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Key points 

 

Question: Can we improve the diagnosis of epilepsy-causing focal cortical dysplasias using 

state-of-the-art AI? 

Findings: In this diagnostic study of 703 patients with epilepsy due to focal cortical dysplasia 

(FCD), a context-aware graph neural network (MELD Graph) detected 64% of lesions previously 

missed by radiologists, with a high positive predictive value. Interpretable reports facilitate clinical 

integration by characterizing lesion location, size and morphology alongside the algorithm’s 

prediction confidence. 

Meaning: This publicly available interpretable algorithm, validated on a large cohort, advances 

the use of AI-based radiological adjuncts for early detection and neurosurgical planning in patients 

with focal epilepsy due to FCD. 

 

Abstract 

 

Importance: A leading cause of surgically remediable, drug-resistant focal epilepsy is focal 

cortical dysplasia (FCD). FCD is challenging to visualize and often considered “MRI-negative”. 

Existing automated methods for FCD detection are limited by high numbers of false positive 

predictions, hampering their clinical utility. 

Objective: To evaluate the efficacy and interpretability of graph neural networks in automatically 

detecting FCD lesions on MRI scans. 

Design: In this diagnostic study, retrospective MRI data were collated from 23 epilepsy centers 

worldwide between 2018 and 2022 as part of the MELD Project, and analyzed in 2023. Data from 

20 centers were split equally into training and testing cohorts, with data from three centers 



withheld for site-independent testing. A graph neural network (MELD Graph) was trained to 

identify FCD on surface-based features. Network performance was compared to an existing 

algorithm. Feature analysis, saliencies and confidence scores were used to interpret network 

predictions. 

Setting: Multicentre 

Participants: 34 surface-based MRI features and manual lesion masks collated from a 

convenience sample of 1185 participants, 703 patients with FCD-related epilepsy and 482 

controls. 57 participants were excluded during MRI quality control. 

Main Outcome(s) and Measure(s): Sensitivity, specificity and positive predictive value 

(PPV) of automatically identified lesions. 

Results: In the test dataset, MELD Graph had a sensitivity of 81.6% in histopathologically-

confirmed patients seizure-free one year after surgery and 63.7% in MRI-negative patients 

with FCD. The PPV of putative lesions from the 260 patients in the test dataset (125 [48%] 

female, 18.0 [IQR 11.0-29.0] years) was 67% (70% sensitivity, 60% specificity), compared 

to 39% (67% sensitivity, 54% specificity) using an existing, baseline algorithm. In the 

independent test cohort (116 patients, 62 [53%] female, 22.5 [IQR 13.5-27.5] years), the 

PPV was 76% (72% sensitivity, 56% specificity), compared to 46% (77% sensitivity, 47% 

specificity) using the baseline algorithm. Interpretable reports characterize lesion location, 

size, confidence and salient features. 

Conclusions and Relevance: MELD Graph represents a state-of-the-art, openly available 

and interpretable tool for FCD detection on MRI scans, with significant improvements in 

positive predictive value. Its clinical implementation holds promise for early diagnosis and 

improved management of focal epilepsy, potentially leading to better patient outcomes. 



Introduction 

Focal cortical dysplasia (FCD) is a leading cause of drug-resistant focal epilepsy in children and 

adults1. It is surgically remediable, with postoperative seizure freedom rates of around 65%2, but 

lesions are often considered MRI-negative, and post-surgical outcome is highly affected by early 

and accurate detection of lesions on MRI3,4.  

 

Machine learning methods to detect FCD on MRI have improved in recent years5–7. However, 

clinical utility of these approaches is hampered by the multiple putative lesions identified, resulting 

in a low positive predictive value for each being a true FCD8. Previous approaches have 

addressed constraints on sample sizes and computational memory by subdividing MRI scans into 

smaller independent “patches”5–7. This limits their capacity to prioritize across disparate putative 

abnormalities.  

 

Here, through the Multicentre Epilepsy Lesion Detection (MELD) project, we leveraged advances 

in deep learning9–14 to train a graph neural network to segment FCD on a large multicentre MRI 

cohort of patients (Figure 1). The novel MELD Graph algorithm, which incorporates whole-brain 

context to improve specificity and accuracy, was directly compared against our previously 

published patch-based Multi-Layer Perceptron5, including on a multicentre independent test 

cohort. We aimed to create a state-of-the-art, clinically translatable, open-access AI algorithm for 

the automated detection of FCDs. 

 

 

 

 

 

https://paperpile.com/c/dpXlKG/mluOX
https://paperpile.com/c/dpXlKG/ZSIPA
https://paperpile.com/c/dpXlKG/FyTrC+NLYqN
https://paperpile.com/c/dpXlKG/0mRUA+u5slZ+Rt5rD
https://paperpile.com/c/dpXlKG/ag8BC
https://paperpile.com/c/dpXlKG/Rt5rD+u5slZ+0mRUA
https://paperpile.com/c/dpXlKG/DhU0c+Oyrqn+5MPgZ+K9AMV+22eH6+sQzEE
https://paperpile.com/c/dpXlKG/0mRUA


Methods 

 

Dataset 

The MELD project used an MRI dataset of 1185 participants collated from 23 international 

epilepsy surgery centers (Figure 1, eTable1). Each center received local ethical approval to 

retrieve and anonymise retrospective, routinely available clinical data, without requiring explicit 

consent. Standards for Reporting of Diagnostic Accuracy (STARD) guidelines were followed.  

 

Patients were included if they had a radiological or histopathological diagnosis of FCD. Controls 

were included if scanned for research purposes or for headache, if they had no other neurological 

conditions and a normal MRI. For full details on demographic and clinical data and MRI data 

processing see eMethods. 

 

3D T1-weighted (all participants) and T2-weighted Fluid-Attenuated Inversion Recovery (FLAIR) 

(where available) MR images were processed using FreeSurfer15 and 11 features were extracted: 

cortical thickness, gray-white matter intensity contrast, intrinsic curvature, sulcal depth, curvature 

and FLAIR intensity sampled at six intra- and sub-cortical depths. 

 

3D regions of interest (ROIs) for each FCD were manually delineated on the MRI16. If there was 

no visible lesion (“MRI-negative”), resection cavities on post-surgical scans were used to guide 

masking. ROIs were intersected with FreeSurfer surfaces and the features and ROIs were 

registered to a bilaterally symmetrical template17 (Figure 1A). Quality control involved outlier 

identification and removal of patients with missing lesion masks18. 

 

The main cohort, comprising data from 20 centers, was randomly split 50:50 into training and 

testing cohorts (Table 1), matching the randomisation of a previous study5 to enable direct 

https://www.equator-network.org/reporting-guidelines/stard/
https://paperpile.com/c/dpXlKG/K3rGe
https://paperpile.com/c/dpXlKG/QRiei
https://paperpile.com/c/dpXlKG/kiLex
https://paperpile.com/c/dpXlKG/DpnMW
https://paperpile.com/c/dpXlKG/0mRUA


comparison. Each center had participants in both training and testing cohorts. An additional 

independent test cohort included three additional centers.  

