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Abstract

Aims: This study investigated the role of plasma proteins in obesity to identify pre-

dictive biomarkers and explore underlying biological mechanisms.

Methods: In the Cooperative Health Research in the Region of Augsburg (KORA)

FF4 study, 809 proteins were measured in 2045 individuals (564 obese and 1481

non-obese). Multivariate logistic regression adjusted for confounders (basic and full

models) was used to identify obesity-associated proteins. Priority-Lasso was applied

for feature selection, followed by machine learning models (support vector machine

[SVM], random forest [RF], k-nearest neighbour [KNN] and adaptive boosting [Ada-

boost]) for prediction. Correlation and enrichment analyses were performed to eluci-

date relationships between protein biomarkers, obesity risk factors and perturbed

pathways. Mendelian randomisation (MR) assessed causal links between proteins and

obesity.

Results: A total of 16 proteins were identified as significantly associated with obesity

through multivariable logistic regression in the basic model and subsequent Priority-

Lasso analysis. Enrichment analyses highlighted immune response, lipid metabolism

and inflammation regulation were linked to obesity. Machine learning models
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demonstrated robust predictive performance with area under the curves (AUC) of

0.820 (SVM), 0.805 (RF), 0.791 (KNN) and 0.819 (Adaboost). All 16 proteins corre-

lated with obesity-related risk factors such as blood pressure and lipid levels. MR

analysis identified AFM, CRP and CFH as causal and potentially modifiable proteins.

Conclusions: The protein signatures identified in our study showed promising predic-

tive potential for obesity. These findings warrant further investigation to evaluate

their clinical applicability, offering insights into obesity prevention and treatment

strategies.
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1 | INTRODUCTION

The rate of obesity is rising globally.1 Over the past four decades, the

worldwide rate of obesity has surged from below 1% in 1975 to 6%–

8% among girls and boys, from 3% to 11% among men and from 6%

to 15% among women by 2016.2 Additionally, there is growing con-

cern that obesity rates have tripled among adults since the 1970s and

continue to rise.3 The World Health Organization (WHO) forecasts

that by 2025, one in five adults worldwide will be obese. As obesity

rates increase, its negative impact on health has become increasingly

apparent, primarily due to higher mortality from noncommunicable

diseases like atherosclerotic cardiovascular diseases (CVD), type 2 dia-

betes (T2D) and several cancers.4 Moreover, apart from its conse-

quences, the obesity epidemic poses significant health burdens on

society.5 Despite the increasing prevalence and related mortality of

obesity, as well as significant advances in the use of molecular pheno-

typing technologies, for example, proteomics, there remains a need

for deeper investigations to give more insights into disease patho-

physiological mechanisms and biological sub-phenotypes for persona-

lised medicine.

Given that proteins function as effectors of gene expression and

their circulating levels are often modulated by genetic variation, mak-

ing them a more accurate depiction of biological pathway activity than

genetic or transcriptomic data, the proteome serves as a promising

intermediary phenotype for uncovering innovative mechanisms

underlying the progression of obesity.6 Additionally, circulating pro-

teins hold significant importance in drug development and are targets

of pharmacological interventions.7 Furthermore, proteomics provides

valuable insights into post-translational protein modifications,

protein–protein interactions (PPI) and signalling in obesity. Thus,

developing high-throughput proteomic methodologies based on liquid

chromatography-mass spectrometry (LC–MS) sets up a robust plat-

form for biomarker discovery.8 Non-targeted MS, specifically data-

dependent acquisition (DDA) techniques, has been extensively used

to identify prominent peptide ions, which can facilitate the discovery

of key biomarkers in obesity.9

Obesity is a complex disease shaped by an interplay of genetic,

environmental and lifestyle factors. Although many non-targeted

proteomic studies have explored obesity, most population-based

studies have been restricted by small sample sizes and the absence of

reproducibility in both analysis and outcomes.10–14 In contrast, our

current study highlights the role of non-targeted proteomics in a large

German-based population study, Cooperative Health Research in the

Region of Augsburg (KORA) FF4 study.

In this KORA FF4 study, we used LC–MS/MS-based DDA proteo-

mics to measure 809 proteins in 2045 individuals, with the goal of

identifying biomarkers and elucidating underlying biological mecha-

nisms associated with obesity.

