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Abstract 

With the cost/yield-ratio of drug development becoming increasingly unfavourable, recent work has explored 
machine learning to accelerate early stages of the development process. Given the current success of deep genera-
tive models across domains, we here investigated their application to the property-based proposal of new small 
molecules for drug development. Specifically, we trained a latent diffusion model—DrugDiff—paired with predictor 
guidance to generate novel compounds with a variety of desired molecular properties. The architecture was designed 
to be highly flexible and easily adaptable to future scenarios. Our experiments showed successful generation 
of unique, diverse and novel small molecules with targeted properties. The code is available at https:// github. com/ 
Marie Oestr eich/ DrugD iff.

Scientific Contribution  This work expands the use of generative modelling in the field of drug development 
from previously introduced models for proteins and RNA to the here presented application to small molecules. With 
small molecules making up the majority of drugs, but simultaneously being difficult to model due to their elaborate 
chemical rules, this work tackles a new level of difficulty in comparison to sequence-based molecule generation 
as is the case for proteins and RNA. Additionally, the demonstrated framework is highly flexible, allowing easy addi-
tion or removal of considered molecular properties without the need to retrain the model, making it highly adaptable 
to diverse research settings and it shows compelling performance for a wide variety of targeted molecular properties.
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Introdution
The drug development process has become increas-
ingly unsustainable over the last years, with the ratio of 
product yield to development costs becoming more and 
more unfavourable [1–4]. In an attempt to revert this 
trend, we can observe the development of generative 
machine learning models in recent years [5–13]. Particu-
lar advancements have been made recently with diffusion 
models for AI-based protein design [7, 8, 11]. However, 

the drug space, i.e.  the parts of the chemical space har-
vested for drug development, not only comprises pro-
teins. The three dominant chemical subspaces are small 
molecules, proteins and nucleic acids such as RNA . With 
small molecules making up the majority of drugs [14], 
we developed DrugDiff, a diffusion model for the genera-
tion of small molecules (Fig. 1A), to help navigate the vast 
space of potentially drug-like small molecules. Several 
aspects suggested diffusion models as suitable candidates 

Fig. 1 DrugDiff Overview. A schematic of DrugDiff, which uses a diffusion model to generate molecules from Gaussian noise. Both the forward 
and the backward diffusion process are illustrated; B the detailed architecture of DrugDiff, which comprises a VAE (top left) that autoencodes 
one-hot-encoded SELFIES and whose latent space (z) serves as input to the latent diffusion model (top right). The bottom left illustrates molecular 
property predictors that are trained on one-hot encoded SELFIES and then used for guidance during the diffusion steps. The guidance together 
with the detailed architecture of the latent diffusion model is illustrated in the inset (bottom right); C The molecular properties used for guidance
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for this task: (i) their recent successes not only in the 
image but also the protein domain demonstrate their 
potential to model highly complex data; (ii) when design-
ing novel small molecule drugs, it is essential to offer 
guidance towards desired molecular properties during 
the generation process. To maximise utility and applica-
bility in diverse scenarios, the set of properties to guide 
for must be highly flexible. With predictor-based guid-
ance, diffusion models offer guided generation without 
explicit conditional training, introducing the required 
flexibility; (iii) unlike other generative model architec-
tures, diffusion models do multi-step rather than one-
shot generation. This allows gradual guidance towards 
desired properties with the option to correct missteps 
along the way and (iv) they can be combined with vari-
ational autoencoders (VAEs) to form a latent diffusion 
model [15]. Latent diffusion models are not trained on 
the original data space, but instead on a latent representa-
tion stemming from a pre-trained VAE. Latent diffusion 
models are particularly attractive in the context of small 
molecules, to address the often-raised topic of molecule 
representation, because unlike proteins and nucleic acids, 
small molecules are not chains of pre-existing building 
blocks like amino acids or nucleobases that are connected 
in a clearly defined manner. Instead, there are complex 
chemical rules that dictate, for instance, each atom’s 
number of eligible bonds, possible charges or bond angles 
and these rules are difficult to represent. While several 
molecular representations exist [16], many of them are 
either discrete, not unique, or very sparse, whereas a con-
tinuous numeric representation is the preferred input for 
many deep learning models. Latent diffusion models out-
source the task of learning a mapping from the molecu-
lar representation to a continuous latent space to a VAE, 
while the training of the diffusion model itself is focussed 
on modelling its latent distribution. Previous work has 
addressed diffusion models for small molecule genera-
tion, many of these focusing on diffusing three-dimen-
sional (3D) atom coordinates [17–20]. 3D-diffusion 
methodologies for small molecules have demonstrated 
significant utility, particularly in the design of ligands 
tailored to fit into protein binding pockets [18]. How-
ever, this approach necessitates predefined specifications, 
such as the number of atoms, which imposes substantial 
constraints and requires considerable user input. Exist-
ing methods focus primarily on the target pocket [18], 
or they explicitly integrate specific molecular properties 
into the training process [20]. This design choice reduces 
flexibility, because it limits the adaptability of these mod-
els to properties that may not have been anticipated or 
explicitly encoded during development. A 3D-diffusion 
approach proposed by Luo et  al. utilises text prompts 
to guide toward molecules with desired properties [19]. 

