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Abstract 

Retrosynthesis consists of recursively breaking down a target molecule to produce a synthesis route composed 
of readily accessible building blocks. In recent years, computer‑aided synthesis planning methods have allowed 
a greater exploration of potential synthesis routes, combining state‑of‑the‑art machine‑learning methods with chemi‑
cal knowledge. However, these methods are generally developed to produce individual routes from a singular 
product to a set of proposed building blocks and are not designed to leverage potential shared paths between tar‑
gets. These methods do not necessarily encompass real‑world use cases in medicinal chemistry, where one seeks 
to synthesize sets of target compounds in a library mode, looking for maximal convergence into a shared retrosyn‑
thetic path going via advanced key intermediate compounds. Using a graph‑based processing pipeline, we explore 
Johnson & Johnson Electronic Laboratory Notebooks (J&J ELN) and publicly available datasets to identify complex 
routes with multiple target molecules sharing common intermediates, producing convergent synthesis routes. We 
find that over 70% of all reactions are involved in convergent synthesis, covering over 80% of all projects in the case 
of J&J ELN data. 

Scientific contribution
We introduce a novel planning approach to develop convergent synthesis routes, which can search multiple products 
and intermediates simultaneously guided by state‑of‑the‑art machine learning single‑step retrosynthesis models, 
enhancing the overall efficiency and practical applicability of retrosynthetic planning. We evaluate the multi‑step 
synthesis planning approach using the extracted convergent routes and observe that solvability is generally high 
across those routes, being able to identify a convergent route for over 80% of the test routes and showing an indi‑
vidual compound solvability of over 90%. We find that by using a convergent search approach, we can synthesize 
almost 30% more compounds simultaneously for J&J ELN as compared to using an individual search, while providing 
an increased use of common intermediates.
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Introduction
Compound synthesis is a crucial and time-consuming 
part of drug discovery, starting from the validation of hit 
compounds coming out of a target screening exercise, 
towards the design of structurally related molecules to 
explore the structure-activity relationship (SAR) target 
space. This process involves the identification of a suit-
able synthesis path typically through a process known 
as retrosynthesis. Retrosynthesis involves hypotheti-
cally breaking down a compound via disconnections 
into progressive reactants until a set of purchasable or 
easily synthesizable compounds is reached [1]. Multiple 
approaches have been developed to address retrosyn-
thesis from a machine-learning perspective [2–5], which 
aims to aid experts in the task of selecting a sequence 
of chemical reactions that can be applied to a target 
compound to arrive at commercially available starting 
materials.

Within computational retrosynthesis approaches, 
there are two main aspects, the single-step model, which 
indicates which reaction is most relevant to a molecule, 
and the multi-step synthesis planning algorithm, which 
guides the search to establish the combination and order 
of the reactions [6]. For the latter, different approaches 
have emerged to address the expansive search, generally 
following a heuristic to guide the search with methods 
such as proof-number search [7, 8], Monte-Carlo Tree 
Search [9–12], which relies on a combination of explora-
tion and exploitation to explore the search, A* search [13, 
14] which takes a global view of the task aiming towards 
synthesizable molecules, and self-play approaches [15, 
16] which train a learned policy through multiple simu-
lated experiences.

However, there is an important caveat with these syn-
thesis planning approaches as medicinal chemists typi-
cally work in libraries of compounds, where multiple 
compounds are designed and synthesized simultaneously 
to explore the activity space of a target of interest [17–
19]. This library synthesis is not reflected in common 
multi-step approaches, which generally focus on the syn-
thesis of a singular compound rather than enabling the 
design of convergent routes via common intermediates.

A few previous approaches have explored the mutual 
synthesis of compounds of interest, commonly as a post-
hoc analysis step. Recently, Fromer et  al. [20] proposed 
an approach using ASKCOS [21] to prioritize compounds 
suggested for synthesis based on their potential for batch 
synthesis along with cost. Pasquini et al. [22] developed 
a method to combine precalculated retrosynthesis routes 
for multiple compounds from varying sources. Gao et al. 
[23] approached the issue as a mixed integer problem 
using retrosynthetic routes from ASKCOS, going on to 
select synthesis routes for all WHO essential medicines 

while minimizing the number of reactants and reagents 
required [24]. Molga et al. [25] explored the extension of 
Chematica [26] to multiple target compounds within the 
search, with the ability to produce a single route for mul-
tiple compounds or select the most readily synthesizable 
compounds for a batch of target compounds. Lastly, Xie 
et  al. [14] extended the Retro*[13] approach towards a 
graph-based solution, instead of tree-based, to allow the 
inference of singular retrosynthetic routes for multiple 
compounds, introducing an additional GNN to avoid cir-
cular paths.