 

Surface-based features were preprocessed into: raw features, control-normalized features and 

feature asymmetries (eMethods). An additional feature was cortical thickness with curvature 

regressed out19. This resulted in 34 input features per participant calculated at 163,842 cortical 

surface vertices. MRI features vary depending on the scanner, worsening algorithm performance 

on untested scanners. To adjust for scanner effects, extracted features in the independent test 

cohorts underwent inter-site harmonization to the training cohort using distributedComBat20. To 

estimate the number of subjects needed to generate consistent harmonization parameters, a 

series of subsampling experiments was performed (eMethods). Model performance on the 

independent test cohorts was evaluated with and without harmonization.  

 

MELD Graph for FCD Lesion Segmentation 

Previous multicentre-validated FCD detection tools restricted model inputs to small 1cm3 patches 

of cortex. Deep learning models, which have the capacity to extract increasingly abstract, complex 

and large-scale features, have revolutionized biomedical image segmentation. nnU-Net13, a 

convolutional neural network, achieves state-of-the-art performance across a range of biomedical 

segmentation tasks, but is typically applied to regular 2D/3D grids with translation-invariant 

convolutions. To address the irregularity of folded cortical surfaces, we developed MELD Graph, 

a graph-based nnU-Net implementation (Figure 1B, eFigure 1, eMethods)11,13,21. MELD Graph 

processes hemispheres with 34 features and 163,842 vertices, predicting lesion segmentations, 

with neighbor-connected lesional vertices grouped into single “clusters”. 

 

 

 

https://paperpile.com/c/dpXlKG/rLQWd
https://paperpile.com/c/dpXlKG/l9BTI
https://paperpile.com/c/dpXlKG/22eH6
https://paperpile.com/c/dpXlKG/3POgZ+22eH6+5MPgZ


Evaluation of the MELD Graph model 

The MELD Graph model and a baseline, previously published MELD Multi Layer Perceptron 

(MELD MLP) model5, were evaluated on the test and independent test cohorts (Figure 1C). The 

following metrics were calculated: sensitivity, specificity, positive predictive value (PPV) and 

intersection over union (IoU) - a metric for segmentation accuracy (eMethods). MELD Graph 

lesion detection rates, where a predicted lesion cluster overlapped with (or was within 20mm of) 

the manual lesion mask, in the test dataset were stratified by demographic factors (eMethods). 

Confidence intervals and significant differences between models and demographic factors 

(p<0.05) were calculated using bootstrapping and permutation-based null models (eMethods). 

As an additional measure of model specificity, the number of false positive clusters (defined as 

predictions beyond 2cm of a lesion mask) in patients and controls was calculated.  

MELD Graph performances were compared to a similar model but trained solely on a subset of 

patients with MRI-negative FCD confirmed histopathologically and controls, to establish whether 

selective training improved performance on these patients compared to the larger, heterogeneous 

dataset (eMethods).  

 

Interpretable AI 

For all predicted lesional vertices, integrated gradients saliency was computed22, identifying the 

relative importance of input variables for a given prediction. Saliency can be averaged across 

input features to identify the most salient vertices within a lesion, or averaged across lesional 

vertices to identify which input features were most important to the model’s prediction (eMethods). 

To highlight salient regions, the 20% most salient lesional vertices of each predicted lesion were 

identified. For these salient vertices, we computed the: prediction confidence (max model 

prediction score), mean lesional feature values and mean feature salience. The calibration of 

confidence scores was assessed using Expected Calibration Error.  

 

https://paperpile.com/c/dpXlKG/0mRUA
https://paperpile.com/c/dpXlKG/WO4WW


To characterize the true positive and false positive predictions, as well as the missed FCD lesions 

(false negatives), mean feature values for these regions were calculated. Detected FCDs were 

characterized according to their histological subtypes. Additionally, we characterized model 

performance (sensitivity and PPV) according to lesion size and lesion location (eMethods). 

 

Individual reports 

The trained model was incorporated into a pipeline that takes input MRI data (Figure 1D, eFigure 

2), performs feature extraction and preprocessing, runs inference on the MELD Graph model, and 

generates an interpretable report (Figure 1E, eFigure 2). The report details the locations of 

predicted lesions (and the 20% most salient vertices) on the cortical surface and native T1 as well 

as model confidence in lesional predictions, lesional features and the associated saliencies of 

features. 

 

Code and data availability 

All code is available to download from www.github.com/MELDProject/meld_graph. Lesion masks 

in template space are available from https://github.com/MELDProject/pool. Access to the MELD 

surface-based FCD dataset is via request. 

 

 

 

Results 

Participants 

57 participants were removed during quality control (37 patients with missing lesion masks, 13 

outliers and 7 participants where FreeSurfer failed). Data from 20 centers were split into training 

(278 patients, 180 controls) and testing (260 patients, 193 controls) cohorts (eTable 1). Subjects 

http://www.github.com/MELDProject/pool
https://github.com/MELDProject/pool


from three centers were withheld as an independent test cohort (116 patients, 101 controls). 

Lesion masks for patients previously considered “MRI-negative” were significantly smaller 

(median 29% smaller) than visible lesions (Mann Whitney U: Z=-2.07, p<0.04).  

 

Model evaluation 

The performance of the MELD Graph model compared to the baseline multi-layer perceptron 

(MELD MLP) on the test dataset is presented in Table 1. MELD Graph had significantly higher 

PPV than the baseline MELD MLP model on test (67% vs 39%) and independent (76% vs 46%) 

test cohorts, primarily due to a reduction in the number of false positive clusters (Figure 2). On 

the test dataset, MELD Graph had a maximum of three false positive clusters in patients 

(median,[IQR]; 0,[0-1]) and two in controls (0,[0-1]), in comparison to MELD MLP for which 

patients had a maximum of 12 clusters (1,[0-2]), and eight in controls (0,[0-1]) (eTable 2). This 

significant reduction in false positives for MELD Graph was also seen on the independent test 

cohort (eTable 2). In patients whose lesions were detected by both MELD Graph and MELD MLP 

models, the segmentation accuracy, computed as Intersection Over Union, was significantly 

higher using MELD Graph in the test (0.3 vs 0.23, N=160) and independent test (0.36 vs 0.29, 

N=78) cohorts (Table 1). Figure 2 provides examples of individual predictions using the MELD 

Graph and MLP models. MELD Graph predictions do not have additional predictions (false 

positives), and segmentations are smoother and more contiguous. 

 

Performance on the independent test cohort was calculated with and without harmonization 

(eTable 3). Sensitivity remained stable, 72% with and 70% without harmonization, whereas 

specificity dropped from 56% with to 39% without harmonization. Subsampling experiments 

indicate that a minimum of 20 subjects is required to generate reliable harmonization parameters 

(eFigure 3). Moreover, training MELD Graph solely on MRI-negative, histopathologically 

confirmed FCDs, showed a significant drop in the PPV, from 72% to 58% (eTable 4). 