Though this introduces flexibility regarding available 
properties, it requires explicit descriptions of the molec-
ular requirements. While some molecular properties can 
be effectively described using text prompts, others are 
more challenging to articulate, particularly spatially com-
plex requirements such as fitting a molecule into a spe-
cific binding pocket. Moreover, this approach inherently 
biases generation toward pre-existing user preconcep-
tions and expectations of molecular design, potentially 
limiting the process from producing unexpected or novel 
compounds. Other work has focused on the use of latent 
diffusion for small molecules, like we are proposing here. 
However, these approaches are primarily designed for the 
optimisation of existing molecules rather than de novo 
generation and do not address scenarios involving multi-
property optimisation [21]. Others employ node-based 
latent representations, again necessitating the predefined 
specification of the number of nodes prior to generation 
[22]. This approach also involves direct conditioning dur-
ing training, which constrains flexibility.

Our proposed model DrugDiff maintains flexibility 
with respect to target properties and minimises required 
user specification prior to generation as for example the 
number of atoms in the generated molecule. It com-
prises three parts (Fig. 1B): (1) A VAE trained on SELF-
IES representations of small molecules [23] from the 
public ZINC250K dataset, which contains approxi-
mately 250,000 small, drug-like and commercially avail-
able molecules from the ZINC database [24, 25]; (2) a 
latent diffusion model trained on the VAE’s latent space 
and (3) a series of molecular property predictors trained 
independently on one-hot encodings of the ZINC250K 
molecules. The diffusion model learns to generate latent 
representations of small molecules by starting from pure 
Gaussian noise and predicting—in a series of diffusion 
steps—small amounts of noise to remove and gradually 
de-noise the latent representation. To guide this diffusion 
process towards desired molecular properties, the latents 
are decoded at every step, the decoded molecules are 
then passed to the pre-trained property predictors and 
the computed loss between desired and actual property is 
back-propagated directly onto the latent space. The latent 
space is then manipulated using the computed gradients 
before entering the next denoising step. We chose this 
method to guide towards molecular properties because 
we decided to explicitly avoid conditional training of the 
diffusion model. The consequence of conditional training 
would be that whenever new properties are to be added in 
future applications, the diffusion model would have to be 
retrained. Not only would that make the model inflexible 
in its direct application to future use cases, but it would 
also render the model very unsustainable. We addressed 
these issues by using predictor guidance. To illustrate the 
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successful generation of small molecules with defined 
molecular features with DrugDiff, we selected a variety of 
molecular properties that are relevant for the mechanism 
of action of drug-like small molecules (Fig. 1C).