In this work, we address this problem by proposing a 
graph-based multi-step approach to identify retrosyn-
thetic routes for multiple compounds simultaneously, 
producing convergent routes. This approach prioritizes 
routes applicable to all target molecules where possible 
while also suggesting routes for those compounds that 
cannot be convergently synthesized. Moreover, to ensure 
the chemical feasibility of our approach, we develop a 
dataset of convergent routes based on the USPTO dataset 
[27] and Johnson & Johnson Electronic Laboratory Note-
book (J&J ELN) datasets. By additionally implementing 
batch inference, we can produce convergent retrosynthe-
sis routes for up to hundreds of molecules, identifying a 
singular convergent route for multiple compounds in the 
majority of compound sets.

Methods
In this section, we discuss the two core methodologies 
developed in this work. Firstly, the curation of the con-
vergent routes dataset establishes a collection of ret-
rosynthetic routes based on reaction data. This details 
the synthesis of multiple target molecules, under a shared 
retrosynthetic route using common reactant molecules 
across the route. Secondly, we focus on the multi-step 
synthesis planning framework, which discusses conver-
gent retrosynthetic routes to allow the joint synthesis of a 
library of compounds. The routes are developed using the 
scores from a single-step model, while biasing towards 
compounds shared across multiple target molecules to 
encourage convergence across the retrosynthetic routes.

Convergent routes dataset
Convergent routes are synthesis routes comprised of 
multiple target molecules resulting from common inter-
mediates. We develop a pipeline to identify and extract 
these convergent routes from reaction data. Starting 
from the reaction data, products and reactants are iden-
tified based on atom-mapping. Using the atom-mapped 
reactions, we split any compound on the reactant side 
into reactants and reagents depending on their contribu-
tion to the product. Any compound on the reactant side 
which forms at least 20% of the product is considered a 
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reactant. All remaining compounds are assumed to be 
reagents and discarded. The reaction data is then split 
based on document identifiers so that reactions carried 
out together are considered a joint document. Impor-
tantly, the reaction data is not deduplicated at this stage, 
given that the same reaction can occur across multiple 
documents.

For each document, we create a directed graph where 
the molecules are represented as nodes (V) and reac-
tions between molecules are represented as edges (E), 
however we defer from adding additional reaction nodes 
as in previous works [28, 29] instead focusing solely on 
molecule nodes. The graph is set up from a retrosynthetic 
standpoint where the children of a node are the reac-
tants required for the synthesis of the parent node. Each 
reaction from a document is added to the graph by add-
ing the molecules individually as nodes and connecting 
nodes with the relevant edges for the reaction, such that 
a retrosynthetic reaction with a single product and two 
reactants will become a parent node with two outgoing 
edges to each reactant. Once all reactions are added to 
the directed graph, the graph is then traversed to iden-
tify weakly connected components, these are subgraphs 
where all the nodes are connected through some path, 
irrespective of the direction of the edges, each extracted 
subgraph is treated as an individual synthesis graph.

The target molecules and building blocks of each syn-
thesis graph can then be identified. Given a node, vi, if vi 
has no incoming edges (δ−(vi) = 0) it will be considered 
a target molecule since the molecule has not been devel-
oped further. If vi has no outgoing edges (δ+(vi) = 0) the 
node will be considered a building block since the mol-
ecule has no prior reactions. If vi has multiple incoming 
edges (δ−(vi) > 1) , from multiple target molecules, then 
it is considered a common intermediate, this definition 
works in conjunction to that of a building block, such 
that a building block may also be considered a common 
intermediate. Given the focus on convergent routes, all 
synthesis graphs that do not contain common intermedi-
ates are discarded so that all remaining synthesis graphs 
are convergent routes.

Two main concerns when using reaction data are the 
ambivalence of reaction direction and the multiple 
approaches to synthesizing a single molecule. Concern-
ing reaction direction, there can be instances where the 
same reactant and product combination can be synthe-
sized in both directions {(vi, vj), (vj , vi)} . In this case, if 
possible, we discard the least common reaction direction, 
if this is not possible due to lack of data we discard the 
synthesis graph given that the reaction direction can-
not be resolved. Additionally, in reaction data, there are 
cases in which a single compound was synthesized more 
than once through different reaction pathways, leading to 

a cycle within the synthesis graph. In this case, the syn-
thesis graph is discarded since the more optimal reaction 
path cannot easily be established, ensuring all synthesis 
graphs are directed acyclic graphs (DAGs). Lastly, once 
the cleaned convergent synthesis graphs have been estab-
lished, we ensure that the target molecules within each 
graph are not simply stereoisomers and that there are no 
duplicated graphs across the convergent routes dataset.

We refer to the convergent routes extracted from the 
reaction data as the experimentally validated routes 
throughout the text. We refrain from referring to these 
as ground truth or other terms are given that multiple 
retrosynthetic paths can be used to successfully synthe-
size a target molecule or a compound library, and so the 
extracted routes can only be considered an example of a 
chemically successful synthesis path.

