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Abstract 

Background: Although transcript abundance is often used as a proxy for protein 
abundance, it is an unreliable predictor. As proteins execute biological functions 
and their expression levels influence phenotypic outcomes, we developed a convolu‑
tional neural network (CNN) to predict protein abundances from mRNA abundances, 
protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference 
plant Arabidopsis thaliana (A. thaliana).

Results: After hyperparameter optimization and initial data exploration, we imple‑
mented distinct training modules for value‑based and sequence‑based data. By 
analyzing the learned weights, we revealed common and organism‑specific sequence 
features that influence protein‑to‑mRNA ratios (PTRs), including known and putative 
sequence motifs. Adding condition‑specific protein interaction information identified 
genes correlated with many PTRs but did not improve predictions, likely due to insuf‑
ficient data. The integrated model predicted protein abundance on unseen genes 
with a coefficient of determination  (r2) of 0.30 in H. sapiens and 0.32 in A. thaliana.

Conclusions: For H. sapiens, our model improves prediction performance by nearly 
50% compared to previous sequence‑based approaches, and for A. thaliana it repre‑
sents the first model of its kind. The model’s learned motifs recapitulate known regula‑
tory elements, supporting its utility in systems‑level and hypothesis‑driven research 
approaches related to protein regulation.

Keywords: Translational regulation, Protein‑to‑mRNA ratio, Convolutional neural 
networks, Regression analysis, Explainable AI

Background
For the predictive analysis of biological systems and modeling of molecular processes, it 
is essential to determine the context-dependent quantitative protein inventory. Nearly 
all biological processes, including metabolism, signaling, transport, mechanical func-
tions, and immune responses are mediated by proteins. Hence, precise control of pro-
tein expression is fundamental for all organisms during development and to cope with 
environmental challenges [1, 2]. However, while mRNA concentrations can be readily 
measured by bulk or single-cell sequencing technologies, protein concentrations often 
correlate poorly with mRNA concentrations [3, 4]. Sensitivity analyses of quantitative 
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models [5], and evidence from genome-wide association studies, where variants altering 
gene expression can have major effects on signaling and disease, highlight the impor-
tance of understanding protein concentration changes [6]. Thus, accurate determination 
of protein concentrations in different cell types, in different conditions and of different 
genetic variants is critical for both mechanistic understanding and effective modeling of 
biological systems [7].

The experimental measurement of proteomes remains a technically challenging and 
costly process [8]. By contrast, obtaining systems-level transcriptomic data is both more 
affordable and common [9]. In the absence of direct protein abundance data, analytical 
and modeling approaches either rely on experimental determination of protein concen-
trations for the conditions of interest, which is limited by cost and throughput, or use 
approximations from transcript concentrations. In silico methods that more accurately 
model protein concentration are expected to improve the precision of computational 
analyses. Yet, the complexity of proteostatic regulation currently prevents the scaling 
of mechanism-based modeling approaches [10–15]. Recent advances in artificial intel-
ligence and machine learning have enabled the development of quantitative predictive 
models for various challenging biological problems [16–21]. These achievements have 
been facilitated by the increasing availability of systematic large datasets for training and 
evaluation [22].

With matched transcriptome-proteome datasets becoming available for both H. sapi-
ens [3] and A. thaliana [4], we sought to leverage these data to more accurately infer 
protein concentrations from mRNA concentrations for unseen genes. Earlier machine 
learning efforts for predicting protein concentrations relied on explicitly defined input 
features of the mRNA, such as start/stop-codon context, or the protein sequence, such 
as linear peptide motifs [17, 23]. To reduce assumptions and limit bias, as well as to 
streamline feature selection, we applied convolutional layers that learn sequence-based 
features directly. We experimentally optimized the CNN architecture and analyzed its 
learned weights to identify sequence features most influential for determining PTRs. 
To begin examining differences and similarities in translational regulation across large 
evolutionary distances, we developed our models in parallel for both H. sapiens and A. 
thaliana.