Results
Unguided generation of small molecules
Before steering the generation process towards specific 
molecular properties, we first validated that the model 
had correctly learned from its training data distribution. 
To this end, we generated 10,000 molecules with Drug-
Diff without any guidance and additionally sampled the 
same number of molecules from the VAE’s latent space, 
the distribution that our diffusion model was trained to 
learn. Supplementary Fig. 1A shows a random subset of 
the molecules generated with DrugDiff. The molecules 
exhibit diverse structures, featuring various elements, 
ring sizes, bond types and molecular sizes. Supple-
mentary Fig.  1B quantifies DrugDiff’s ability to produce 
unique, novel and chemically diverse molecules. The 
scores are generally high and comparable to that of the 
VAE. The internal diversity score measures how chemi-
cally diverse a set of molecules is on a scale from 0 (not 
diverse) to 1 (very diverse), with a high score of 0.912 
indicating DrugDiff did not only learn subspaces of the 
latent space but covered its full chemical information 
landscape. The high novelty and uniqueness scores show 
that DrugDiff was able to generalise to the underlying 
data distribution and neither suffers from mode collapse 
nor overfitting. We additionally evaluated the VAE and 
DrugDiff using the GuacaMol benchmarking dataset and 
associated Distribution-Learning Benchmarks [26]. To 
this end, we re-trained the VAE on the benchmarking set 
and subsequently re-trained DrugDiff on the new VAE 
latent space. The benchmark evaluation (Suppl. Table 1) 
shows that the results for VAE and DrugDiff are very sim-
ilar, further underlining that DrugDiff is indeed capable 
of fully learning the VAE’s latent space. We subsequently 
investigated in more detail whether DrugDiff could cover 
the full range of various molecular properties as they 
occurred in the training data. Supplementary Fig.  1C 
shows the distribution of 15 properties in the molecules 
generated with the VAE compared to those generated by 
DrugDiff. Those properties are: The topological polar sur-
face area (a measurement for passive transport through 
membranes [27]), synthetic accessibility (a score to esti-
mate how easily a molecule can be synthesised [28]), the 
number of rotatable bonds (single bonds that are not part 
of a ring and that are attached to an atom that is neither 
hydrogen nor terminal [29]), quantitative estimation of 
drug-likeness [30], molar refractivity (a measurement for 
how polarisable a molecule is [31]), molecular weight, the 
number of atoms and heavy atoms in particular, the logP 

(indicates a molecule’s lipophilicity [31]) as well as penal-
ised logP (logP penalised for poor synthetic accessibility 
and large cycles [32]), the number of very small or large 
cycles ( ≤ 4 or ≥ 7 atoms), the number of hydrogen-bond 
donors and -acceptors, the number of cycles of any size, 
and formal charge. For all these properties, the property 
distributions of the molecules generated by DrugDiff and 
those randomly sampled from the latent space are highly 
overlapping.

In summary, these results illustrate that DrugDiff 
learned to cover the full distribution of the training 
data, and without guidance towards target properties 
it is capable of generating novel, unique and chemically 
diverse small molecules, demonstrating to good generali-
sation to the data space.