2 | MATERIALS AND METHODS

2.1 | Study population design and sample
collections

KORA study is a population-based cohort study. Details about the

study population are presented in Methods section in Data S1. In FF4,

2132 individuals had phenotype and protein measurement data, and

87 were excluded from the analysis. This exclusion included 9 under-

weight participants (body mass index [BMI] <15 kg/m2), 73 with miss-

ing covariate information and five samples were collected without at

least 8 h of fasting. The final dataset consisted of 2045 participants,

with 1481 classified as non-obese (BMI <30 kg/m2) and 564 as obese

(BMI ≥30 kg/m2).

2.2 | Proteomics measurements

A detailed description of the proteomics measurements can be found

in the Methods in Data S1.

2.3 | Covariates

The covariates detailed description can be found in Methods

section in Data S1.
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2.4 | Statistical analysis and bioinformatic analysis

2.4.1 | Baseline characteristics

Characteristics of the study population were reported as mean

± standard deviation (SD) or median (25th and 75th percentiles) for

continuous variables according to normality, respectively, and as num-

bers (percentages) for categorical variables.

2.4.2 | Multivariable logistic regression analysis

The performed details of multivariable logistic regression

analysis were described in the Methods section in Data S1.

2.4.3 | Feature selection and machine learning
algorithms

We employed Priority-Lasso to address multicollinearity among

the variables.15 The conducted details of Priority-Lasso were

described in the Methods section in Data S1. The models for obe-

sity were constructed by four machine learning algorithms, includ-

ing random forest (RF) (‘randomForest’ R package [version

4.7.1.1]),16 support vector machine (SVM) (‘e1071’ R package [ver-

sion 1.7.14]),17 k-nearest neighbour (KNN) (‘kknn’ R package [ver-

sion 1.3.1])18 and adaptive boosting (Adaboost) (‘Adabag’ R

package [version 5.0]).19 We performed tenfold cross-validation by

‘caret’ (version 6.0.94)20 on the whole dataset to select the tuned

parameters of different models. Then, the parameters were applied

to the entire dataset to provide the final metrics of the suitability

of the models for classifying individuals with obese and non-obese

groups. Using the receiver operating characteristic (ROC) curves to

measure models' predictive performance. Utilising the ‘pROC’ R

package (version 4.3.3) visualise and analyse ROC curves.21 The

area under the curve (AUC) and 95% bootstrap confidence inter-

vals (CI) were also estimated. To model explainability, SHapley

Additive exPlanations (SHAP) was utilised in the RF model, using

SHAP values were estimated for the 16 obesity-associated protein

features.22

2.4.4 | Association between protein biomarkers and
obesity complication risk factors

To understand the correlation between 16 obesity biomarkers and

13 obesity complication risk factors, we performed Spearman's

rank correlation and visualised using the ‘corrplot’ R package (ver-

sion 0.92).23,24 The correlations between BMI and related indica-

tors were calculated separately. Besides, the Mouse Genome

Informatics (MGI) database was employed to investigate the

expression of 16 obesity-associated proteins using molecular

techniques.25

2.4.5 | Enrichment analyses and protein–protein
interaction

Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis of differential expression genes

(DEGs) in the key proteins mentioned above were performed by R

package ‘clusterProfiler’ (Version 4.0.5).26 The DEGs were classified

into functional groups based on molecular functions, biological pro-

cesses and cellular compartments. All p values of the enrichment ana-

lyses were corrected for multiple hypothesis tests using Bonferroni

correction. PPI network was constructed via the STRING database,27

setting a confidence score threshold of 0.4 for interactions. Other

parameters remained at their default settings. The PPI results were

analysed and visualised via Cytoscape (version 3.10.1).28

2.4.6 | Two-sample Mendelian randomisation

A two-sample Mendelian randomisation (MR) approach was used to

explore possible causal interactions among proteins linked to obesity

and obesity.29,30 Details on genome-wide association studies (GWAS)

selection are in the Methods section in Data S1. Instrumental vari-

ables (IVs) were chosen based on genome-wide significance

(p < 5 � 10�8), and subsequent clumping of chosen IVs was per-

formed with r2 < 0.001. Causal estimates were calculated utilising

Wald or inverse variance weighted tests, for more than one IV. When

more than two IVs were included, Cochran's heterogeneity test was

utilised to assess heterogeneity. For three or more IVs that were

included, the MR Egger method was employed to evaluate if they had

horizontal pleiotropy.31 IVs were selected for 12 out of 16 obesity-

associated proteins. To determine the significance threshold for MR

association, we applied Bonferroni correction considering the number

of independent sets of IVs tested. For the identified significant links,

we also applied opposite direction MR, with obesity IVs as the expo-

sure and proteins IVs as the outcome, to explore possible reverse cau-

sality. All analyses were conducted by R package ‘TwoSampleMR’
(version 0.5.7).32