 

Table 2 provides a performance breakdown according to demographic factors. There was a 

63.7% detection rate (51/80) in patients previously reported MRI-negative. MELD Graph detected 

75.4% of 57 Type IIA and 76.3% of the 93 Type IIB lesions. In seizure-free patients with 

histopathologically-confirmed FCDs, 81.6% of lesions were detected. Of note, MELD Graph was 

able to detect 84.6% (11/13) of the particularly subtle FCD Type I lesions. Histopathological 

subgroups had no significant impact on sensitivity. However the histopathologically unconfirmed 

group, combining unoperated patients and operated patients in whom histopathology was either 

unavailable or inconclusive, had lower sensitivity. Lower detection rates in this group might reflect 

uncertainty in their manually-defined masks.   

 

Analysis of detected and missed lesions in the test cohort (eFigure 4) revealed features driving 

the algorithm's prediction of lesional vertices. Overall, lesions were characterized by abnormally 

deep sulci, increased intrinsic curvature and cortical thickness, decreased gray-white matter 

contrast, decreased gray matter FLAIR intensity and increased white matter FLAIR intensity. FCD 

Types 2A and 2B demonstrated pronounced folding and thickness abnormalities, with FCD Type 

2B having the additional distinctive FLAIR hyperintensity in the white matter (transmantle sign). 

In comparison, FCD Type 1 and 3 had more subtle cortical tissue abnormalities. Lesions not 

detected by MELD Graph were characterized by having less abnormal features (p<0.05, eFigure 

4). Model performance was not significantly associated with either lesion size or location (eFigure 

4). In detected clusters in the test cohort, IoU correlated significantly with the confidence score 

(r=0.55, p<0.01), indicating higher segmentation accuracies in higher confidence predictions 

(eFigure 5). 

 

 

 



Interpretable AI models: 

The MELD Graph tool outputs model predictions in native space on the T1w scan, in NIfTI format, 

and an interpretable report, in PDF format, containing predicted lesion locations and associated 

model confidence, as well as characterizing the lesional features and their salience for each 

putative lesion. Figure 3 and eFigure 6 contain example components from individual patient 

reports. Patient 1 has a lesion in the precuneus. MELD Graph was 93% confident in its prediction. 

The lesion, as evident by the feature z-scores, is characterized by blurring of the gray-white matter 

boundary (decreased gray-white contrast), increased cortical thickness and abnormal FLAIR 

signal intensity in the gray matter. Most of these features have high saliency scores indicating 

their importance to the classifier’s prediction. Patients 2-4, are examples of “MRI-negative” 

lesions, not identified by five expert raters23. MELD Graph identified these lesions with 7-45% 

confidence. Interpretable reports for these patients are available at 

www.github.com/MELDProject/meld_graph.  

 

The Expected Calibration Error, which quantifies the discrepancy between MELD Graph’s 

confidence scores and the observed accuracies, was calculated as 0.10 (where 0 represents 

perfect calibration). This indicates that model confidence scores were well-calibrated (eFigure 5).  

 

 

 

Discussion 

MELD Graph is a graph convolutional neural network for automated segmentation of FCD 

that integrates information across whole cortical hemispheres. The model was tested on a large 

dataset of 453 participants (from 20 centers) as well as an independent test cohort of 217 

participants from three additional centers. MELD Graph accurately localized 81.6% of 

histopathologically confirmed FCDs in patients seizure-free one year after surgery. Over the entire 

https://paperpile.com/c/dpXlKG/0quP
http://www.github.com/MELDProject/meld_graph


dataset, MELD Graph accurately localized 70% of the FCDs from the test dataset and 72% from 

the independent test cohort, with a fourfold reduction in the number of false positive clusters and 

a significantly improved PPV over previous approaches. MELD Graph is released as an open-

access tool, that takes input MRI data (a preoperative T1-weighted scan plus an optional FLAIR 

scan) from an epilepsy patient with a suspected FCD, performs feature extraction and processing, 

runs inference using the MELD Graph model, and generates an interpretable report depicting 

lesion location, model confidence, and characterizing lesional features and their salience.  

Automated tools to detect FCDs 

 FCD is the most common histopathological finding in surgical patients with MRI-negative 

epilepsy24,25. In MRI-negative patients, the absence of a confident lesional hypothesis can prohibit 

surgical candidacy and additional noninvasive26 and invasive27 investigations to identify a lesion 

introduce significant delays to surgery. Increased duration of epilepsy is associated with poorer 

outcome and progressive cognitive sequelae2,4. Surgery is curative in around 65% and seizure 

freedom combined with reductions in anti-seizure medications may halt or even reverse 

neuropsychological decline28. The development of tools like MELD Graph which can successfully 

localize FCDs across a range of scanners, ages and subtypes, including detecting 64% of MRI-

negative FCDs, may therefore improve both seizure freedom and developmental outcomes28 

through earlier diagnosis and surgery29. 

Previous models for detecting FCD have been validated on multicentre data5–7, but have 

a recognised propensity to produce multiple false positive predictions in patients8, hampering their 

utility as radiological adjuncts. These models have analyzed limited portions of the brain in 

isolation, either as small patches of surface vertices18,30,31 or voxels6,7. In contrast, the MELD 

Graph model incorporates whole-brain context, leading to multiple improvements: increased 

specificity (Figure 2), heightened sensitivity, especially to subtle FCD Type I lesions (Table 2), 

https://paperpile.com/c/dpXlKG/GpcJ6+BWKjY
https://paperpile.com/c/dpXlKG/ezyJY
https://paperpile.com/c/dpXlKG/qJUCK
https://paperpile.com/c/dpXlKG/ZSIPA+NLYqN
https://paperpile.com/c/dpXlKG/GuvML
https://paperpile.com/c/dpXlKG/GuvML
https://paperpile.com/c/dpXlKG/oCM6c
https://paperpile.com/c/dpXlKG/Rt5rD+u5slZ+0mRUA
https://paperpile.com/c/dpXlKG/ag8BC
https://paperpile.com/c/dpXlKG/DpnMW+38pOt+od3xV
https://paperpile.com/c/dpXlKG/u5slZ+Rt5rD


better accuracy (Table 1), and well-calibrated confidence estimates (eFigure 5). Evaluated on the 

same dataset, MELD Graph produced a maximum of three clusters in patients, whereas the 

MELD MLP model identified up to twelve. For clinical translation, this will reduce the time 

necessary for clinicians to review model outputs and improve confidence in AI radiological 

adjuncts. Future integration of MELD Graph into clinical practice may lead to earlier diagnosis of 

some patients, as well as the detection of subtle lesions in some patients currently considered 

non-lesional. MELD Graph outputs could be considered in conjunction with other investigations 

such as electroencephalography (EEG), magnetoencephalography (MEG), and positron emission 

tomography (PET), or used in the planning of stereoelectroencephalography (sEEG)32,33. This 

may expedite patients’ journeys to epilepsy surgery, increasing the likelihood of seizure freedom2 

as well as cessation of neurocognitive decline28.  