Single‑property guidance
For a model to truly facilitate drug development by pro-
posing novel small molecules, it must be able to gener-
ate such molecules under provided property constraints. 
While unconditional generation with subsequent filter-
ing for molecular properties is theoretically an option, 
the lack in targeted generation typically results in the 
loss of most generated molecules after filtering. Such an 
approach would require a much larger number of mol-
ecules to be generated to account for the filter loss and 
molecules with property values residing at the tails of 
their distributions will be underrepresented. Actively 
guiding the generative process towards a desired prop-
erty is therefore important to maximise the yield of mol-
ecules in the acceptable property range. Accordingly, we 
investigated DrugDiff’s ability to respond to guidance by 
a property predictor (for details, see methods). For each 
property, we first generated 10,000 molecules without 
guidance to use their property distribution as a point of 
reference. We then introduced guidance to the genera-
tion process for both directions, i.e.  to increase and to 
decrease the property. To further illustrate the respon-
siveness of DrugDiff to the guidance signal, we used seven 
different guidance strengths when guiding towards an 
increased or decreased property value, generating 10,000 
molecules in each case. Guidance strength refers to the 
factor by which the predictor loss is amplified and guid-
ance strength of zero represents generation without guid-
ance. Figure 2 illustrates the property distributions of the 
generated molecules at different guidance strengths and 
for different molecular properties. The properties that 
were investigated here are (from left to right and top to 
bottom): logP, synthetic accessibility, quantitative estima-
tion of drug-likeness, penalised logP, molecular weight, 
molar refractivity, number of cycles (i.e. rings), num-
ber of hydrogen bond donors, formal charge, number 
of rotatable bonds, number of hydrogen bond acceptors 
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Fig. 2 Generated Ligands for ESR1. Depicted are the top 5 potential ligands generated with DrugDiff for the Human Estrogen Receptor (ESR1) 
based on their estimated free binding energy to the target. For each ligand, the SMILES and the free binding energy in kcal/mol estimated 
with AutoDock-GPU is given
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and the topological polar surface area. For continuous-
valued properties, clear gradual shifts in density can 
be observed for increasing guidance strengths in both 
directions. Discrete properties are illustrated as stacked 
bar plots, with lower and higher property values clearly 
enriched for strong guidance to decrease and increase 
the property. A random molecule was selected and dis-
played for each set of molecules generated with the 
strongest guidance strength in both directions, addition-
ally visualising the observed trends on concrete exam-
ples. For instance, when increasing the logP, i.e. guiding 
the generation towards more lipophilic molecules, the 
randomly selected molecule exclusively comprises car-
bon and hydrogen, whereas the molecule picked from the 
distribution with guidance toward low logP also includes 
several oxygen and nitrogen atoms as well as charges. 
When guiding for high and low numbers of rings, the 
randomly selected molecules contain six and zero rings, 
respectively. In addition to the evident response to the 
provided property guidance, also some anticipated con-
founders between properties become clear. For instance, 
increasing the number of rotatable bonds expectedly 
results in a general increase in the molecules’ size. For 
multi-conditional setups such implicit control over other 
properties should be considered to optimise the predic-
tor panel in terms of fewer predictors to cover the desired 
set of properties. To compare optimisation performance 
to other state-of-the-art (SOTA) generative models, we 
followed the extensive comparison provided by [33]. As 
show in supplementary Table 2, while DrugDiff is on par 
with other SOTA models, ranking in the synthetic acces-
sibility score is better than that of the QED score.

In addition to the properties described above, another 
common goal during drug development is the generation 
of new ligands for a selected target protein. We thus addi-
tionally investigated DrugDiff’s ability to generate ligands 
with low estimated free binding energy using the Human 
Estrogen Receptor ESR1 as a target. ESR1 is a well-stud-
ied receptor known for its involvement in breast cancer 

and therefore representing a relevant target. Details on 
training the predictor used for ESR1 free binding energy 
used for guidance during this experiment can be found 
in the methods section. We generated 50,000 molecules 
without guidance and again for three different guidance 
strengths to reduce the property. We then docked the 
generated molecules to the target using AutoDock-GPU 
[34] and observed successful guidance [Suppl. Figure  2 
A]. After filtering the generated molecules for drug-
like properties ( QED >= 0.6 and no cycles with < 4 or 
> 6 atoms), we selected the top 5 with respect to lowest 
estimated free binding energy [Fig.  3]. These originated 
from guiding with strength 150 (top-1 to −  4) and 100 
(top-5). Their estimated free binding energies range from 
−  11.05  kcal/mol to −  10.09  kcal/mol and are therefore 
much stronger predicted binders than the known antago-
nist Methylpiperidinopyrazole (MPP, −  4.67  kcal/mol). 
The site to which the generated ligands bind is the same 
as where MPP binds [Suppl. Figure 2 B].