Multi‑Step Synthesis Planning
The multi-step search is based on a directed graph, 
exploiting this format for simultaneously instantiating 
multiple target molecules. The multi-step search contains 
two types of nodes, molecule nodes and reaction nodes. 
The search is guided by a single-step model that proposes 
reactants given a product. When starting a retrosynthetic 
search, all target molecules are instantiated simultane-
ously as molecule nodes (Fig.  1), differing from using a 
dummy node to connect target molecules [23, 25]. At the 
first iteration, all target molecules are considered promis-
ing nodes, and K sets of reactants are proposed for each 
target molecule. For each target molecule ( mt ), K child 
reaction nodes are created ( δ+(mt) = K  ). Each reaction 
node (c) will have an associated set of reactants, where 
the proposed reactant set is a collection of one or more 
required reactants ( r = r1, r2, ..., rj−1, rj ). From each reac-
tion node, a molecule node (m) is added for every mol-
ecule in the proposed reactant set, ( δ+(c) = |r| ), such 
that every molecule node will have a maximum of K out-
going edges and every reaction node will have the same 
number of outgoing edges as the number of molecules 
in the proposed reactant set. If a molecule node already 
exists in the search, the reaction node will be linked to 
the existing molecule node. If two reaction nodes origi-
nating from the same molecule node lead to the same set 
of proposed reactants, then only one instance of the reac-
tion node and consequent molecule nodes will be added 
to the search. If any of the proposed reactants for a reac-
tion node are considered invalid, no molecule nodes will 
be added to the reaction node.

The scores of the proposed reactants are used to select 
the top n most promising nodes at each iteration. Promis-
ing nodes are selected based on the product of the single 
step model probabilities along the linear path between each 
target molecule and a given end node. Where a linear path 
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P(vi, vj) is defined as the consecutive edges linking two 
nodes,

we calculate the linear path between an end node mi , 
where mi is a molecule node (M) and not a building block 
(B), has no outgoing edges and the shortest distance to 
any target molecule is below the predefined maximum 
depth (L),

and a target molecule mti . The relevant target molecules 
are defined as molecules that form part of the original 
target molecule set (T) and have a path between the tar-
get molecule and the end node in question ( mi).

Considering all paths between mti and mi , we calculate 
the product of the reaction nodes along each path,

keeping the maximum score of these for each mti and 
average across all mt.

(1)P(vi, vj) = {vi, ..., vj} : vivi+1 ∈ E

(2)mi =











vi ∈ M
Outi = 0

vi /∈ B
min(|P(mti ,mi)|) < L

(3)mt =

{

vi ∈ T
∃P(vi,mi)

(4)x =

{

vi /∈ M
vi ∈ P(mti ,mi)

(5)scoremi =

∑|mt |

j=1
max(

∏
|P(mtj

,mi)|

k=1
P(xk))

|mt |

By calculating the score for each relevant end node 
( scoremi ) we can rank those and select the top n high-
est scores as promising nodes to be followed up by the 
single-step model. This is also described as pseudocode 
in Supp Figs.  8,  9. We focus on using a scoring-based 
expansion, skewing towards selecting reactants which are 
shared across multiple target molecules. The multi-step 
search is implemented such that the single-step model 
can use the native GPU inference setting, allowing for 
faster batch inference of the top n most promising nodes.

The same process is carried out until any stop criteria 
are reached. These include maximum time or iterations 
per molecule as well as all potential molecule nodes 
being explored and flagged as either building blocks (B) 
or the maximum route length (L). Both maximum time 
and iterations are set according to the number of target 
molecules in the compound library, due to the use of 
batch inference the total number of iterations is further 
divided by the batch size.

Once the search is finalized, the proposed routes must 
be extracted. The search graph is pruned to remove any 
paths that do not end in building blocks, leaving only 
routes with actionable proposals, as routes that do not 
end in building blocks cannot be considered solved. The 
proposed building blocks in the search graph are scored 
by the product of the probabilities of the single-step 
model at each reaction step from every target molecule 
to a given building block, averaged across all target mol-
ecules. The building blocks with the highest score are 
explored first. We parse the search graph to extract the 
relevant route by identifying the highest-scoring linear 
route from each unexplored molecule to an end node. 
The process continues until a complete synthesis tree is 

Fig. 1 Multistep search process. All target molecules (red) are initiated simultaneously. At the first iteration, K sets of reactants are proposed for each 
target molecule, for each set of proposed reactants a reaction node (grey) is added followed by the relevant reactants (blue). The n most promising 
molecule nodes (circled in dark blue) are followed up, and K sets of reactants are proposed for each, with the same process continued iteratively 
until all end nodes are building blocks (yellow) or the time or iteration limit is reached. The retrosynthetic routes are then extracted from the search 
graph. The hypothetical example shown consists of two target molecules, with three sets of reactants proposed for each molecule node (K) 
and four molecule nodes (n) followed up with a maximum of two iterations. Only a sample of the potential extracted routes is shown
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established. This is carried out until all potential build-
ing blocks are explored or the maximum time limit is 
reached. The proposed routes are ranked using the prod-
uct of the single-step model probabilities of each reaction 
step within the route.  The routes are then summarized 
by removing the reaction nodes, as such the final routes 
contain exclusively molecule nodes and directed edges 
linking together the molecule nodes.

