trajectories in anterior–posterior direction were expressed relative to the pelvis center,
which was estimated as the middle between the left and right greater trochanter marker, in order
to reduce the effect of different walking speeds. The 22 marker trajectories and 3 force trajectories
(vertical and anterior–posterior GRF, ground reaction moment) of a trial were concatenated into
one movement vector of length 2,525 (25 sequences times 101 data points). Eventually, all trials were
arranged in a single data matrix S = [x1, ..., x2,525] ∈ R2,825G2,525, where every row corresponded
to a different trial, and the number of columns equaled the number of data points that described
one trial. We considered every time point as a feature and every marker or force trajectory as a
separate channel.

2.3 Data Scaling and Pooling
Data normalization has an established role as a standard preprocessing step in biomechanical
analyses. We tested three common scaling methods together with different data pooling WFs to
investigate their effect on dataset bias (Figure 1). In feature-wise scaling, we individually normalized
the elements of each feature vector xj ∈ R2,825 (for 9 = 1, .., 2,525) of our data matrix S to the
interval [0, 1]. This is a standard technique in machine learning and can be expressed as

(G 9 )′8 =
(G 9 )8 −<8=(x 9 )

<0G (x 9 ) −<8=(x 9 )
∀8 = 1, ..., 2,825 ∀9 = 1, ..., 2,525, (1)

where<8=(x 9 ) and<0G (x 9 ) are the minimum and maximum values of vector x 9 .
In time series-wise scaling, we considered the fact that data points of the same channel trajectory

were not independent but concatenated continuous waveforms. Instead of scaling the values of
every feature vector individually, we expressed the data matrix asS = [I1, ..., I25] by summarizing
the 101 feature vectors of each channel to one submatrix I: ∈ R2,825G101 (for : = 1, .., 25). The values
of each submatrix I: were then scaled to the interval [0,1], which can be expressed as

(�: )8; ′ =
(�: )8; −<8=(I: )

<0G (I: ) −<8=(I: )
∀: = 1, .., 25 ∀8 = 1, ..., 2,825 ∀; = 1, .., 101. (2)

In both methods, the values in the data matrix were scaled column-wise, meaning across trials or
rows. In trial-wise scaling, the feature values were not scaled across all trials; instead, each submatrix
was rewritten as I: = [~1, ...,~2,825]) and every channel trajectory ~)8 ∈ R101 (for 8 = 1, ..., 2,825) of
each trial was normalized to the interval [0, 1] using Equation (1). Normalizing each trial separately
discards information, which can be advantageous if there is extraneous variability between samples
[47], such as marker placement variability in our case.

In terms of the pooling WFs, we applied time series- and feature-wise scaling on two lev-
els: Firstly, on our merged dataset as a whole (WF1), and secondly, separately on each origi-
nal dataset prior to pooling (WF2) [5]. For trial-wise scaling, scaling before or after pooling
yields the same outcome since each trial is considered individually. We, therefore, referred to
this method as WF3. In any case, the scaling process was performed on the training set, and
subsequently, the same scaling parameters were applied to scale the test and validation sets
[44]. The combinations of normalization methods and pooling WFs eventually resulted in five
different configurations.

ACM Transactions on Intelligent Systems and Technology, Vol. 16, No. 1, Article 20. Publication date: December 2024.



Dataset Bias and Scaling Techniques in Multi-Source Gait Biomechanics 20:7

2.4 Dataset Classification
The deployed classifier network architecture was a multi-layer perceptron with one hidden layer.
This simple architecture has been proven to be sufficient and effective in classifying gait patterns
based on time-continuous data. [25, 28]. The linear hidden layer was followed by a ReLU activation
function, and the softmax function was applied to the output to obtain a probability distribution
over the different datasets. The number of input and output nodes was determined from the data:
2,525 for the input layer (because one trial was described by 25 · 101 points) and 4 for the output
layer (1 per dataset). The number of neurons in the hidden layer � ∈ {32, 64, 128, 256, 512, 1,024}
was set as a network hyperparameter. The network weights were initialized uniformly. We used
the ADAM optimizer [32] and the cross entropy loss function to train the network. The batch
size and learning rate were set as training hyperparameters and tuned together with the network
hyperparameter using grid search. The search space was 1 × 10−5, 1 × 10−4, 1 × 10−3 for the
learning rate and {8, 16, 32, 64, 128} for the batch size. Prediction accuracies were reported over
a stratified grouped five-fold cross-validation. In each fold, 25% of the training set was used for
validation. The stratification ensured that the ratio of trials between the original datasets was
preserved throughout the folds. We also made sure that trials of one person were either in the
training, validation, or test set, as we wanted the model to learn unique characteristics of the
dataset and not the walking patterns of individuals. The network was trained for a maximum of
1, 000 epochs and at the beginning of each epoch, the data was randomly shuffled before being
divided into batches for training. If the validation loss decreased less than 5 × 10−3 for 30 epochs,
training was stopped early. We trained a separate network for each of the five scaling and pooling
configurations described before.