Multi‑property guidance
During drug development, it is often of particular inter-
est to not only modify a single molecular property, but 
instead manipulate multiple properties in parallel. This 
task may include increasing or decreasing the different 
properties together or steering their values into oppos-
ing directions, reducing one while increasing another. We 
therefore next investigated DrugDiff’s ability to accom-
modate signals of several property predictors during the 
generation process for the purpose of multi-property 
guidance. Specifically, we considered the logP as well as 
the number of heavy atoms and therefore the overall size 
of the molecules. We considered four scenarios: (1) low 
logP and low number of atoms, (2) high logP and low 
number of atoms, (3) low logP and high number of atoms 
and (4) high logP and high number of atoms. For each 
scenario we generated 10,000 molecules. As can be seen 
in Fig. 4A, the density of molecules generated in scenario 
1 (teal) is indeed highest in regions of low logP and low 

Fig. 3 Single-Property Guidance. Shown are the distributions of various molecular properties in a set of 10,000 generated molecules when guiding 
the generation process with different guidance strengths. A guidance strength of zero equates to unguided generation, positive guidance 
strengths intend to shift the distribution towards higher values and negative guidance strengths towards lower values. Vertical lines represent 
the mean property value for each guidance strength. For illustration purposes, a generated molecule has been selected at random for strong 
positive and strong negative guidance and plotted alongside the distribution
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number of atoms. Similarly, molecules generated in sce-
nario 2 (orange) show much higher, positive logP values 
than those in scenario 1, while their number of atoms 
remains low. While in scenario 4 (green), a small subset is 
mislocated at low number of atoms the majority of mol-
ecules indeed have both high logP and number of atoms. 
Finally, scenario 3 (blue)—low logP and high number of 
atoms—was the hardest for the model to realise. While 
there is a population that fulfils these conditions, the 
large majority is located at lower heavy atom counts. 
Figure  4B shows a principal component analysis (PCA) 
with the first two principal components (PCs) displayed 
for the molecules generated in the different scenarios. 
The PCA was computed on the molecules’ MACCS fin-
gerprints (rdkit v2022.09.5), which indicate the presence 
of predefined substructures in a molecule. Clear spatial 
separation can be observed between the molecules gen-
erated for the different scenarios, with PC1 separating 
lipophilic from hydrophilic molecules and PC2 separat-
ing small from large.

Discussion
In this work, we have introduced a latent diffusion model 
with property guidance for the generation of novel small 
molecules with desired target properties. Existing gener-
ative models for small molecules are rigid in their design 
and do not allow easy adaptation to different use cases. 
This particularly concerns the way molecular proper-
ties are included in the model design. While the majority 
of works include them as conditions during the train-
ing process, we decided against this approach since it 
requires retraining of the entire model whenever proper-
ties are to be exchanged or added. Instead, DrugDiff uti-
lises predictor guidance, where only chemical property 
predictors need to be trained and plugged in to include 
additional properties, but the generative model–which 

is much more expensive in terms of training resources 
than a predictor – does not require retraining. Further, 
by using a latent diffusion model, the VAE can be easily 
replaced in the framework for one that handles a differ-
ent modality than SELFIES, while the overall setup of 
the diffusion model and its training procedure remain 
unchanged. The conducted experiments clearly demon-
strate that DrugDiff (i) was able to learn the breadth of 
its training distribution, (ii) can distinctly manipulate the 
molecular properties of molecules during the generation 
process, including complex properties such as the free 
binding energy to a target protein, and (iii) is capable to 
also expand this to a multi-property setting. In the con-
text of multi-property guidance, it is important to high-
light that the simultaneously applied properties must be 
reasonable. As could be seen on the example of decreas-
ing logP—i.e. increasing hydrophilicity—and at the same 
time increasing the number of heavy atoms—i.e. making 
the molecules larger—,it was difficult to produce a large 
population of molecules that fulfilled both criteria. Given 
that large organic substances are predominantly made up 
of a lipophilic hydro-carbon backbone, difficulties in cre-
ating large organic molecules with very low logP are to be 
expected. Hence, when using multi-property guidance, 
the desired conditions must be chosen to fit realistic sce-
narios in order to ensure a high yield.