Interpretable models for clinical translation 

 Model interpretability is critical for incorporating AI into radiological review. MELD Graph 

reports (Figure 3 and eFigure 6) highlight lesion location, imaging characteristics, the lesional 

patches that were most salient to the model22 and the model’s confidence in its prediction34. High-

confidence predictions are rarely incorrect, while lower-confidence outputs may highlight subtle 

abnormalities which warrant careful review (eFigure 5).  

MRI-identification and delineation of FCD is often carried out at multiple stages during a 

patient’s journey and the development of lesion detection tools must address these use-cases. 

These include 1) early review of an MRI by a general radiologist at a non-specialist center, 2) 

expert neuroradiological review of a patient referred to a surgical centre35, 3) multidisciplinary 

review at an epilepsy surgery meeting36, 4) neurosurgical planning of sEEG implantation32,33, and 

5) neurosurgical planning of lesion resection or ablation37. By providing confidence estimates for 

each putative lesion, clinicians and researchers using MELD Graph can individually choose a 
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confidence threshold, balancing their need for sensitivity versus specificity. For example, a 

neuroradiologist at a specialist epilepsy surgery center, may choose to review low confidence 

clusters in a complicated “MRI-negative” patient. The interpretable lesion reports alongside 

confidence scores are a step towards clear communication of model outputs to facilitate 

translation. 

Validation of neurotechnology 

One challenge for many promising AI algorithms is that their performance typically drops 

on data from new patients in new settings. Previously unseen MRI scanners, with differing 

sequence parameters resulting in subtly different image contrasts, represent a domain shift from 

the training data distribution. Using multicentre data during training is one mitigation strategy as 

the algorithm is exposed to some of this heterogeneity. However, an essential validation of new 

machine-learning technologies is testing them on data from withheld, independent test sites. 

Here, we demonstrate that MELD Graph maintains performance on unseen data from three 

centers. Optimal specificity on independent test site data was dependent on harmonization of new 

data to the training cohort. However, this harmonization process requires a minimum of 20 scans 

acquired on the same scanner (eFigure 3). Therefore, to facilitate re-use of the algorithm on 

individual MRI scans from patients from new centers, for which such harmonization is not 

possible, a non-harmonization version is provided with documented performance statistics 

(eTable 3). Furthermore, the release of MELD Graph as an open-source tool serves to enable 

independent validation and reuse, including prospective studies to assess whether it accelerates 

diagnosis, alters treatment and ultimately improves outcomes.  

Limitations 

 Surface-based features have a number of advantages including interpretability and the 

ability to share anonymised data for reanalysis38,39. Nevertheless, the use of predetermined 

https://paperpile.com/c/dpXlKG/a9L5p+JuWA6


features limits the potential for the network to learn novel features. Future work, applying deep 

learning to multimodal data, including MRI, PET, MEG and EEG, will enable complex features to 

be learnt that may not be visible or known to neuroradiologists. Finally, MELD Graph has not been 

evaluated on patients with multiple FCDs.  

Conclusions 

 MELD Graph, is a state-of-the-art, openly available, graph convolutional network for FCD 

detection. With improved performance over existing methods, interpretable predictions, model 

confidence scores and individual patient reports, MELD Graph will support the integration of lesion 

detection tools into the radiological workflow. 
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Figures 

Figure 1. Overview of MELD Graph. (A) The MELD FCD dataset contains surface-based MRI 

data and ground truth lesion masks for 703 patients and 482 controls from 23 centers worldwide. 

(B) The MELD Graph U-Net model was trained to recognise patterns of abnormal features and 

their broader hemispheric context, to segment FCD lesions. (C) The model was compared against 

a previously published, and widely reused baseline algorithm - a multilayer perceptron5. MELD 

Graph had a significantly increased positive predictive value driven by a decrease in the number 

of false positive clusters. (D) Images from a new patient with a suspected FCD can be analyzed 

https://paperpile.com/c/dpXlKG/0mRUA


with MELD Graph to generate an interpretable report (E) that displays predicted lesion location, 

size and features, alongside confidence and relative feature importance (salience). 

 

 
Figure 2. Reduction in false positive clusters with MELD Graph. (A) Example classifier 

predictions for four patients using MELD Graph and the baseline multilayer perceptron (MELD 

MLP). Black line = manual lesion mask. Red = classifier predictions. (B)  Box-and-whisker plot 

showing the mean positive predictive value (PPV) and the confidence interval (CI) in the test 

patients detected by both MELD MLP and MELD Graph models (N=161). (C) Box-and-whisker 



plot showing median, interquartile range and outlier numbers of false positive (FPs) clusters 

predicted on patients and controls in the test dataset using MELD Graph compared to MELD 

MLP. Gray lines connect identical subjects between the models.  

 
Figure 3. Examples of interpretable patient reports. MELD Graph outputs for two patients from 

the independent test cohort. Patient 1 is an example of an MRI-positive FCD detected by MELD 

Graph with a high confidence prediction (93%). Patient 2 has a FCD that was not identified by 5 



expert radiologists but detected by MELD Graph with low confidence (7%). (A) Classifier 

predictions (red) and 20% most salient vertices (orange) visualized on brain surfaces of the 

lesional hemisphere and on the T1 volume. (B) Z-scored mean feature values within 20% most 

salient vertices of predicted lesions. Color represents saliency scores. Features driving the 

classifier’s prediction are positive (pink). Features inconsistent with MELD Graph prediction are 

negative (green). (C) T1 and FLAIR coronal sections with a red box indicating the lesional cortex. 

 

  



Tables 

  MELD MLP MELD Graph 

Test dataset 

Sensitivity  

(n=260 patients) 

67%  

(61-73%) 

70% 

(64-75%) 

Specificity  

(n=193 controls) 

54% 

(47-61%) 

60% 

(53-67%) 

PPV  39% 

(35-44%) 

67% 

(62-73%) 

IoU (n=160) 0.23 

(0.22-0.26) 

0.3 

(0.27-0.33) 

Independent test 

cohort 

Sensitivity  

(n=116 patients) 

77% 

(69-84%) 

72% 

(61-78%) 

Specificity  

(n=101 controls) 

47% 

(37-56%) 

56% 

(47-66%) 

PPV  46% 

(40-53%) 

76% 

(61-79%) 

IoU (n=78) 0.29 

(0.25-0.33) 

0.36 

(0.31-0.41) 

 



Table 1. Comparison of the performance of the MELD Graph model to the original Multilayer 

Perceptron (MELD MLP) on the same withheld and independent test cohort derived from three 

centers. Reported are the test results and the bootstrapped 95% confidence intervals. In bold are 

metrics with significantly changed performance (p<0.05) in comparison to MELD MLP. 