Of note, in this work we focus exclusively on using the 
scores from the single-step model, skewing the scores 
towards proposed reactants that are present across multi-
ple target compounds. We differ from using other search 
algorithm implementations such as MCTS or Retro* [9, 
12, 13] given their further computational complexity in 
establishing retrosynthetic routes. Previous work [28, 
30, 31] has shown that MCTS requires a higher num-
ber of model calls while providing a similar solvability of 
compounds, whereas Retro*, when using an additional 
learned scored has minimal effect on the solvability, 
while requiring further training data [13, 30]. Here, we 
propose an initial work based on solely the single-step 
model scores, however the framework is set up such that 
an additional learned score or different single-step model 
could be included.

Experimental Details
To assess the multi-step planning approach, we use the 
extracted routes from the convergent routes dataset. 
We create two convergent routes datasets based on J&J 
ELN [32] data and USPTO [27] data. For the USPTO 
dataset, we use the full reaction dataset, including both 
applications and grants subsets. In the case of USPTO, 
we assume that all data shows positive yield, for J&J ELN 
data we select only reactions with yield ≥ 5% to ensure 
previously successful retrosynthetic routes. We create a 
convergent routes dataset for each reaction dataset, we 
clean and standardize all reactions, stripping salts and 
canonicalizing using RDKit [33], keeping all reported 
stereochemistry information. Products and reactants 
are identified based on the atom-mapping from Gra-
phormerMapper [34]. Project identifiers for J&J ELN and 
patent identifiers for USPTO are used to delimit docu-
ments. From J&J ELN and USPTO, we select 500 and 
1000 convergent routes from the respective datasets to 
create a convergent route hold-out test set.

To train the single-step model, we clean and standard-
ize all reactions, defining products and reactants as with 
the convergent routes dataset. From there, we remove all 
reactions that form part of routes in the respective con-
vergent routes test set, then deduplicate the remaining 
routes, removing any reactions with multiple products. 
We carry out a random 80%/10%/10% train/validation/
test split with each reaction dataset. We fine-tune the 

pre-trained Chemformer [2] model based on each reac-
tion dataset, the Chemformer model is fine-tuned to pro-
pose reactant SMILES based on product SMILES. We 
use the default hyperparameters, and training methodol-
ogy provided by the original publication and detailed in 
their GitHub repository.

For the multi-step search, we consider the target mol-
ecules from each convergent route a library of molecules, 
giving one compound library per convergent route. In the 
case of the individual compounds comparison, we run 
each molecule individually, irrespective of the conver-
gent route of origin. Unless otherwise stated, the building 
block set is composed of all end nodes across each route 
from the respective convergent test set. It comprises 
almost 5000 molecules for J&J ELN and 10,239 molecules 
for USPTO convergent test sets. We explore ten molecule 
nodes of interest (n) at each iteration and set the beam 
size (K) of the single-step model to 5, using the beam 
sampling of the single-step model to calculate the scores 
of each node as defined in the previous section. Only five 
potential reaction steps for each node are proposed since 
accurate next reaction steps are commonly found within 
the top 5 suggestions of the single-step model [35]. For 
the search, we set a maximum of 2 min, maximum route 
length (depth) of eight reaction steps and 300 iterations 
per molecule i.e. rounds of selecting and following up 
on promising nodes. Additionally, we set a limit of 300 
target molecules per convergent search. All multi-step 
searches are run on a single Tesla T4 GPU with 8 CPU 
nodes. All multi-step searches are run on a single Tesla 
T4 GPU with 8 CPU nodes.

Evaluation
The proposed routes are analyzed using solvability, accu-
racy, and F1 score as metrics (Table  1). These routes 
consist exclusively of molecule nodes and edges linking 
these together, which can be interpreted as reactions. 
We address two types of solvability, complete and partial. 
Complete solvability refers to whether the top-N route 
is a singular to convergent route that jointly synthesizes 
all target molecules within a search. Partial solvability, 
on the other hand, refers to whether all target molecules 
feature in at least one route up to top-N, irrespective of 
whether the compounds are synthesized conjointly. The 
accuracy metric (Supp Eq.  A1) assesses if there is an 
exact match between the proposed route at top-N and 
the experimentally validated route from the convergent 
routes test set. Accuracy requires that the exact com-
pounds are used throughout the route in the same order 
and is assessed by comparing the reactions (edges) of 
both routes. We further analyze the intermediate accu-
racy, which scores whether we identify the same com-
mon intermediate in the proposed and experimentally 
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validated route. Accuracy is a very stringent metric, 
particularly in retrosynthesis, given that a slight change 
in a molecule, e.g., having a different halogen atom used 
as a functionality to couple two building blocks, will 
lead the route to be labeled as inaccurate. We introduce 
an F1 score to quantify the similarity between the pro-
posed routes and the experimentally validated route, we 
combine two F1 scores, based on the reactions (edges) 
and the molecules (nodes). In the case of the reaction F1 
score (Supp Eq.  A2), true positives are defined as reac-
tions that are correctly identified in the route, false nega-
tives are reactions that are not present in the proposed 
route compared to the experimentally validated route, 
and false positives are reactions that are present in the 
proposed route but not the experimentally validated 
route. The same concept applies to the molecule F1 score 
(Supp Eq.  A3), except that the target molecules are not 
included in the comparison to avoid positively skewing 
the metric towards short routes with multiple target mol-
ecules. The F1 score is calculated separately for the reac-
tions (edges) and for the molecules (nodes). The average 
of these two metrics is used and referred to as the F1 
score (Supp Eq. A4) in the text, a visual example of the F1 
score calculation is provided in Supp Fig. 10.