All analyses were conducted using Python (version 3.8.5), R statis-

tics (version 4.3.3) and RStudio (version 2023.09.1+ 494).

3 | RESULTS

3.1 | Characteristics of the KORA FF4 Participants

Our overall (n = 2045) participants were stratified into non-obese (BMI

<30 kg/m2) and obese (BMI ≥30 kg/m2) groups based on their BMI. As

indicated in Table 1, a comparison between stratified groups showed

smoking status, physical activity, age, weight, height, waist, waist-

hip-ratio (WHR), triglycerides (TG), systolic blood pressure (SBP), dia-

stolic blood pressure (DBP), high-density lipoprotein (HDL), triglycerides

(TG), C-reactive protein (CRP), body fat percentage (BFP) and T2D sta-

tus were significantly different. For alcohol consumption, sex, low-

2628 NIU ET AL.
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density lipoprotein (LDL) and total cholesterol (TCHO), no significant

differences were detected among obese and non-obese groups.

3.2 | Proteins associated with obesity

A logistic regression model was employed for obesity associated with

proteins. Model assumptions for logistics have been performed and

reported (Table S2). The basic model added age and sex, resulting in

25 proteins significantly associated with obesity (Table S3; Figure 1A).

Subsequently, we tested how covariates such as lipids, FPG with T2D

status and lifestyle influenced the number of significant proteins

linked with obesity. More covariates were included, and less signifi-

cant proteins were reported. Especially the number of significant pro-

teins was influenced by lipids, which showed a dramatic drop when

adjusted lipids covariates in the model (Figure S1).

To further explore specific obesity-associated proteins, we per-

formed a logistic regression analysis with the abovementioned

obesity-related variables as covariates. In the full model, 11 proteins

were observed to have significant associations after conservative

Bonferroni correction (Figure 1B, Tables S4, and S5).

APOD, CRP and LGALS3BP showed significant associations with

obesity in the basic model (Table S3). Subsequently, in the full model,

CRP, APOD and SAA2-SAA4 emerged as the most specific significant

proteins (Table S5). We further investigated the significance of these

proteins by Student's t tests in both obese and non-obese individuals.

Figure 1C illustrates that all proteins of the basic and full models men-

tioned above remained statistically significant in non-obese and obese

groups.

3.3 | Identification and validation of candidate
protein biomarkers

After conducting priority-Lasso feature selection, the 16 selected pro-

teins were regarded as obesity candidate biomarkers (Table S6).

TABLE 1 The characteristics of the Cooperative Health Research in the Region of Augsburg FF4 participants were analysed based on their
body mass index (BMI).

Characteristic Overall Non-obese (BMI <30 kg/m2) Obese (BMI ≥30 kg/m2) p-Value

Sample size 2045 1481 564

Age (years) 60.1 ± 12.3 59.3 ± 12.3 62 ± 12 <0.001

Sex woman (%) 1042 (51) 766 (51.7) 276 (48.9) 0.282

Weight (kg) 79.5 ± 16.5 73.2 ± 11.8 96.1 ± 15.5 <0.001

Height (cm) 168.9 ± 9.6 169.4 ± 9.6 167.7 ± 9.6 <0.001

Alcohol consumption (g/day) 14.9 ± 20.2 15.2 ± 19 14.1 ± 23.3 0.288

WC (cm) 96.8 ± 14.2 91.1 ± 10.6 111.9 ± 10.8 <0.001

WHR 0.9 ± 0.1 0.9 ± 0.1 1 ± 0.1 <0.001

BFP (%) 32.8 ± 7.2 30.8 ± 6.5 38 ± 6.3 <0.001

FPG (mmol/L) 5.7 ± 1.2 5.5 ± 0.9 6.2 ± 1.6 <0.001

SBP (mmHg) 118.9 ± 17.5 117.4 ± 17 122.9 ± 18.2 <0.001

DBP (mmHg) 73 ± 9.6 72.4 ± 9.3 74.6 ± 10.3 <0.001

Smoking (%)