 

  % Detected  Patients (n) 

Age group   

 Adult 67.9 131 

 Pediatric 71.3 129 

Sex     

 Female 62.4 125 

 Male 76.3 135 

Ever-reported MRI-negative   

 Visible 72.2 180 

 MRI-negative  63.7 80 

Postoperative seizure freedom  

 Seizure-free 79.2 106 

 Not seizure-free  62.7 51 

Histology   

 FCD I 84.6 13 



 FCD IIA 75.4 57 

 FCD IIB 76.3 93 

 FCD III 75.0 8 

 Not available  56.2 89 

Histology confirmed + Seizure-free   

 True 81.6 98 

 False 62.3 162 

Modality   

 T1w only 67.3 150 

 T1w + FLAIR  72.7 110 

Table 2. MELD Graph performance on the test dataset grouped according to demographic 

factors. FCD detection rate is broken down by age group, sex, MRI status, seizure freedom, 

histology and available MRI modalities. Lesions termed “MRI-negative” were from MRI scans 

reported as non-lesional at some point during the patient’s clinical evaluation.  
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eMethods 

 

Participants 

 

23 international epilepsy centers participated in this study. The inclusion criteria for patients was as follows: 

age over 3 years, 3D preoperative T1-weighted MRI scan (1.5T or 3T) available, radiological diagnosis of 

a single focal cortical dysplasia (FCD) or MRI-negative with histopathological confirmation of a single 

FCD lesion. Exclusion criteria were as follows: previous neurosurgeries, large structural abnormalities in 

addition to the FCD and T1 scans with gadolinium enhancement. The control participants inclusion criteria 

were: age over 3 years, no neurological conditions and availability of a T1-weighted MRI brain scan (1.5 

or 3 T). Patients scanned for headache could be included as controls if they had no other neurological 

conditions and the MRI was normal.  

 

In patients, the following demographic / clinical data were retrieved: age at preoperative scan, sex, age of 

epilepsy onset, duration of epilepsy (time from age of epilepsy onset to age at preoperative scan), ever 

reported MRI-negative and histopathological diagnosis (ILAE three-tiered classification system),1 seizure-

freedom (Engel class I or other) and follow-up time in operated patients. In controls, the following 

demographic variables were collected: age at scan and sex. 

 

The main cohort included data from 20 centers. Using the same randomisation as in a previous study, 

participants in the main cohort were randomly split 50:50 into training and testing cohorts (Table 1). The 

independent test cohort included participants from a further three additional centers. Two of these centers 

were used in our previous work as independent test sites, with the addition of a recent openly available FCD 

dataset2. No participants from these three centers were included in the training cohort. 

 

MRI features  

 

For each participant, 3D T1-weighted (all participants) and FLAIR (where available) MR images were 

processed using FreeSurfer3 and the following 11 surface-based features (cortical thickness, gray-white 

matter intensity contrast, intrinsic curvature, sulcal depth, curvature and FLAIR intensity sampled as 6 

intra- and sub-cortical depths) were extracted (Fig. 1) as per previous work4. Surface-based features were 

registered to a bilaterally symmetrical template, fsaverage_sym, using folding-based registration5. 

 

The following pre-processing steps were performed on the surface-based MRI features: 

1. Smoothing. Surface-based smoothing was performed using a Gaussian kernel of 3mm for all 

features, except for intrinsic curvature where a kernel of 20mm was used.  

2. Intra- and inter-subject normalization. Intra-subject z-scoring of features was performed to 

account for age and sex-related changes. Inter-subject z-scoring by the mean and standard deviation 

of features at each vertex from healthy controls was used to account for inter-regional differences. 

3. Asymmetry calculations. To enhance inter-hemispheric asymmetries, right hemisphere per-vertex 

z-scored feature values were subtracted from left hemisphere values and vice versa. 

Additionally, cortical thickness with curvature regressed out was computed6. 

https://paperpile.com/c/zgBGUc/3xnVq
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The final surface-based feature set consisted of the 11 “smoothed” (Steps 1+2), 11 “normalized” (Steps 

1+2) and 11 “asymmetry” features (Steps 1-3), as well as curvature-regressed cortical thickness - resulting 

in 34 input features.  

 

For data from the independent test sites, an additional preprocessing step, termed “harmonization” was 

included after smoothing (step 1). Data from the independent test sites was harmonized to the cohort used 

to train the model using distributed-ComBat7. 

 

Lesion masking 

 

At each center, for each patient, FCDs were manually drawn on T1w or fluid-attenuated inversion recovery 

(FLAIR) images following a lesion masking protocol8. If there was no visible lesion on MRI (“MRI 

negative”), resection cavities on post-surgical scans were used to assist in the creation of a lesion mask. A 

non-parametric Mann-Whitney U test was used to compare the size of lesion masks (which do not follow 

Gaussian distributions) between patients with visible lesions on MRI and patients who had at some point 

in their preoperative evaluation been considered “MRI-negative”. The lesion masks were projected onto 

individual FreeSurfer surfaces and then registered to fsaverage_sym.  

 

Given the subtlety of FCDs on MRI, they are challenging to mask and the borders of the manually 

delineated lesion masks are imprecise. We have previously shown that in this dataset, feature abnormalities 

extend approximately 40 mm beyond the lesion mask and mean fraction mask overlap between expert 

neuroradiologists was 42%9. As a result, regions of uncertainty, termed “border-zones”, were created 

around each lesion mask extending 20 mm across the cortical surface. A 20mm ring of uncertainty has been 

previously shown to increase the mean fraction mask overlap between rater–rater pairs to 82%9. Predicted 

lesion clusters within 20 mm of the lesion masks are considered detected (see network evaluation section). 

 

MELD Graph - a graph convolutional network for surface-based lesion segmentation 

 

For surface-based lesion segmentation, we created a graph-based implementation of nnU-Net10,11 (eFigure 

1). U-Nets are convolutional neural networks that were designed for biomedical image segmentation10. 

nnU-Net is a deep learning-based segmentation method that automatically configures a U-Net according to 

the input data, minimizing manual design and optimization of the network. However, unlike typical imaging 

data represented on rectangular grids, our dataset is surface-based - represented on vertices with connected 

triangular faces. As such it required customized convolutions, downsampling and upsampling steps.  

 

Convolutions, downsampling and upsampling 

 

We used a spiral convolution12, which translates standard 2D convolutions to irregular meshes by defining 

the filter by an outward spiral (eFigure 1) . Similar to how a 2d filter captures a ring of information around 

the input pixel, this spiral convolution captures a ring of information around the input node. We use a spiral 

length of 7, representing the central node/vertex and 6 adjacent neighbors on a hexagonal mesh. This is 

roughly equivalent to a 3x3 2D kernel. The spiral convolution enables the network to learn information 

from neighbors and across the entire hemisphere in contrast to previous approaches which see the features 

from each vertex in isolation9.  

https://paperpile.com/c/zgBGUc/lL35J
https://paperpile.com/c/zgBGUc/ARciX
https://paperpile.com/c/zgBGUc/5RZhW
https://paperpile.com/c/zgBGUc/5RZhW
https://paperpile.com/c/zgBGUc/K702a+fWMFZ
https://paperpile.com/c/zgBGUc/K702a
https://paperpile.com/c/zgBGUc/wrlum
https://paperpile.com/c/zgBGUc/5RZhW


 

For upsampling and downsampling through the U-Net, we created a series of seven successive icospheres, 

triangulated meshes. The icosphere templates were generated by successively upsampling an icosahedral 

icosphere, 𝑆1, with 42 vertices and 80 triangular faces. Icosphere 𝑆𝑖+1, where i is the resolution of the 

icosphere, is generated from 𝑆𝑖 by adding vertices at every edge. As input to our model we use icosphere 

𝑆7 (163842 vertices). 