To further understand the chemistry of the routes, 
we additionally assess the reaction names and types of 
the proposed routes, using NameRxn [36]. We extract 
the reaction type from each reactants-product pair in 
the highest-ranked proposed route, carrying out the 
same process for the experimentally validated route. We 
compare the set of reaction names from the experimen-
tally validated route with the proposed routes, ignoring 
instances of Unrecognized reaction type, to assess the 
reaction type accuracy of the proposed routes. We then 
map these reaction types to the corresponding reaction 
class, a higher-level definition, to also calculate the reac-
tion class accuracy.

Results & discussion
Convergent routes dataset
Using J&J ELN and USPTO data separately we create a 
convergent route dataset of each reaction dataset. Con-
vergent routes are highly relevant in medicinal chemistry 
with the majority of syntheses involving multiple target 
molecules, we find that 79% of all reactions from J&J ELN 
form part of a convergent route, with 85% of all docu-
ments containing at least one convergent route. We iden-
tify 94,833 convergent routes within USPTO across all 
3.7 million original reactions. In this case, we notice that 
70% of all USPTO reactions are involved in convergent 
routes, with 37% of all documents containing at least one 
convergent route. This lower document coverage reflects 
the skewed distribution of the number of reactions per 
patent within the USPTO dataset, with 27% of all USPTO 
patents having only one associated reaction and over half 
of all projects containing four or fewer reactions (Supp 
Fig. 11), with previous works [28] also retrieving a rela-
tively low number of patents for single molecule retrosyn-
thetic routes. Convergent routes are generally convoluted 
routes, with respectively 61% and 72% of J&J ELN and 
USPTO routes having more than two target molecules 
and more than two reaction steps depth (Fig. 2). Across 
both J&J ELN and USPTO, most convergent routes have 
a single common intermediate across all target molecules 
(Supp Fig.  12). J&J ELN convergent routes tend to have 
more target molecules, whereas USPTO routes tend to 
be longer in depth. Importantly, convergent routes are 
often applied to reduce the number of reactions neces-
sary to synthesize a set of target molecules, thus also 
reducing the time and cost of the synthesis. In the case 
of USPTO, we find that the number of reactions required 
for the synthesis of 988,476 molecules is reduced by 40%, 
going from 2,883,640 reactions when analyzing the syn-
thesis routes of target molecules individually to 1,770,237 
reactions when reusing reactions through a convergent 

Table 1 Summary of metrics used to assess retrosynthetic routes

Metric Description

Solvability Complete Top‑N route is a singular convergent route that jointly synthesizes all target molecules in compound library

Partial All target molecules feature in at least one route up to top‑N, irrespective of whether the compounds are synthesized 
conjointly

Individual At least one synthesis route is proposed for a given compound, compounds are addressed individually irrespective of com‑
pound library

Accuracy Route Exact match between the proposed route at top‑N and the experimentally validated route

Intermediate Exact match between the proposed common intermediates at top‑N and common intermediates in experimentally vali‑
dated route

Individual Exact match between the proposed route at top‑N and the experimentally validated route on an individual compound level

F1 score Averaged harmonic mean of recall and precision based on proposed reactants and reactions as compared to experimentally 
validated route
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route approach and addressing projects from a com-
pound library perspective. Overall, the high prevalence of 
convergent routes shows the propensity for synthesis of 
multiple target molecules instead of focusing on a singu-
lar compound of interest.

Multi‑step search
We develop a new multi-step synthesis planning 
framework that instantiates multiple target molecules 

simultaneously, with the aim of convergent route devel-
opment. Using the convergent route datasets developed 
for J&J ELN and USPTO, we can search for convergent 
routes for real compound libraries to assess the utility 
of the approach. We randomly select 500 and 1000 con-
vergent routes from J&J ELN and USPTO, respectively, 
as the multi-step test set. For the single-step model, we 
fine-tune the pre-trained Chemformer on each dataset, 

Fig. 2 Top panel: Distribution of the number of target molecules and average route length for convergent routes per convergent route from J&J 
ELN and USPTO. Bottom panels: Example convergent routes from USPTO, red nodes show target molecules, pink nodes are intermediates that are 
used more than once, blue nodes are intermediates that are only used once, and yellow nodes show building blocks. The shown routes are 
highlighted in green in the top panel
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J&J ELN and USPTO, respectively, using the remaining 
data to carry out a train/validation/test split.