2.5 LRP
To explain why the network learned that a trial stemmed from a specific dataset, we applied LRP,
an explanation technique that computes relevance scores for all input variables. LRP first runs a
forward pass on the trained model. Then, the activation score of the output layer is propagated back
layer by layer following the principle of relevance conservation until the input layer is reached [46].
In our study, we applied the n-variant of LRP, which adds a small constant to the denominator to
prevent numeric instabilities [40]. We chose an epsilon-value of 10−6. For more details on LRP, we
refer to the original article by Bach et al. [6], where a comprehensive explanation and analysis of
the LRP algorithm can be found. The Zennit software package [3] was used for the implementation
of LRP.

2.6 Evaluation
The classification performance of every network was evaluated by assessing the prediction accuracy
and the corresponding confusion matrix. For any stride, LRP yielded a relevance pattern consisting
of a relevance score for each of the 2,525 input variables indicating its importance for the prediction:
positive values favored the decision for a certain dataset, while negative values could be seen as
evidence against the class [46]. Since the interpretation of negative relevance scores is difficult
in multiclass classification problems, we clipped the relevancies at zero and focused only on
positive values [1]. Similar to [26], we only considered trials that were correctly assigned by the
neural network. To enable a comparison between original data sources, all relevance patterns were
normalized to their respective maximum [26] and averaged dataset-wise. The averaged relevancies
were eventually rescaled to values ranging between zero and one, where values close to zero
indicated the lowest, and values close to 1 the highest relevance. For better interpretability and
comprehensibility, we visualized the class-specific relevance scores as heatmaps. To condense
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Table 2. Prediction Accuracies of the Dataset Classification Task in Percentage,
Reported as Mean and Standard Deviation of the Five-Fold Cross-Validation

Pooling WF Scaling method

Feature-wise Time series-wise Trial-wise

WF1 (pool → scale) 99.3 ± 1.2 98.7 ± 1.7 –
WF2 (scale → pool) 83.6 ± 9.0 82.2 ± 5.2 –
WF3 (order not important) – – 99.5 ± 0.5

the information from the heatmap, we additionally displayed the overall relative contribution
of each marker and of each time point for the dataset identification [25, 26]. This allows for the
identification of key markers and critical moments within the gait cycle that have the highest
impact on dataset identification, thereby providing deeper insights into the temporal and spatial
dynamics that distinguish between different classes or conditions.

These average class heatmaps provided a global impression of the characteristics of each data
source but no information about potential inter-trial differences. To determine whether the learned
characteristics of trials within a dataset were consistent, we computed the relative channel im-
portance for every trial by summing over the 101 relevance values per channel and normalizing
the resulting values so that their sum equaled 1. This gave us, for each stride 8 , a vector r8 with 25
values (1 for each channel), which represented the relative relevance contribution of that respective
channel for the classification of the stride. We then conducted a principle component (PC)
analysis based on the 2,825 channel relevance vectors r8 . The resulting eigenvectors spanned a
new basis in the directions of the largest variance among the relevance vectors. Trials with similar
relevancies were expected to lie close together when mapped onto this feature space, whereas
trials were expected to lie apart when the model learned different characteristics. We visualized the
result by plotting the first two PCs. The relative explained variance of each PC was a measure of
how much this eigenvector contributed to the total variance in the data.

3 Results
3.1 Performance of Classification Models
The classification performance of the networks was consistently high with accuracies between 82%
and 99.6% (Table 2). The model could distinguish trials from different datasets with a very high
accuracy of above 98% when the data was first pooled and then scaled (WF1). Only a few trials
from the Dorschky dataset and one trial (for time series-wise scaling) or two trials (for feature-wise
scaling) from the Moissenet dataset were wrongly classified (Figure 2(a) and (b)). When the datasets
were scaled prior to pooling (WF2), the accuracy decreased by about 15 percentage points. Here,
only the Lencioni dataset could still be identified almost perfectly (Figure 2(c) and (d)). For WF3,
during which every trial was scaled individually, the accuracy was again very high (99.5%).