Smoker 866 (42.3) 589 (39.8) 277 (49.1) <0.001

Ex-smoker 864 (42.2) 637 (43) 227 (40.2)

Never-smoker 315 (15.4) 255 (17.2) 60 (10.6)

Physical activities inactive (%) 878 (42.9) 560 (37.8) 318 (56.4) <0.001

HDL cholesterol (mmol/L) 1.7 ± 0.5 1.8 ± 0.5 1.5 ± 0.4 <0.001

LDL cholesterol (mmol/L) 3.5 ± 0.9 3.5 ± 0.9 3.5 ± 0.9 0.12

TG (mmol/L) 1.2 (0.9, 1.6) 1.1 (0.8, 1.5) 1.4 (1.1, 2.1) <0.001

TCHO (mmol/L) 5.6 ± 1 5.6 ± 1 5.5 ± 1 0.124

CRP (mg/L) 2.4 ± 4.5 1.8 ± 3.7 4.1 ± 5.9 <0.001

T2D status (%) 272 (13.3) 123 (8.3) 149 (26.4) <0.001

Note: Quantitative variables are expressed as mean ± SD or median (25th and 75th percentiles); categorical variables are expressed as n (%). Statistical

analysis was performed to evaluate the significant difference between obese and non-obese participants. Test statistics for categorical variables were

calculated via the χ2 test and Student's t test for continuous variables.

Abbreviations: BFP, body fat per cent; CRP, C-reactive protein; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HDL, high-density lipoprotein;

LDL, low-density lipoprotein; SBP, systolic blood pressure; T2D, type 2 diabetes; TCHO, total cholesterol; TG, triglyceride; WC, waist circumstance; WHR,

waist-hip ratio.
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F IGURE 1 Each dot represents a protein, and they are displayed based on the OR (x-axis) and the negative logarithm (base 10) of the p value
(y-axis); Bonferroni correction p value cut-off is 0.05/809 = 0.0000618 was considered. The covariates for the basic model are age, sex and
(obesity); the covariates for the full model are age, sex, (obesity), physical activities, systolic blood pressure, naturally log-transformed
triglycerides, high-density lipoprotein-C, smoking status, fasting plasma glucose, type 2 diabetes status (A, B). (A) Volcano plot shows the
association of proteins with obesity in the basic model; (B) Volcano plot shows the association of proteins with obesity in the full model;
(C) Raincloud plots show the top three significant proteins in both the basic and full model, Student's t tests were utilised to compared in obese
and non-obese groups.

2630 NIU ET AL.
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Prediction models constructed according to 16 protein biomarkers

were using four machine-learning algorithms: RF, SVM, KNN and Ada-

Boost. The model parameters were optimised through tenfold cross-

validation on the KORA FF4 data. Lastly, trees number in the RF

model was 500; for each decision tree, the number of features consid-

ered in splitting nodes is 5. In SVM, the Radial kernel was utilised and

the sigma number was 1/n (n = protein numbers). The KNN model

was configured with nine neighbours. The iterations in AdaBoost were

150, and the decision maximum depth tree was 3. Subsequently, the

diagnostic models incorporating clinical covariates, including age, sex,

physical activity, SBP, naturally log-transformed TG, HDL-C, smoking

status, FPG and T2D status were also constructed to compare the

predictive performance with those of the protein biomarker-based

model. The detailed results of these eight models are reported below

(Table 2 and Figure 2), AUCs ranged from 0.683 to 0.820. Especially,

the AUCs of proteins models ranged from 0.791 to 0.820, higher than

each risk factors model ranging from 0.683 to 0.750. Besides, for

model explainability, we used Tree SHAP algorithms to generate an

importance ranking that explains the output of the RF model based on

SHAP values estimated for the 16 obesity-associated protein features

(Figure S2). Proteins such as LGALS3BP, CRP and APOD exhibit the

highest SHAP values, indicating a strong contribution to obesity pre-

diction. These proteins play key roles in pathways associated with

obesity, such as inflammation and lipid metabolism.

TABLE 2 Diagnostic performance of four machine learning algorithms.