Methods
Datasets

We used expression data from Wang et al. [3] for H. sapiens and Mergner et al. [4] for A. 
thaliana. In the H. sapiens dataset, transcript abundances were originally normalized as 
fragments per kilobase million (FPKM), while in the A. thaliana dataset they were nor-
malized as transcripts per million (TPM) [24]. Both studies applied a minimum thresh-
old of 1 FPKM or 1 TPM, respectively. To ensure consistency between the datasets we 
converted the H. sapiens transcript data into TPM using the formula TPM = FPKM / 
Σ(FPKM) *  106 [25]. Proteome measurements in both datasets were given as intensity-
based absolute quantification (iBAQ) [26] and were filtered using a minimum intensity 
threshold of 5,000. Because the A. thaliana data were  log2-transformed, we also applied 
 log2-transformations to the H. sapiens data.
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For sequence data, we used the same database releases employed by the respective 
studies for RNA-seq and LC–MS/MS experiments, except that the A. thaliana untrans-
lated regions (UTRs) were taken from a slightly larger release. Specifically, for H. sapi-
ens, we obtained sequence data from Ensembl release 83 [27]. For A. thaliana, we used 
Araport11 release 2016–06 [28] for coding sequence (CDS) and the 2022–09–14 release 
for UTRs. All sequence data were processed by one-hot encoding and then padded to a 
uniform length, ensuring that each input to the model had the same dimensionality.

Machine learning

All experiments were performed in TensorFlow 2.8 [29] using default parameters unless 
stated otherwise. Each experiment was repeated independently five times, and for each 
repetition, we applied tenfold cross-validation. We optimized the models with stochas-
tic gradient descent without momentum. Learning rates were tuned based on the type 
of input features: for codon counts, nucleotide counts, amino acid counts, and start-/
stop-codon context, we used a learning rate of 1*10–3; for single sequence inputs such as 
5’ UTR, 3’ UTR, CDS, and protein sequence, we used 4*10–4; and for experiments that 
combined multiple features, we used 1*10–4. Single-feature experiments were trained 
for 256 epochs, whereas combined-feature experiments ran for 512 epochs, both with a 
batch size of 32. We employed a custom NaN-safe mean squared error (MSE) as the loss 
function to accommodate the varying number of valid data points per gene.

The codon, nucleotide, and amino acid count features were each processed through 
a  log2-transformation followed by a dense layer. The start- and stop-codon context fea-
tures were passed directly to a dense layer. For the 5’ UTR, 3’ UTR, CDS, and protein 
sequences, we employed a single convolutional layer containing 16 filters. The filter size 
was set to 8, 10, or 12 (corresponding to the experiments denoted as 8nt, 10nt, and 12nt, 
respectively) and was multiplied by the dimensionality of the one-hot encoding, which 
was 4 for the 5’ UTR, 3’ UTR, and CDS, and 20 for the protein sequences. Each convo-
lutional layer output then passed through a series of activation and pooling operations, 
including a tanh activation, ReLU activation, sum-pooling, and a  log2-transformation, 
followed by a final dense layer (Fig. 2A, bottom). In the combined-feature experiments, 
we introduced two intermediate dense layers, the first with 32 filters and the second with 
16 filters, before the final dense layer.

In all experiments, the final dense layer consisted of two filters plus a bias term. 
These two outputs represented the parameters a and b in the equation  log2(iBAQ) = a * 
 log2(TPM) + b (Fig. 2A, top). When additional input genes were included, we expanded 
the final dense layer to produce (2 + the number of input genes) outputs. This enabled 
the equation  log2(iBAQ) = a *  log2(TPM) + b + δ *  log2(additionalTPM), where addition-
alTPM is the TPM vector of the additional input genes. The Python implementation of 
these models is provided in the Supplementary Source Code.