3.2 Explaining the Model Predictions Using LRP
WF1 (Pool → Scale). The learned relevance patterns differed between the four datasets. For

example, for the Dorschky dataset (Figure 3(a)), the vertical position of the knee markers was most
relevant throughout the whole cycle, while other markers hardly contributed to the classification. In
contrast, for the Lencioni dataset (Figure 3(b)), it was the vertical position of both heel markers that
was most important over the complete cycle, accounting for about 40% of the complete relevance.
Furthermore, some channels contributed strongly to the identification of a dataset but only at a
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Fig. 2. Confusion matrices for all five configurations.

specific period throughout the stride, such as the vertical MT5 marker in the Dorschky dataset
around the HS of the respective foot or the vertical GRF in the Lencioni dataset at the beginning of
the gait cycle. The relevancies were similar when scaling was done feature-wise. All heatmaps not
depicted here can be found in the Supplemental Material.

WF2 (Scale → Pool). Since the Lencioni dataset was still classified well in WF2 compared to the
other datasets, we exemplarily show the relevance patterns of the Lencioni dataset in Figure 4 for
both time series-wise and feature-wise scaling; all other heatmaps can be found in the Supplemental
Material. The HEE markers were not as important as in WF1 (Figure 3(b)), and the relative relevance
of each marker was generally lower, as the relevancies were distributed more evenly among the
channels, which could also be observed for other datasets. As in WF1, not one single parameter
differed between all datasets, but rather every dataset had certain unique characteristics. Other
than in WF1, the learned characteristics of every dataset differed between time series-wise and
feature-wise scaling. For example, for the Lencioni dataset, the relative influence of the vertical GRF
after HS was preserved for feature-wise scaling (Figure 4(b), but not for time series-wise scaling
(Figure 4(a)). Instead, the anterior–posterior GRF at around 70% of the gait cycle, which corresponds
to the moment before toe-off, was most influential. This relevance peak around toe-off caused by
the GRFs was observed for all datasets in feature-wise scaling but not in time series-wise scaling.

WF3 (Scale Trial-Wise). When every channel trajectory of each trial was scaled individually
(Figure 5), the relevance heatmaps were generally sparser compared to scaling across all datasets in
WF1 (Figure 3). Certain characteristics remained, such as the increased relevance of the vertical
MT5 markers at the timing of the HSs for the Dorschky dataset (compare Figure 3(a) and Figure 5(a)).
Other than in WF1, no marker was relevant throughout the complete stride though. Instead, we
found that opposed distinct phases of the gait cycle were decisive across the different datasets, like
the times shortly before HS (45% and 95% of the stride) for the Dorschky dataset (Figure 5(a)), the
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Fig. 3. Class-specific relevancies averaged across the correctly classified trials of the respective dataset for
WF1 and time series-wise scaling. In the center, red indicates a high feature relevance, while gray indicates a
low feature relevance for the identification. The top part depicts the relative relevance of each time point of
the stride, and the right part shows the relevance contribution of the individual channels.

Fig. 4. Class-specific relevancies averaged across the correctly classified trials of the Lencioni dataset for
WF2. In the center, red indicates a high feature relevance, while gray indicates a low feature relevance for the
identification. The top part depicts the relative relevance of each time point of the stride, and the right part
shows the relevance contribution of the individual channels.
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Fig. 5. Class-specific relevancies averaged across the correctly classified trials of the respective datasets for
WF3. In the center, red indicates a high feature relevance, while gray indicates a low feature relevance for the
identification. The top part depicts the relative relevance of each time point of the stride.

time right after HS and before toe off (50%–60% of stride) for the Moissenet dataset (Figure 5(c)) or
the beginning of swing phases (15%–30% and 65%–80% of stride) for the Horst (Figure 5(b)) and
Lencioni (Figure 5(d)) dataset.