When comparing property optimisation to other SOTA 
models, DrugDiff’s performance was comparable. The 
reason why the synthetic accessibility optimisation was 
more successful than the drug likeness is suspected to be 
the quality of the property predictor used: While the SA 
predictor had an r-value of 0.97 between target- and pre-
diction-values on a hold-out test set, the QED predictor 
achieved an r-value of 0.83. Hyperparameter optimisa-
tion of this predictor may improve its prediction accu-
racy and would be expected to improve the optimisation 

Fig. 4 Multi-Property Guidance. A Shown are the distributions of molecules in terms of logP and the number of heavy atoms generated with dual 
guidance in four different scenarios: high logP and low number of atoms (orange), low logP and low number of atoms (teal), high logP and high 
number of atoms (green), low logP and high number of atoms (blue). For each distribution, a molecule was picked at random and illustrated 
alongside it; B Shown are the first two principal components of a PCA conducted on MACCS fingerprints of the molecules from the four 
aforementioned scenarios. The colour-coding corresponds to that in A 
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success. Given that the predictors serve as experts to the 
diffusion model which it consults for feedback during 
generation, predictor performance is expected to impact 
property optimisation performance.

In summary, DrugDiff is a diffusion model for the gen-
eration of small molecules with desired target proper-
ties, which was built in a highly flexible framework. The 
modular architecture allows high customisability, allow-
ing the exchange of the VAE including the molecular 
representations it receives, as well as the properties used 
for guidance, making it easily adaptable to diverse appli-
cation scenarios while minimising the required retrain-
ing of the model. Future expansions should include more 
complex properties, such as binding selectivity or sys-
temic biological effects. Another future direction is train-
ing on much larger datasets to cover a vaster chemical 
space. While good results could already be achieved by 
training on the relatively small training set ZINC250K, 
more training data can be expected to further push the 
performance. Since the diffusion model learns from the 
VAE’s latent space, latent space quality is instrumental for 
the diffusion model’s success. Optimising the VAE with 
respect to the representation of chemistry in the latent 
space can therefore be expected to further improve per-
formance. Additionally, a common task in drug devel-
opment pipelines is substructure optimisation. Here, a 
substructure is provided as a starting point and modified 
to improve selected molecular properties. Incorporating 
this into the DrugDiff framework will add another layer 
of utility. Lastly, an end-to-end experiment starting with 
in silico generation of leads with DrugDiff, followed by 
synthesis and in vitro and/or in vivo evaluation will give 
insight into the exact speed-up of the development pro-
cess offered by the model.

Methods
The model
The model constitutes three parts, a variational autoen-
coder that maps SELFIES onto a latent representation, 
the diffusion model that is trained to generate such mol-
ecule latents and a collection of property-predictors that 
are used to guide the diffusion process.

VAE
Variational Autoencoders [35] comprise two models, 
an encoder and a decoder. The encoder g(x) = z is 
used to embed higher-dimensional data onto a contin-
uous-valued latent space of typically smaller size. The 
decoder f (z) = x′ ≈ x is trained to revert the embed-
ding back to the original input. The VAE used for the 
embedding of molecules for further processing by the 
diffusion model was taken from Eckmann et  al. [23]. 

The model was pre-trained on one-hot encodings of 
SELFIES from the ZINC250K dataset, a subset of the 
ZINC database [24, 25, 36], comprising approximately 
250,000 small molecules that fulfil the Lipinski Rule of 
5 [37]. The model utilises a latent size of 1024. Train-
ing the VAE was done following the steps described in 
the repository accompanying the paper [23].