Both single-step models show a similar pattern of accu-
racy across the top-N, achieving high accuracy by top-10, 
particularly in the case of the J&J ELN-trained model. 
The J&J ELN single-step model reaches 85% accuracy 
at top-10 whereas USPTO reaches 75% accuracy at top-
10, with this pattern of 10% difference present across 
all top-N (Fig. 3). In the case of USPTO, we see that the 
model performance is slightly lower as compared to the 
evaluation on USPTO-PaRoutes [35], which undergoes 
further data preparation steps. We use these models to 
guide the respective multi-step synthesis planning for 
each library of target molecules from the J&J ELN and 
USPTO test sets.

J&J ELN test set routes tend to be smaller than USPTO 
convergent routes, given that J&J ELN convergent routes 
tend to have fewer target molecules and common inter-
mediates (Table  2). USPTO routes tend to have more 

building blocks, potentially due to using less advanced 
molecules as starting points. When applying the com-
pound libraries to the multi-step search, the approach 
proposes 75 and 88 routes per compound library on 
average for J&J ELN and USPTO, respectively. Interest-
ingly, we have a variety of potential common intermedi-
ates identified for each compound library, with 17 unique 
common intermediate molecule combinations for J&J 
ELN and 22 unique common intermediate molecule 
combinations for USPTO within the top-100 routes for 
each compound library. This shows that the proposed 
routes show diversity, producing multiple options for 
the potential synthesis of the compound library. Within 
the proposed routes, the highest-ranked route tends to 
have characteristics similar to the experimentally vali-
dated route, sharing a comparable number of common 
intermediates, building blocks, and target molecules per 
common intermediate (Table  3). Additionally, we see 
that the proposed routes tend to show a slightly higher 

Fig. 3 Single‑step accuracy of finetuned Chemformer for J&J ELN and USPTO reaction datasets

Table 2 Average statistics of convergent routes test set

J&J ELN USPTO

Target molecules 7.4 9.7

Route Length 2.5 3.3

Common intermediates 2.9 4.0

Building blocks 6.2 10.1

Molecules 16.8 27.3

Reactions 10.6 17.2

Reactants per reaction 1.6 1.6

Target molecules per intermediate 4.3 4.8

Table 3 Average statistics of the highest‑ranked proposed route

J&J ELN USPTO

Target Molecules 5.2 7.8

Route Length 4.2 4.4

Common intermediates 2.3 3.6

Building blocks 6.5 10.3

Molecules 20.7 31.1

Reactions 14.2 20.8

Reactants per reaction 1.5 1.5

Target molecules per intermediate 3.9 4.5
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number of molecules and reactions while maintaining a 
similar number of reactants per reaction. This indicates 
that additional reaction steps are added in the proposed 
routes, leading to longer synthesis paths overall.

Using these libraries of target molecules as test com-
pounds, the multi-step search can typically identify a 
route to convergently synthesize all target molecules 
within each library. This shows that the approach can effi-
ciently produce convergent routes within a single search, 
leading to more streamlined and cost-effective synthesis. 
Using the convergent route multi-step search approach, 
we can produce a single convergent route for 81% of all 
explored libraries in the case of J&J ELN (Fig. 4) within 
the top 10 proposed routes, rising to 87.5% when consid-
ering solvability for all explored target molecules within 
each library, irrespective of whether the molecules are 
synthesized across one or more routes. We find a conver-
gent synthesis route for 89.4% of all USPTO compound 
libraries, rising to 94.1% for compound libraries where all 
target molecules are not identified in the same synthesis 
route. The small difference between complete and partial 
solvability shows that the approach can suggest conver-
gent routes in the majority of cases, with a lack of syn-
thesizability, i.e., reaching building blocks, being a larger 
bottleneck than identifying a convergent route across the 
compound library, with 97.1% and 99% of compounds 
per compound library forming part of a singular pro-
posed retrosynthetic route for J&J ELN and USPTO.

Importantly, this approach proposes routes for as many 
target molecules as possible, irrespective of whether they 
are conjointly synthesized, so that we can maximize the 

utility of the retrosynthetic routes. When considering the 
solvability of individual compounds across all compound 
libraries, we identify retrosynthetic routes for 97.5% 
and 99.5% of all individual compounds for J&J ELN and 
USPTO, respectively. This highlights the value of using 
convergent routes search to increase the solvability of the 
multi-step search, given that the convergent approach 
can aid in resolving a greater number of target molecules.