 

In the decoder, to upsample from 𝑆𝑖 to 𝑆𝑖+1, the mean of each vertex in 𝑆𝑖 is assigned to all neighbors at 

level 𝑆𝑖+1. In the encoder, to downsample from 𝑆𝑖+1 to 𝑆𝑖, all the neighbors of a vertex at 𝑆𝑖+1 are 

aggregated - a similar translation to 2D max pooling. The U-Net has seven levels (mirroring the seven 

icospheres S7-S1). Each level consists of three convolutional layers using spiral convolutions and leaky 

Relu as the activation function (eFigure 1).  

 

Loss Functions  

 

Loss functions quantify the difference between predicted and labeled values, and enable training and 

learning. The MELD graph model uses the following loss functions: 

 

Segmentation loss. Cross-entropy and dice loss functions were used for the segmentation, following best 

practices for U-Net segmentation models11. 

 

Distance loss. A distance regression task was added to the U-Net to encourage the network to learn whole-

brain context and reduce the number of false positive clusters. The model is trained to predict the geodesic 

distance to the lesion boundary at every vertex. The distance loss is a mean absolute error loss, weighted 

by the distance. It is weighted by the distance to avoid overly penalizing small errors in predicting large 

distances from the lesion. 

 

Classification loss. A weakly-supervised classification loss was added to mitigate uncertainty in the 

correspondence between lesion masks and lesions. A hemisphere was labeled as lesional (positive) if it 

contained a lesion mask. To predict whether a hemisphere was lesional, we added a classification head to 

the deepest level (level 1) of the U-Net (eFigure 1). The classification head contained a fully connected 

layer aggregating over all filters, followed by a fully-connected layer aggregating over all vertices and was 

trained using cross-entropy.  

 

Deep supervision. We included deep supervision at levels one to six of the U-Net to encourage the flow of 

gradients throughout the entire network. The model is trained on the weighted sum of the dice, cross entropy 

and distance losses at each level. The network must create segmentations at deeper levels of the network 

(deep supervision). This ensures learning at all levels of the network.  

 

Data augmentation 

Data augmentations involve modifying the existing training dataset to increase the size and heterogeneity 

of the training dataset to prevent models overfitting and improve model performance. Following the 

recommendations outlined in nnU-NET, we use spatial augmentations and intensity augmentations (eFigure 

https://paperpile.com/c/zgBGUc/fWMFZ


1). Spatial augmentation techniques, included rotations, inversions, and non-linear deformations of the 

surface-based data13; while intensity-based augmentations included the addition of Gaussian noise to alter 

feature intensity, contrast adjustments, uniform scaling of brightness, and the application of a gamma 

intensity transform. 

 

Network implementation details 

 

The graph-based convolutional implementation of nnU-Net (MELD Graph) was trained with a maximum 

of 1000 epochs, each of them passing through the whole training data and a maximum patience of 1000 

epochs. The initial learning rate was set to 10-4 with a learning rate decay of 0.9 and a momentum at 0.99. 

The training batch size was 8. The probabilities of augmentation were set as follows: 0.5 for inversion, 0.2 

for rotation and deformation, 0.15 for Gaussian noise, contrast, brightness and gamma.  

The weights for the deep supervision levels l_ds=[6,5,4,3,2,1] were 

w_ds=[0.5,0.25,0.125,0.0625,0.03125,0.0150765]. To address the imbalance of classes during training, the 

non-lesional hemispheres were undersampled to ensure that 33% of the training examples contained a 

lesion. The model from the epoch with the best validation loss was stored for evaluation.  

Training was carried out through 5-fold cross-validation on the train cohort, with folds being determined 

by random partition of the subjects in the train cohort. For testing, the 5 train models were ensembled, 

averaging the predictions of each model to generate a final model output. 

 

The training and evaluation were performed on a High Performance Cluster (HPC) with Single NVIDIA 

A100 GPU and 1000 GiB RAM. The code was written in Python 3.9.13 and the main python packages 

employed were PyTorch 1.10.0+cu11.1 and PyTorch Geometric 2.0.4.  

 

Post-processing 

 

For each vertex in an individual hemisphere, the model generates a prediction value indicating the 

likelihood of that vertex being lesional. These per-vertex predictions were first thresholded according to 

the following function: 

 
Where mp is the maximum prediction value across all vertices. The minimum threshold below which no 

lesions are outputted is 0.01. This was identified as the prediction value where the number of false positives 

in the validation cohort first falls. 

The thresholded predictions were then organized into spatially connected clusters of vertices on the surface 

mesh, to regroup any fragmented clusters. Vertex clusters containing fewer than 100 vertices 

(approximately 0.5 cm2) were discarded, as they disproportionately correspond to false positives. 

 

Evaluation of MELD Graph model  

To evaluate the MELD Graph model, we compared its performance on the test dataset and independent test 

sites, to a previously published algorithm for FCD detection, which uses a multi-layer perception (MLP). 

The following metrics were calculated for the MELD graph and MLP models: 

 

https://paperpile.com/c/zgBGUc/XWNDO


Sensitivity - defined as the proportion of patients where a predicted lesion cluster overlapped with (or was 

within 20mm of) the manual lesion mask. The 20mm expansion of the lesion masks was chosen for 

evaluation of the algorithm as previous work has demonstrated the difficulty of manually masking these 

lesions and that adding a 20mm border zone increases mean fraction mask overlap between radiologists 

from 42% to 82%4.  

 

Specificity - defined as the proportion of controls with no predicted clusters.  

 

Positive predictive value - defined as the number of detected lesions divided by the total number of 

predicted clusters across the whole patient cohort. 

PPV = TP / (TP + FP) 

 

Number of false positive clusters - defined as the total number of predicted clusters per participant minus 

any predicted clusters that overlap with the manual lesion mask. 

 

Intersection Over Union (IoU) - defined as the number of vertices overlapping between the predicted 

lesion segmentation and the manual lesion mask divided by the number of vertices in the union of both 

masks. Calculated on patients in the test cohort and independent test sites detected by both MELD Graph 

and MLP models. 

 

Bootstrap resampling, sampling the cohort randomly with replacement 10,000 times, was used to calculate 

confidence intervals on the sensitivity, specificity, positive predictive value and IoU estimates between the 

MELD Graph and MLP models. Permutation-based null-models were used to test for statistically 

significant (p<0.05) differences between model performance estimates. Per-patient metrics were randomly 

permuted between models 1000 times and test statistics recalculated to generate a distribution against which 

the actual metric difference was compared. 