Inter-Trial Consistency. For WF1 (Figure 6(a)), as well as for WF3 (Figure 6(c)), trials of the same
data source lay close together in the PC space, while trials of different sources were clearly separated.
For WF1, the first PCs separated the Moissenet dataset from the rest, while differences between the
other three datasets could rather be seen in the second PC. In contrast, for WF3, the Horst dataset
was the one to be separated from the others by the first PC. For WF2 (Figure 6(b)), especially the
Dorschky and Lencioni dataset had overlapping regions. Furthermore, trials of the same dataset did
not always lie together. Especially for the Horst and Moissenet dataset, the trials formed several
smaller clusters. For all datasets, the trial clusters that lay far away from the majority of trials of
the same dataset were trials that were wrongly classified by the model. In all cases, the first two
PCs explained between 66% and 78% of the variance in the computed relevance patterns. The plots
not shown can be found in the Supplemental Material.

4 Discussion
This work aimed to investigate the presence of dataset bias in motion capture studies and explore
the possibilities of combining data from multiple studies. The goal of our study was threefold:
firstly, we investigated whether a machine learning model could predict the original data source
of an individual stride when data from different studies that all measured overground walking
were pooled, which was confirmed. Secondly, we used LRP to explain how the model knew that
a trial stemmed from a specific dataset. Here, we found that the learned attributes depended on
the scaling method and that every dataset had unique characteristics, which were picked up by
the model. Lastly, we compared different pooling WFs and common scaling methods to learn their
effect on the prediction accuracy and the learned features, which showed us that it is harder for the
model to predict the original data source when every dataset is scaled separately before pooling.

Our results demonstrated that a machine learning model could predict the original dataset with
a high accuracy when combining data from different studies. This indicates that, although the
data measured the same task, each dataset had distinct characteristics that allowed the model to
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Fig. 6. Trials projected onto the first two PCs of the PC space, which was computed from the relative channel
relevance vectors across all trials for the respective configuration. The percentage of each PC is the explained
variance, which states how much of the total variance in the data is explained by the PC.

distinguish the sources. The result was in accordance with findings from other disciplines. Similar
experiments that detected dataset bias in the image or neuroimaging datasets resulted in a 61%
[53] or 71.5% [57] accuracy in predicting the original source, respectively. Remarkably, our model
exhibited even higher accuracy rates, reaching up to 99%. This suggests that dataset characteristics
in motion capture datasets seem to be especially pronounced and distinctive.

Differences in motion capture data from different labs are not necessarily bad. Training a machine
learning model on data from different sources can enhance its robustness and generalizability
compared to training on a single, small dataset. However, especially for unsupervised learning, the
differences might influence the outcome. Our results show that motion capture data is sensitive
even to small deviations, and we should not over-interpret small differences between groups when
we analyze data, especially when the data was collected in different labs. Furthermore, with this
study, we could get a better understanding of dataset bias in motion capture datasets and show that
the commonly applied preprocessing strategies are insufficient to overcome it. We are convinced
that data sharing and combining datasets is a great opportunity for the biomechanics community,
but we want to sensitize researchers to think about how dataset bias could affect a model or an
analysis when combining multiple datasets.

For the classification, it hardly made a difference if we scaled feature-wise or time series-wise
(>2% difference in accuracy). In contrast, scaling all datasets independently prior to pooling (WF2)
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decreased the classification accuracy by approximately 15 percentage points compared to scaling
across the pooled dataset (WF1), meaning that it was harder for the model to identify the original
dataset. This finding shows that dataset bias affects the scaling outcome more when scaling happens
after combining the data. One reason for this is that information about the relative differences in
marker placement between datasets is present when pooling the unscaled data in WF1 but gets
removed in WF2 when every marker trajectory of each dataset is scaled to the same range before
pooling. Surprisingly, the accuracy was also above 99% when every time series of every trial was
scaled individually, as this way of scaling also removes the information about differences in marker
placement between datasets and trials. This shows that there are other hidden patterns in the data,
which are picked up by the model.

Even though the scaling and pooling WFs could influence the model’s ability to distinguish
between data sources, none of the configurations that we tested could fully remove dataset bias when
combining motion capture gait datasets. In this work, we intentionally limited our investigation
to scaling approaches, given that scaling is a standard preprocessing step in the application of
machine learning within the field of biomechanics. Future work should investigate more complex
approaches to effectively remove the dataset bias. One way to mitigate performance degradation in
downstream tasks caused by distribution shifts between biomechanical datasets is multi-source
domain adaptation (MDA) [16, 63]. MDA seeks to learn domain-invariant latent features across
multiple source domains, enabling the development of a model that generalizes well and is robust
against domain shifts, thereby ensuring consistent performance on the target domain. A further
approach could be to use the insights from LRP, which identified the most critical features for
dataset identification, to guide the application of general adversarial networks or diffusion models
aimed at overcoming dataset bias.