Using the convergent route dataset, we can further 
explore the accuracy of the proposed retrosynthetic 
routes. This poses a much more complex challenge, given 
the numerous alternatives that can be used for com-
pound synthesis [37]. We replicate 20.0% of the experi-
mentally validated routes within the top 10 proposed 
routes for J&J ELN, with a slightly higher accuracy of 
20.9% for USPTO routes (Fig.  3). Interestingly, we cor-
rectly identified the common intermediate for 41.1% of 
J&J ELN and 47.0% of USPTO of the target molecule sets 
within the top 10 proposed routes. This implies that the 
suggested routes do not follow the exact reaction steps as 
the experimentally validated route however they suggest 
routes similar to those within the experimentally vali-
dated routes, particularly considering that we identify the 
same pattern in both datasets.

Current works for convergent routes require the com-
bination of precomputed retrosynthetic routes [20, 22]. 
As such, we can further compare this approach to devel-
oping a single route for each compound within the com-
pound library and then combining the routes to identify 
convergent routes. In this case, the analysis is run indi-
vidually on each compound within the compound library, 

Fig. 4 Solvability, accuracy, and F1 score on convergent test set compared to experimentally validated routes
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where we can also analyze the proposed convergent 
routes on a per-compound basis. When using the com-
pounds individually we find that we produce routes for 
96.4% and 99.2% of compounds individually for J&J ELN 
and USPTO (Fig. 5), this is slightly below the solvability 
achieved on a per compound basis for the convergent 
route approach, which provides 97.5% and 99.5% individ-
ual compound solvability respectively.

This indicates that including additional compounds 
can allow the search to prioritize lower-ranked reac-
tions that it otherwise would not explore within an indi-
vidual setting. Thus, we find that by using the convergent 
approach, we can provide routes for a larger propor-
tion of the target molecules overall. However, this does 
come at a loss for individual accuracy, and we find that 

running compounds individually, increases individual 
accuracy by 7% across the board for both J&J ELN and 
USPTO. Despite the individual compound approach 
providing a higher accuracy on the individual routes, we 
noted that when we analyze the accuracy across a com-
pound library, assessing whether all compounds within a 
compound library accurately replicate the experimentally 
validated synthesis route, that there is minimal difference 
in their accuracy. Importantly, the convergent method 
does not require a combinatorial approach which would 
incur Nmt route combinations, where N is the number 
of routes considered per target molecule, and mt denotes 
the number of target molecules in the compound library, 
leading to massive time frames as the number of target 
molecules increases (Supp Fig. 14). Moreover, we explore 

Fig. 5 Top: Route accuracy of individual compounds using an individual compound approach and convergent approach, only routes with at least 
two reaction steps are considered. Bottom: Convergent accuracy based on compound libraries, using an individual approach where if all individual 
compounds are accurate, then the combined route is assumed to be accurate, and the convergent approach proposes a convergent route
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the comparison of an additional real world use case 
where we aim to synthesize the compound libraries using 
a real-world building block set, eMolecules [38]. Using a 
random selection of 10% of each compound library test 
set we produce a complete convergent route for 63% and 
74% of J&J ELN and USPTO, respectively. Importantly, 
when we compare these routes to the alternative of com-
bining the top-1 route from the individual search, under 
the same testing conditions, we find that through the 
convergent approach we conjointly synthesize 29% and 
22% more compounds from the J&J ELN and USPTO 
compound libraries while using 20% more target mol-
ecules per common intermediate, an increase in the 
number of target molecules that can be synthesized while 
reusing the same proposed reactants.

Solvability and accuracy, however, do not tell the whole 
story of the suitability of the proposed convergent ret-
rosynthetic routes, given that within chemistry and par-
ticularly retrosynthesis [39], multiple paths can lead to 
the synthesis of a compound. Similarity in routes can be 
hard to quantify, particularly in the case of convergent 
routes, given that one change in reactant can lead the 
entire route to be deemed inaccurate. Here, we propose 
to use the F1 score as a metric to quantify the similar-
ity of proposed and experimentally validated routes. By 
calculating and averaging the F1 score of the proposed 
reactions and molecules, we find that over half of all 
libraries have an F1 score higher than 0.55 by the top 5 
(Fig. 4), and more than 34% of routes within the top 10 
have an F1-score over 0.75, in both datasets, the individ-
ual molecule and reaction F1 scores can be found in Supp 
Fig. 15. These routes show minor changes to the experi-
mentally validated route, adding additional reaction steps 
or proposing an alternative retrosynthetic path for one 
of the target molecules in the library, as discussed with 
a medicinal chemist. Figure  6 shows examples of pro-
posed routes which are similar route to the experimen-
tally validated route, showing minor differences in the 
proposed route. The target molecules use a slightly dif-
ferent retrosynthetic route for early-stage intermediates 
with greater effects across the convergent route, as noted 
by the decreasing F1 score.