 

Breakdown lesion detection rates in the test dataset were calculated according to demographic factors. 

Significant differences (p<0.05) between each group within a demographic factor (e.g. pediatric vs adults) 

were assessed by permuting the group's assignments 1000 times and recomputing sensitivity estimates to 

generate a null distribution. 

 

To understand whether using harmonization of new site data to the cohort used to train the model was 

necessary, MELD Graph was evaluated on the independent test sites with and without distributed-ComBat 

harmonization. In this experiment, the MRI features from the independent test sites underwent the same 

smoothing, and optionally distributed-Combat7, before intra- and inter-subject normalization and 

asymmetry calculations. 

 

To estimate the number of subjects needed to generate consistent harmonization parameters, we carried out 

a number of subsampling experiments, comparing the harmonized cortical thickness maps computed with 

estimates derived from 3 - 70 subjects from a single site and 100 independent subjects from the same site 

(eFigure 3). 

 

https://paperpile.com/c/zgBGUc/NjBly
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We sought to assess whether a model trained specifically to detect the most subtle FCDs would outperform 

the model trained on the full heterogeneous dataset. We trained the same model architecture on a subset of 

patients from the training dataset who were MRI-negative and histopathologically confirmed. This new 

model was tested on patients in the test cohort who were also MRI-negative and histopathologically 

confirmed and compared with MELD Graph evaluated on the same patients. We calculated each model’s 

sensitivity, specificity, PPV, IoU and number of false positive clusters (eTable 4). Bootstrap resampling 

and permutation-based null-models (see above) were applied to calculate confidence intervals and to test 

for significant differences (p<0.05) in these metrics.  

 

Interpretability of MELD Graph outputs 

To understand which specific features and which vertices drove network predictions, integrated gradients 

saliency was computed14. This method computes which features are important to the network by looking at 

the integral (Riemann approximation) of the gradients computed from a baseline input (0 for each feature) 

to the actual feature values for each vertex. Within each predicted lesion, for each vertex, the integrated 

saliencies were averaged across the 34 features and the vertices with the 20% most salient vertices were 

identified. For small predicted lesions, where the 20% most salient vertices correspond to less than 125 

vertices, the 125 most salient vertices were used instead. For these most salient vertices, the following 

metrics were calculated: 

1. Mean Z-score of each feature 

2. Mean integrated gradients saliency of each feature 

3. Classifier confidence. To determine classifier confidence in its predictions, averaged across the 

20% most salient vertices for each predicted cluster, the maximum prediction score for the 

ensembled MELD graph models was computed.  

 

These data were used to characterize the detected FCD lesions (the true-positive clusters), the missed FCD 

lesions (the false negative clusters) and the false positive clusters in the test cohort  (eFigure 4A). For each 

feature, the distribution of the mean asymmetries was plotted for each group. A one-way ANOVA was 

applied to test whether the feature means varied according to the group, followed by a Tukey Honest 

Significant Difference test to characterize the direction of any significant differences. Additionally, this 

characterization was broken down by known histology subtypes: FCD 1 and FCD 3 combined together, 

FCD 2A and FCD 2B (eFigure 4B). 

Additionally, we characterized model performance (sensitivity and PPV) according to lesion size and lesion 

location. To assess the impact of lesion size on model performance, we fit a logistic regression model to 

predict whether a lesion mask was detected based on its size (sensitivity), or whether the MELD Graph 

cluster size was predictive of it being a true or false positive (PPV). For visualization, lesions/clusters were 

grouped into 5 quintiles according to size and sensitivity and PPV was calculated for each group (eFigure 

4C). To assess the impact of lesion location on model performance, we fit similar logistic regression models 

at every vertex, predicting whether lesion masks overlapping this particular vertex were more likely to be 

detected (sensitivity map) or predicted lesions were more likely to be TP/FP clusters (PPV map). For 

vertices where the logistic regression failed because the matrix was singular (e.g. vertex with no lesions), 

p-values were disregarded. P-values were corrected for multiple comparisons using the Holm method at 

5% significance. For visualization of any trends, sensitivity at each vertex and PPV for lesions at each 

vertex were mapped to the cortical surface (eFigure 4D).  

https://paperpile.com/c/zgBGUc/huPDe


A Spearman’s rank correlation was used to assess the (typically nonlinear) relationship between cluster 

confidence and IoU in true positive clusters from the test cohort that were identified by the MELD Graph 

model. 

 

 

  



eTable 1. Demographics of train cohort, test cohort and independent test sites.  

 Train cohort 

Patients 

(n=278) 

Train cohort 

Controls 

(n=180) 

Test cohort 

Patients 

(n=260) 

Test cohort 

Controls 

(n=193) 

Independent test 

sites 

Patients (n=116) 

Independent test 

sites 

Controls (n=101) 

Age at preoperative 

scan (median, IQR) 

20.0  

(11.0 - 32.8) 

29.0  

(19.0 - 37.9) 

18.0  

(11.0 - 29.0) 

29.0  

(19.5 - 39.2) 

22.5  

(13.1 - 27.5) 

27.5  

(22.5 - 37.5) 

Sex (f:m) 150 : 127 105 : 75 125 : 135 104 : 88 62 : 54 51: 50 

Age of epilepsy onset 

(median, IQR) 

6.0  

(2.5 - 12.0)  

6.0  

(3.0 - 11.0)  

2.8  

(0.8 - 5.5)  

Duration of epilepsy 

(median, IQR) 

10.0  

(4.3 - 18.4)  

10.2   

(5.0 - 18.2)  

2.65  

(1.2 - 7.2)  

FLAIR available 

132 / 278 

(47%) 

28 / 180 

(16%) 

110 / 260 

(42%) 

28 / 193 

(15%) 

33 / 116  

(28%) 

18 / 101  

(18%) 

Scanner (1.5T:3T) 41 : 237 18 : 162 56 : 204 15 : 178 0 : 116 0 : 101 

Surgery 

208/278  

(75%)  

190 / 260 

(73.0%)  

69 / 116  

(59.0%)  

Histology available 

193/208  

(93%)  

171 / 190 

(90%)  

68 / 69  

(99%)  

Seizure free 

123/183  

(67%)  

106/157 

(68.0%)  

52/64  

(81%)  

Follow up time 

(median, IQR) 

2.0  

(1.0 - 3.0)  

2.0  

(1.0 - 3.4)  

2.3  

(1.5 - 3.3)  

 

eTable 2. False positive clusters in patients and controls in the test dataset and independent 

test cohort.  

 Test cohort Independent test cohort 

False positive 

clusters 

Controls (median 

(IQR), max) 

Patients (median 

(IQR), max) 

Controls (median 

(IQR), max) 

Patients (median 

(IQR), max) 

MELD MLP 0 (0-1), 8 1 (0-2), 12 1 (0-1), 16 1 (0-2), 7 

MELD Graph 

model 

0 (0-1), 2 0 (0-1), 3 0 (0-1), 3 0 (0-0), 2 

eTable 2. Results table comparing the number of false positive clusters using the MELD Graph model to 

the MELD MLP model in patients and controls in the test dataset and independent test cohort. Reported 

are the median, interquartile range and maximum number of false positive clusters. 