The characteristics that the model learned were clearly influenced by the WF and scaling method
and to a certain extend be traced back to the experiments. For example, in WF1, when we first
pooled and then scaled the data, marker placement played a decisive role in differentiating the
datasets. The consistently high relevance of distinct markers throughout the stride indicates a
systematic difference in the placement of these markers compared to the other datasets. However,
the shorter relevance periods that occurred only during certain times of the gait cycle must emerge
from other factors like processing methods. One example is the high relevance of the vertical GRF
during the first three time points in the Lencioni dataset. The Lencioni dataset was already precut,
allegedly starting at the first sample where a vertical GRF was detected. However, the vertical GRF
at the first time point was often higher compared to the other datasets, potentially resulting from
a higher GRF threshold than the 10N threshold that we used, which is what the model learned.
Another factor that we identified as potentially relevant was the experimental design. The increased
importance of the vertical MT5 markers around HS in the Dorschky dataset is likely to be attributed
to the participants wearing shoes during the study instead of walking barefoot, possibly leading to
a decrease in plantarflexion at HS [44]. Furthermore, the walking speed conditions influenced the
model prediction. We noticed an increased relevance of the horizontal knee marker in the Horst
dataset during the swing phase. The Horst dataset was the only one in which participants were
not asked to walk at different predefined ranges. Fast walking increases the range of motion and
step length [18]. In our case, this increased step length is reflected in a larger anterior–posterior
distance between the knee joint and the pelvis center, resulting in higher x-values for the knee
joint. As there were no slow walking trials in the dataset, we assume that the model learned this as
a unique feature of the dataset.

In WF2, where we scaled every dataset before pooling, marker placement was less important
as no marker was relevant throughout the complete stride as in WF1. However, the influence
of the processing methods and experimental design seemed to persist or even increase in some
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cases. The fact that in the averaged plots, with a few exceptions, the contribution of the individual
channels to the classification was more balanced can be an indication that each dataset now had
more than one unique characteristic or that not one, but a combination of marker trajectories
made it identifiable. The large influence of the anterior–posterior GRF in feature-wise scaling was
connected to individual trials where this force becomes slightly negative before toe-off, which
influences the scaling at this time point. It is thus advisable to use time series-wise scaling instead
of feature-wise scaling when including GRFs. Since the heatmaps showed a high influence of the
GRF for the model prediction in WF2, we repeated the experiment with only marker trajectories,
which did not lead to a notably worse model performance though.

In WF3, where we scaled every channel trajectory of every trial separately, no information
about the relative marker placement across datasets or trials or about the amplitude of movements
compared to each other was retained. The only information from the trials is how a marker moves
relative to its maximum and minimum position during the stride. We found that the model could
still recognized characteristics such as the reduced plantarflexion at initial contact in the Dorschky
dataset or the potentially different GRF threshold at the beginning of the gait cycle in the Lencioni
dataset. It is, however, difficult for this WF to determine the origins of what the model learned.
Nevertheless, the knowledge of high-contribution features can be beneficial for subsequent tasks
even if it is not completely known why these features contributed more than others.

The PC analysis revealed that for WF1 and WF3, the learned characteristics were consistent
for trials of the same dataset, even across folds, and differed between trials of different datasets.
For WF2, there was more of an overlap between the Dorschky and Lencioni datasets, which is in
accordance with the decreased prediction accuracy. The confusion matrices show that in addition,
many trials of the Horst and Moissenet datasets were confounded, which is not represented in the
scatter plot. However, the two axes only represent around 67% of the explained variance, and these
datasets have overlaps in another dimension that is not depicted. For WF2, it is also noticeable that
trials of the same dataset are in some cases again distributed into smaller clusters. This supports
the theory that each dataset had more than one characteristic which was learned by the model.