Machine learning algorithms Models Sensitivity Specificity Non-error rate AUC (95% CI)

RF Proteins 0.804 0.708 0.837 0.820 (0.783–0.857)

Risk factors 0.764 0.564 0.868 0.744 (0.701–0.788)

SVM Proteins 0.796 0.721 0.854 0.805 (0.765–0.844)

Risk factors 0.749 0.604 0.919 0.750 (0.706–0.793)

KNN Proteins 0.817 0.623 0.780 0.791 (0.752–0.831)

Risk factors 0.762 0.459 0.812 0.683 (0.636–0.731)

Adaboost Proteins 0.830 0.708 0.797 0.819 (0.782–0.855)

Risk factors 0.785 0.602 0.834 0.747 (0.704–0.791)

Abbreviations: Adaboost, adaptive boosting; AUC, area under the curve; KNN, k-nearest neighbour; RF, random forest; SVM, support vector machine.

F IGURE 2 Area under the receiver operating characteristic curves of four machine learning algorithms. (A) Random forest model based on
protein biomarkers; (B) random forest model based on clinical covariates; (C) support vector machine model based on protein biomarkers;
(D) support vector machine model based on clinical covariates; (E) k-nearest neighbour model based on protein biomarkers; (F) k-nearest
neighbour model based on clinical covariates; (G) adaptive boosting model based on protein biomarkers; (H) adaptive boosting model based on
clinical covariates. AUC, area under the curve.
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3.4 | Association between proteins and obesity
complication risk factors

Spearman's correlation coefficient (r) was computed to examine the

possible associations between 16 protein biomarkers and 13 obesity

risk factors (Table S8). The resulting r matrix is visualised in Figure 3.

All 16 proteins were significantly correlated with BMI, and 15 were

correlated with WHR, waist circumstance (WC), age, FPG and HDL.

Moreover, 14 proteins were associated with TG, 11 proteins were

associated with SBP, DBP, alcohol consumption and nine proteins

were associated with LDL, seven proteins were associated with TCHO

(Table S7). Additionally, we can see the direction of 16 proteins asso-

ciated with BMI is the same in FPG and TG but not in HDL. For exam-

ple, ADIPOQ, APOD, APOF and APOM were observed to be

negatively associated with HDL. The significant r ranged from �0.385

to 0.451 (positive coefficients are in red and negatives are in blue)

(Figure 3). Notably, APCS and A2M demonstrated the strongest corre-

lation with all 13 obesity risk factors. The r of HDL and ADIPOQ

exhibited the highest magnitude (r = 0.451, p value < 0.001). There

were seven proteins correlated with TCHO (p values < 0.05), with the

r ranging from �0.033 to 0.270, indicating relatively weak

associations. APOF and CFH were linked to 10 obesity risk factors

(Figure 3 and Table S7). In the KORA FF4 cohort, BMI showed strong

correlation with WC (r = 0.865) and moderate correlations with WHR

(r = 0.542) and BFP (r = 0.501), all highly significant (p < 0.001),

underscoring its association with abdominal fat distribution and over-

all adiposity (Tables S7 and S8). All 16 proteins were expressed in rele-

vant tissues such as plasma, fat, liver and immune system (more

details in Results section in Data S1).

3.5 | Enrichment analyses and protein–protein
interaction

Sixteen GO terms were statistically significant when using 16 protein

biomarkers (Table S9, Figure S3). The enriched GO terms were charac-

terised by processes relating to the response of complement regula-

tion, lipid lipoprotein particles and antioxidant cellular detoxification

(Figure S3A). The top three significant GO terms were GO:0072562

(blood microparticle), GO:0001848 (complement binding) and

GO:0062023 (collagen-containing extracellular matrix) (Figure S3B). In

the KEGG pathway analysis, complement and coagulation cascades

F IGURE 3 The correlation
matrix between 16 potential
proteins and 13 obesity risk
factors is depicted. Statistically
significant correlations between
two proteins are indicated, while
insignificant r is left blank in the
boxes. Positive correlations are
denoted by red, while negative

correlations are represented by
blue. BFP, body fat per cent; BMI,
body mass index; DBP, diastolic
blood pressure; FPG, fasting
plasma glucose; SBP, systolic
blood pressure; TCHO, total
cholesterol; TG, triglycerides;
WC, waist circumstance; WHR,
waist-hip ratio. p < 0.05 is
considered statistically
significant. The detailed r and
p values are shown in Tables S7
and S8.
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and staphylococcus aureus infection two pathways were statistically

significant in two groups (Table S10). In the PPI network depicted in

Figure S4, all 16 proteins consisted of 16 nodes and 40 edges, with

APCS being associated with nine other proteins, the highest degree

observed.