 

 



eTable 3. Comparison of MELD Graph model evaluated on harmonized vs non-

harmonized independent test cohort. 

eTable 3. Results table comparing the performance of the MELD Graph model on the independent test 

cohort with and without inter-site harmonization of the surface-based features. Reported are the test results 

and the bootstrapped 95% confidence intervals. In bold are metrics with significantly changed performance 

(p<0.05) in comparison to the MELD Graph model with harmonized surface-based features. 

 

eTable 4. Comparison of MELD Graph model vs model trained only with MRI-negative 

and FCD histology-confirmed patients. 

 MELD Graph  

(all training cohort) 

MELD Graph  

(MRI-negative +  

histology-confirmed FCD) 

Sensitivity (n=58) 72% (60-84%) 67% (55-79%) 

Specificity (n=193) 60% (53-67%) 54% (47-61%) 

PPV (per patient) 72% (61-84%) 58% (46-72%) 

IoU (n=58) 0.25 (0.19-0.31) 0.22 (0.17-0.28) 

number FPs patients 

(median [IQR], max) 

0 [0,0], 3 0 [0-1], 4 

eTable 4. Results table comparing the same model architecture (MELD Graph) trained on the whole 

training cohort vs a subset of only MRI-negative and histologically confirmed FCD cases and evaluated on 

the test cohort of MRI-negative & histologically confirmed cases. Reported are the test results and the 

bootstrapped 95% confidence intervals. In bold are metrics with significantly changed performance 

(p<0.05) in comparison to the MELD Graph model trained using the whole training cohort. 

 

  MELD Graph with 

harmonization 

MELD Graph without 

harmonization 

Independent 

test cohort  

Sensitivity  

(n=116 patients) 

 72% 

(63-79%) 

70% 

(61-78%) 

Specificity  

(n=101 controls) 

56% 

(47-66%) 

39% 

(29-48%) 

PPV (per patient) 76% 

(68-85%) 

70% 

(61-79%) 



eFigure 1. MELD Graph model architecture.  

 
eFigure 1. MELD Graph model architecture. Graph-based implementation of nnU-Net for surface-based 

lesion segmentation, with auxiliary distance regression, hemisphere classification and object detection 

tasks. Lower left box: Types of data augmentation employed. Examples show the result of gamma intensity 

augmentation (top) and spinning (bottom). Lower right box: Neural network components. Visualization of 

spiral convolution used on surface-based mesh.  

 

 

eFigure 2. Pipeline for running a new patient’s MRI scan through MELD Graph. 

 
eFigure 2. Pipeline for running a new patient’s MRI scan through MELD Graph. (1) T1w scan and, if 

provided, FLAIR scans, are processed through FreeSurfer to extract surface-based morphological features. 

Features are then coregistered to a symmetric template surface. (2) Feature harmonization and 



normalization. First, morphological features  are smoothed. Then, an optional step of harmonization can 

be applied to minimize inter-scanner feature differences. Finally, features undergo intra-subject, inter-

hemispheric and inter-subject normalisation. (3) The normalized features are used as input in the trained 

MELD Graph CNN model to predict lesional vertices. Results of the MELD Graph model are outputted on 

individual,interpretable reports. Each predicted cluster (red) and its most salient vertices (orange) can be 

visualized on the cortical surfaces and on the original T1w volume, alongside information about the cluster 

size, location, confidence, feature values and feature saliencies.  

 

eFigure 3. Stability of NeuroCombat (harmonization to adjust for site and scanner 

differences) as a function of sample size. 

 
eFigure 3. Stability of NeuroCombat (harmonization to adjust for site and scanner differences) as a 

function of sample size. Estimating scanner-specific harmonization parameters from increasing numbers 

of subjects (3-70) results in harmonized cortical thickness maps that are more highly correlated to maps 

from the same subjects that were harmonized using parameters calculated using an independent sample of 

100 subjects. Based on these data we recommend a minimum of 20 subjects are used to calculate these 

parameters. 

 

 



eFigure 4. Characterization of detected FCD lesions. 

 
eFigure 4. Characterization of detected FCD lesions. (A) Characterization of MRI features for correctly 

predicted lesions (True Positives, TP), incorrectly predicted lesions (False Positives, FP) and manual 

lesion masks not detected (False Negatives, FN). The distribution of mean feature asymmetry is presented 

for TP, FP and FN lesions in the test dataset. Tukey HSD test shows significant differences between each 

pair of distribution (* p<0.05, ** p<0.001). (B) Characterization of MRI feature differences for FCD 

histological subtypes. (C) Sensitivity and positive predictive value (PPV) grouped by cluster size. Average 

values are plotted in five different bins corresponding to the quintiles of the cluster size distribution. Cluster 

size was not predictive of model sensitivity (p=0.09) or PPV (p=0.76). (D) Sensitivity and PPV as spatial 

distributions. Vertex location was not significantly predictive of sensitivity or PPV (all corrected p-values 

> 0.05), likely due to small sample sizes at each location. 

 

 

 



eFigure 5. Calibration of confidence scores.

 
eFigure 5. Calibration of confidence scores. (A) The relative frequency of true positives among all 

predicted clusters is plotted against MELD Graph model confidence scores grouped by decile. Per cluster 

confidence scores are well-calibrated, closely matching the relative frequency of true positives among 

predicted clusters in patients with an Expected Calibration Error of 0.10. Blue line = line of best fit, orange 

dashed line = perfect calibration. Gray bars represent the total number of clusters in each decile. (B) The 

distribution of confidence scores is plotted for true positive and false positive clusters in patients. High-

confidence predictions are more likely to be true positives, while low-confidence clusters are more likely 

to be false positives. Providing per cluster confidence scores in the individualized patient reports improves 

model interpretability. (C) In detected lesions in the test cohort, intersection over union (IoU) scores are 

plotted against cluster confidence. IoU correlated significantly with confidence score (Spearman r=0.52, 

p<0.01), indicating that higher confidence predictions are associated with higher segmentation accuracies. 

 

 

  



eFigure 6. Examples of interpretable patient reports from two MRI-negative patients from 

the independent test cohort. 

 

eFigure 6. Examples of interpretable patient reports from two MRI-negative patients from the independent 

test cohort. Patient 3 and Patient 4 have FCDs that were not identified by 5 expert radiologists but detected 

by MELD Graph with low confidence predictions (<50%). (A) Classifier predictions (red) and 20% most 

salient vertices (orange) visualized on brain surfaces of the lesional hemisphere and on the T1 volume. (B) 

Z-scored mean feature values within 20% most salient vertices of predicted lesions. Color represents 

saliency scores. Features driving the classifier’s prediction are positive (pink). Features inconsistent with 

MELD Graph prediction are negative (green). (C) T1 and FLAIR coronal sections with a red box indicating 

the lesional cortex. 
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