Considering the diversity of the convergent routes 
test set, we can further analyze how routes of varying 
sizes and characteristics perform. Generally, the num-
ber of reaction steps within the convergent route has 
a more pronounced impact on the F1 score than the 
number of target molecules (Supp Fig.  16-17), with 
the F1 score showing a clear downward trend with an 
increasing number of reaction steps, indicating that 
the effect of successive reactions has a greater impact 
than the complexity through the number of target 
molecules. Additionally, if we consider the similarity 

between target molecules, as would naturally occur 
in QSAR studies, we find that more structurally simi-
lar compound libraries tend to have a higher F1 score. 
As the structural similarity decreases half of the com-
pound libraries still have an F1 score of at least 0.5 
by the top 10 (Supp Fig.  18-19), except for compound 
libraries within J&J ELN with a Tanimoto similarity of 
0.2−0.4 which show a slightly lower median of 0.41.

Retrosynthesis is always in the context of feasible 
chemistry, which goes beyond the similarity of individ-
ual compounds within a retrosynthetic route. By assign-
ing reaction types using NameRxn [36] to the proposed 
reactions, we can assess whether the proposed routes are 
the same reaction types as the experimentally validated 
route, despite not going through the same intermediates 
or building blocks. In this case, reaction name is the most 
specific naming, with reaction class being one rank above 
reaction name, where multiple reaction names can fall 
into a singular reaction class [40]. We find that reaction 
name accuracy rises to 31.6% and 27.6% for J&J ELN and 
USPTO at top 5, seeing an increase of over 10% in accu-
racy compared to the retrosynthetic accuracy in the case 
of J&J ELN. This further increases slightly when analyz-
ing reaction class, a more granular naming of the reac-
tion type, to 34.4% and 31.4% for J&J ELN and USPTO. 
Interestingly, we find a minor improvement between 
reaction name and class. Figure 7 shows two routes that 
do not have retrosynthetic accuracy yet if we explore the 
reaction names and classes, we find that 7A proposes the 
same named reactions as the experimentally validated 
route, and despite 7B having an F1-score of 0.85 we find 
that there is an exact match in the reaction classes used. 
Though it could be assumed that an underlying issue is 
the proposal of a slightly different reactant, producing the 
same reaction class but a different reaction name and so 
different reactant, the difference between retrosynthetic 
accuracy, reaction name accuracy, and reaction class 
accuracy shows that there is a more considerable differ-
ence in the exact retrosynthetic reactions than the leav-
ing groups of the proposed reactants.

In summary, we present an open-source multi-step 
synthesis planning framework, which allows the con-
current synthesis of multiple target molecules from 
compound libraries. Furthermore, we provide the pro-
cessing and data for a novel analysis and benchmark of 
the USPTO dataset, focusing on an approach used by 
medicinal chemists of convergent routes. In particular, 
this work focuses solely on the output of the single-step 
model, skewing the search towards convergency. Addi-
tionally, other advances in the field such as MCTS can be 
used to explore the possibility of developing further scor-
ing that identifies compounds that are likely to be com-
mon intermediates and useful for convergent synthesis.
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Conclusion
Convergent routes, producing the synthesis of multi-
ple target molecules from a shared synthetic path, are 
a central effort to accelerate SAR learnings in drug dis-
covery. Here, we introduce a multi-step synthesis plan-
ning approach to develop convergent synthesis routes, 
which can search multiple products and intermediates 
simultaneously. Convergent synthesis planning can 
enhance the overall efficiency and practical applicability 

of retrosynthetic planning, potentially reducing the 
time and cost of synthesis across compound libraries, 
while avoiding the combinatorial explosion of combin-
ing multiple individual routes. We evaluate the multi-
step synthesis planning approach using a novel dataset 
of convergent routes extracted from industry-relevant 
and publicly available datasets, showing that over 70% 
of reactions are found in convergent routes. Using the 
convergent route approach, we identify a convergent 

Fig. 6 Illustrative examples of experimentally validated retrosynthetic routes (left) and highest scoring proposed route (right) from USPTO, each 
panel (A and B) shows a different compound library. Red arrows indicate proposed retrosynthetic steps that differ from the experimentally validated 
route. Paths described as feasible alternatives were defined as such by a medicinal chemist. Full scale versions of each route are available in Supp 
Fig. 20 ‑ 23
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route for over 80% of the test routes and produce a syn-
thesis route for over 97% of compounds. Moreover, the 
approach shows that the proposed routes are similar to 
the experimentally validated routes in over a third of 
the compound libraries, as shown by using a combined 
F1 score to evaluate retrosynthetic routes.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321‑ 025‑ 00953‑1.

Supplementary material 1.

Fig. 7 Illustrative examples of experimentally validated route (left) compared to the proposed route (right). In panel A, the proposed route differs 
from the experimental route in two main areas, however, the reaction types and classes matchup between the routes. In panel B, the proposed 
route is deemed inaccurate and has different reaction types but matching reaction classes. Full scale versions of each route are available in Supp 
Fig. 24–27
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