One reason why we chose LRP as the explainable ML algorithm and an MLP with one hidden
layer as our network architecture was to align with other biomechanical studies with the same
input data type [25, 28]. However, LRP is also highly efficient compared to other explainable ML
techniques [27]. In our case, the latency of a single backward pass was around 8 ms on an NVIDIA
GeForce RTX 2080 Ti GPU, which allowed for a fast evaluation. The simple MLP model contributed
to the computational efficiency of our approach, even with varying numbers of hidden neurons. The
floating point operations (FLOPs) of the network scaled linearly with the hidden neurons and
reached a maximum of around 2,590k FLOPs for the largest considered network. This is comparably
small relative to modern computing capabilities, underscoring the scalability and efficiency of our
network’s design. Another aspect that highlights the scalability of our approach is that during
training, multiple numbers of hidden neurons could achieve a comparable validation loss. Despite
the higher complexity, we additionally tested a deeper MLP architecture with two hidden layers.
However, the prediction results exhibited minimal change, with a deviation of 1.4 percentage points
for WF2 and feature-wise scaling and a maximum deviation of 0.2 percentage points for all other
configurations. Therefore, we refrained from a more extensive analysis of deeper networks.

Normalizing all variables to the participants’ height or weight during preprocessing ensured that
our experiment was not biased by variations in anthropometric characteristics between datasets.
Furthermore, we ensured that the model did not learn the unique gait pattern of an individual by
testing only on data from persons that were not used for training.

To validate our classification approach, we conducted a verification experiment by selecting data
solely from a single study, randomly assigning labels, and training the model to predict these labels.
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As anticipated, the results demonstrated a low accuracy of approximately 22%, which is compa-
rable to random guessing. This outcome confirmed the effectiveness of our classification model
and the presence of unique dataset characteristics. To validate the faithfulness of the predicted
relevancies, we reran the experiment while omitting high-contribution markers or features, which
should lead to a decreased prediction accuracy. When we omitted the knee markers, which had
shown to be most decisive for the Dorschky dataset in WF1, the recall for this dataset decreased
from 90.2% to 80.8%. In contrast, omitting non-contribution markers of a dataset had the opposite
effect. For instance, excluding the trochanter markers in WF1 increased the recall for the Dorschky
dataset to 95.1%. Additionally, when we masked the 10% of features with the highest importance
score of each trial [2, 41], we observed a drop in accuracy for all configurations, with a maxi-
mum of 20.1 percentage points for WF2 and feature-wise scaling. This supports the effectiveness
of LRP.

The structure in which the data was provided was quite heterogeneous. Data were stored not
only in different file formats but also in folder structures, coordinate systems, marker names,
and sampling frequencies, which varied between studies. Preprocessing was necessary to make
the data comparable. Assessing every dataset individually is however time-consuming, which
might hinder researchers from using data from multiple studies. Having a standardized way
of storing and providing motion capture data would facilitate access and encourage the use of
open-source data.

For the study, we had to virtually reconstruct some markers for the Horst and the Lencioni
dataset using inverse kinematics, which might introduce a small error. However, when we ran
the experiment without these markers, we observed similarly high accuracies, showing that our
procedure did not introduce the dataset differences. Furthermore, our study was restricted to a core
set of eleven markers. Future work should include a larger, full-body markerset. With this, it could,
for example, be investigated which anatomical areas (e.g., upper or lower body) contribute most
to the dataset bias. We performed our study on marker and GRF data, as it is the first and most
basic output from motion capture experiments. Future studies should explore how the prediction
accuracy changes when the classification is done based on the kinematics and kinetics of walking.
However, other variations could be introduced when different processing methods or models are
used for the computation. It would also be interesting to investigate which dataset differences
are derivable from features gained from musculoskeletal simulations, such as muscle activation
patterns or joint forces.

5 Conclusion
We showed that a machine learning model was able to predict the original data source from marker
and GRF trajectories of overground walking when we combined data from different studies, from
which we conclude that there are detectable differences between similar datasets from different
sources. We presented a comparison between different scaling methods and pooling WFs and
showed that the pooling WF had a higher influence on the prediction accuracy than the scaling
technique and that scaling prior to pooling should be favored. However, none of the methods could
fully remove the dataset bias. We applied LRP to understand how the model recognized that a trial
stemmed from a specific dataset and to determine the most influential differences. We found that
there was not one single factor that differed between all datasets, but that instead, every dataset had
its unique characteristics that stemmed from factors like marker placement or experimental design.
Furthermore, the learned characteristics differed between the scaling and pooling approaches. With
our study, we wanted to raise awareness about differences in motion capture datasets. Combining
datasets has many advantages, but we recommend keeping in mind that dataset bias exists and
that this might influence the results.
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