3.6 | Mendelian randomisation causally implicates
proteins

For the 16 top candidate proteins strongly linked to obesity, a two-

sample MR approach was performed to evaluate the potential causal

relations between these proteins and obesity. IVs for MR were

derived from protein quantitative trait loci identified in the Icelandic

studies and the INTERVAL study.33,34 In the causal direction that pro-

teins lead to obesity, after checking in the instrument dataset, only

12 proteins had available single nucleotide polymorphisms (SNPs) for

further analysis. The Bonferroni correction significance p value was

adjusted to 0.05/12 = 0.004. However, after multiple corrections, no

significant associations were observed for any of the proteins

(Table S11). For the opposite direction that obesity leads to proteins,

six proteins could find SNPs in exposure data, and the Bonferroni cor-

rection significance p value was adjusted to 0.05/6 = 0.0083. Our

results indicated that change in obesity caused changes in proteins

such as AFM (β = 3.06, p value < 0.001), CRP (β = 9.96,

p value < 0.001) and CFH (β = 0.06, p value = 0.001) (Table S11).

Sensitivity analysis was further conducted to assess the robustness of

the results against heterogeneity or horizontal pleiotropy. For the

direction of BMI to AFM and CRP, sensitivity analysis wasn't per-

formed because each protein only obtained one SNP. For CFH, the

Q statistic from the heterogeneity test (p_Het = 0.78) indicated no

heterogeneity. Additionally, the MR–Egger intercept test

(p_Pleio = 0.53) also suggested no directional pleiotropy for this

protein.

4 | DISCUSSION

To investigate altered protein profiles associated with obesity, we uti-

lised LC–MS/MS-based DDA proteomics, identifying a total of 16 pro-

teins significantly associated with obesity. Notably, all 16 proteins

have been previously reported implicated in obesity.10,35–37 Enrich-

ment analysis of these biomarkers revealed disruptions in lipid metab-

olism, immune response and inflammation regulation in obesity. We

applied four machine learning algorithms, including SVM, RF, KNN

and Adaboost, to develop obese predictive models, with AUCs rang-

ing from 0.791 to 0.820, surpassing classical obesity risk factors. All

16 proteins correlated with obesity-related risk factors such as blood

pressure (BP) and lipid levels. MR analysis provided suggestive evi-

dence that obesity can lead to changes in AFM, CRP and CFH.

To our knowledge, our study is the first to comprehensively iden-

tify protein biosignatures of obesity using LC–MS/MS-based prote-

ome profiling in a large, well-established German cohort. Our findings

underscore the potential of the proteome as a valuable resource for

identifying biomarkers of obesity, which could be utilised for both

prevention and treatment. These protein biosignatures provide critical

insights into the metabolic pathways disrupted in obesity and its pro-

gression toward associated complications, such as T2D and CVD.

Consequently, obesity-associated proteins and their metabolic pat-

terns have the potential to serve as predictive models for risk stratifi-

cation in populations and to inform targeted interventions for obesity

and its comorbidities.

Our results also revealed significant differences between obese

and non-obese participants across various demographic and clinical

factors such as smoking status, physical activity and others (Table 1).

These differences highlight the multifactorial nature of obesity and its

associated factors. Furthermore, these 16 proteins for obesity also

presented significant correlations with obesity indexes and complica-

tions associated factors (Figure 3), including BMI, WHR, WC, BFP,

age, SBP, DBP, alcohol consumption, FPG, TG, HDL, LDL and TCHO

(Table 1). Given that obesity is closely linked to multiple related risk

factors, we reasonably hypothesise that these biomarkers may also

serve as possible biomarkers for fatty liver, coronary heart diseases,

hyperglycaemia and dyslipidaemia.