Diffusion model
Our diffusion model is a latent diffusion model based 
on the implementation by Rombach et  al. [15]. More 
precisely, the underlying model architecture is a denois-
ing diffusion probabilistic model (DDPM) [38] with 
a linear layer, three fully connected residual blocks, a 
layer norm and another linear layer. Timesteps are 
embedded and provided to the fully connected residual 
blocks via feature-wise linear modulation layers.

DDPMs are trained to revert a Markov chain of nois-
ing steps, the diffusion process. This diffusion process 
incrementally adds Gaussian noise to a sample over 
0, ...,T  timesteps such that a sample x0 from the original 
domain is transitioned into xT  , which is Gaussian noise 
for large T  . The noising step at t is conditioned on the 
noised sample xt−1 of the previous timestep [38]

where t is taken from a pre-defined, time-dependent 
noising schedule. In this formulation, the computation of 
xt first requires the computation of all previous timesteps 
x0:t−1 , however, applying the reparameterization trick 
[35, 38], it can be directly conditioned on x0 with

where αt = 1− βt and αt = �t
i=1αi . The noising sched-

ule used here is linear. The DDPM is trained to reverse 
this diffusion process and therefore generate a sample 
from q(xt−1|xt) . Stepwise application for t = T , ..., 0 
then allows the generation of samples from the original 
domain, x0 ∼ q(x0) , starting from Gaussian noise xT . In 
this work, we are rephrasing the sampling step as a noise 
predictor that predicts t rather than xt−1 directly, as pro-
posed by Ho et al.[38], which is trained using

for 0 < t ≤ T  . Note that 
√
αtx0 +

√
1− αtǫ = xt  after 

the reparameterization trick. The latent diffusion model 
was trained for 100 epochs on the VAE-embeddings of 
the ZINC250K data.

q(xt |xt−1) = N
(

xt;
√

1− βtxt−1,βt I
)

q(xt |x0) = N
(

xt;
√
αtx0,

√

1− αt I
)

Lt = Et,x0,ǫ

[

||ǫ − ǫθ

(√
αtx0 +

√

1− αtǫ, t
)

||2
]
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Property predictors
We use a series of property predictors to guide the dif-
fusion model during sampling. The property predictors 
followed the implementation of Eckmann et al. [23] and 
were trained on the ZINC250K dataset. Drug-likeness 
(QED), logP, molecular weight, molar refractivity, topo-
logical polar surface area, number of H-bond acceptors/-
donors, number of rotatable bonds, number of atoms, 
formal charge and number of rings were all computed 
using rdkit (v2022.09.5). The synthetic accessibility was 
calculated using the sascorer.py from [23] which is based 
on [28]. The p-logP was computed as follows:

where nlargerings is the number of rings with more than 
6 atoms. The free binding energies to the protein target 
ESR1 were estimated using AutoDock-GPU version: v1.6-
release [34]. With 5 docking runs per molecule and using 
the energy of the best binding pose as the target value. 
The maps used for docking were in accordance with Eck-
mann et al. [23]. All predictors were trained on decoded 
one-hot encodings of the molecules. During guidance, 
the noisy latents were first decoded by the VAE’s decoder 
and then passed to the property predictors. We then 
computed the gradients based on the predicted proper-
ties and used them to manipulate the predicted noise ǫt.

Evaluation metrics
To evaluate the molecules generated by our latent diffu-
sion model, we used three metrics: (1) novelty, the frac-
tion of generated molecules that are not found in the 
training set, to ensure that the model does not simply 
learn to copy the molecules; (2) uniqueness, the percent-
age of unique molecules among all generated ones; (3) 
internal diversity, a metric implemented in the molsets 
library that assesses how chemically diverse the gener-
ated molecules are. With this metric we can detect mode 
collapse, i.e.  the model producing only a set of highly 
similar molecules to satisfy a given property.
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