The results of enrichment analyses can be summarised into three

main processes: immune response, lipid metabolism and inflammation

regulation. Innate and adaptive immunity dysregulation, resulting in

chronic, low-level, tissue-specific and systemic inflammation, plays a

key role in contributing to the development of multiple obesity-

associated disorders and metabolic diseases.38 Dyslipidaemia affects

approximately 60%–70% of patients with obesity,39 and is also veri-

fied as a characteristic of obesity and CVD. In the obese state, hyper-

trophic adipocytes secrete increased levels of proinflammatory

adipokines and free fatty acids, leading to dyslipidaemia, inflammation

and ectopic fat accumulation.40 Since obesity is an inflammatory

condition,41 adipose expansion and chronic obesity trigger an early

inflammatory response, leading to a lasting change in the immune sys-

tem toward a proinflammatory state.42 All the functions and pathways

associated with obesity interact with each other and play significant

roles in the onset, progression and prognosis of obesity.

MR analyses supported that BMI could lead to AFM, CRP and

CFH alterations in relative protein levels. In the opposite direction, no

protein can lead to BMI changes. Afamin (AFM) is the fourth member

of the human albumin gene family, encompassing metabolic syndrome

and associated diseases such as obesity, T2D, hypertension and dysli-

pidaemia.43 Transgenic mice with AFM overexpression exhibited

gained body weight, lipid and glucose levels, and meta-analysis of the

population-based Bruneck (n = 826), Salzburg Atherosclerosis Pre-

vention Program in Subjects at High Individual Risk (n = 1499) and

KORA F4 studies (n = 3060) indicated high serum AFM levels were

positively related with metabolic syndrome components, including

obesity and BMI.44 Obesity is marked by persistent low-grade inflam-

mation. CRP, a key indicator of systemic inflammation, has consis-

tently emerged as the primary factor linked to overweight and obesity

in human epidemiological studies.45 Statistical analyses suggest that

elevated CRP levels are a result of obesity rather than a cause. Our
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study results further corroborate this perspective. Human comple-

ment factor H (CFH) protects cells from unintended complement sys-

tem damage and is linked to metabolic disruptions in obesity. Higher

CFH levels are associated with increased BMI, waist circumference,

triglycerides and inflammation, indicating its potential role in insulin

resistance and metabolic issues in obesity.46

Our study offers several significant advantages. Firstly, we lever-

aged a well-characterised, population-based cohort that allows for

adjustments across various demographic and clinical parameters,

enhancing the robustness of our findings. Rigorous quality control

measures were applied to proteome profiles collected across three

time points, effectively minimising measurement noise and increasing

the reliability of the data. We used multivariable logistic regression in

the basic model, followed by Priority-Lasso feature selection, machine

learning algorithms and correlation analyses to validate and confirm

the candidate protein biomarkers associated with obesity. These com-

plementary approaches increase our results' confidence and potential

clinical relevance. Although the study has several strengths, there are

also limitations. We used tenfold cross-validation to optimise predic-

tive accuracy, but external replication studies are still needed to fur-

ther confirm our findings. Additionally, due to the study's

observational nature, we are unable to delve into the complex mecha-

nisms behind these results using animal models or cellular experi-

ments. Furthermore, as the KORA cohort primarily consists of a

German population, future studies should aim to validate these

findings in more diverse populations and consider additional

obesity-related indicators, such as WHR and BFP, to enhance the

generalisability of our results. The identified protein biomarkers pre-

sent promising opportunities to revolutionise obesity research and

inform targeted prevention and treatment strategies, although chal-

lenges such as standardisation and broader validation remain to be

addressed for clinical implementation.

5 | CONCLUSIONS

In summary, we conducted an LC–MS/MS-based protein analysis,

identifying a total of 16 proteins associated with obesity. Enrichment

analyses revealed that these proteins are involved in lipid metabolism,

immune response and inflammation regulation. Machine learning

models based on these biomarkers achieved higher AUCs for obesity

prediction than traditional risk factors models. Furthermore, these

proteins demonstrated significant correlations with obesity-related

factors, such as BP, and lipid levels. MR analysis provided suggestive

evidence that obesity causally influences the levels of AFM, CRP and

CFH. Although these biomarkers have been previously reported, our

study is the first to establish a direct link between them and obesity in

a large-scale German population-based cohort. These obesity-

associated biomarkers present opportunities for clinical diagnosis and

personalised treatment strategies. Future research should focus on

exploring the underlying mechanisms of these biomarkers and asses-

sing their clinical applicability across diverse populations, paving the

way for more tailored obesity management approaches.
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