Clustering

We performed clustering of the convolutional filters using scikit-learn 1.1 [30] to iden-
tify sequence motifs. Each experiment involved standardizing the filters independently. 
We then applied a cutoff of 0.2 on the standard deviation within each position of the 
filter to identify positions with sufficient variation in nucleotides or amino acids. After 



Page 4 of 15Schwehn and Falter‑Braun  BioData Mining           (2025) 18:18 

this filtering step, we duplicated, padded, and shifted each filter to generate all possible 
offset combinations. We clustered the resulting matrices for each feature using OPTICS 
[31] with a Euclidean distance. For nucleotide input features, we used an xi value of  10–2, 
and for amino acid input features, we used 5*10–3. After clustering, we sorted the clus-
ters from largest to smallest and removed redundant filters, ensuring each filter was only 
represented once despite initial duplications and shifts. For visualization, we scaled the 
clusters so that their largest peak had a maximum value of 1. We then centered the clus-
ters in this peak and removed nucleotides with values ≤ 0.1.

Cross‑correlation

In the cross-correlation experiment (Fig. 3D), we conducted a tenfold cross-validation 
with 5 independent repeats. For each repeat and fold, we computed the linear regres-
sion and MSE for every possible gene–gene combination. We then averaged these MSE 
values across all repeats and folds. The resulting output matrices measured 18,200 by 
18,200 for H. sapiens and 25,285 by 25,285 for A. thaliana. We replaced values involving 
gene pairs with fewer than 21 matched data points with NaN. Subsequently, we specifi-
cally searched for pairs with NaN-safe minimum values.

Gene ontology

We performed functional enrichment analysis using the Panther web service 18.0 [32] 
and the Gene Ontology database, accessed in May 2023 [33]. We set the annotation to 
‘GO biological process complete’, used Fisher’s exact test as the test type, and applied a 
False Discovery Rate correction.

Results & discussion
Predicting protein from RNA levels can be accessed at different levels of resolution. We 
first explored how well the relationship between transcript level and protein level can be 
predicted from sequence features. We analyzed two matched transcriptome-proteome 
datasets spanning 29 tissues for H. sapiens [3] and 30 tissues for A. thaliana [4] (Meth-
ods). We began by examining the distribution of data points in both species (Fig. 1A). 
For each organism, we grouped genes based on their number of matched mRNA-protein 
data points into two categories: genes with 20 or more data points and those with fewer 
than 20. To reduce statistical artifacts and enhance robustness, we focused subsequent 
analyses and training on genes with at least 21 matched data points. This subset com-
prised 7,606 H. sapiens and 11,230 A. thaliana genes. Genes represented by exactly 20 
matched data points – 205 H. sapiens and 336 A. thaliana – were reserved as a hold-out 
set for independent testing.

We first determined which of four commonly used regression methods best captured 
the relationship between mRNA and protein concentrations. Using five independent 
repeats of a tenfold cross-validation that excluded tissues, we evaluated prediction qual-
ity with the coefficient of determination  (r2) (Supplementary Fig. 1A). By definition,  r2 
ranges from negative infinity to 1, where 0 corresponds to the mean of the target dis-
tribution – in this case, the average protein concentrations across all tissues. Linear 
regression produced the most reliable predictions and thus served as the baseline for 
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subsequent analyses. More complex regressors, such as quadratic models, were less 
robust, a likely indication of overfitting due to limited data points.

We also examined the common assumption that changes in transcript abundances 
directly reflect protein abundance changes. To test this, we calculated a tissue-specific 
 log2 iBAQ  (iBAQSPEC) value as the product of the average  log2-transformed protein 
abundance  (iBAQAVG) and the ratio of tissue-specific  (TPMSPEC) to average  (TPMAVG) 
 log2-transformed transcript abundance  (iBAQSPEC =  iBAQAVG *  TPMSPEC/TPMAVG). 
This approach yielded negative  r2 values for both organisms (H. sapiens:  r2 = −1.5; A. 
thaliana:  r2 = −3.4), suggesting that simply normalizing protein abundances by changes 
in transcript abundances is inferior to using average protein abundances alone.

To investigate whether linear regression faces inherent limitations, we grouped genes 
based on their linear regression gradients and classified the resulting fits into two catego-
ries: good  (r2 ≥ 0.7) and poor  (r2 < 0.7). The distribution of gradients was approximately 
Gaussian for both species and showed no systematic bias related to fit quality, as both 
good and poor fits were evenly represented across the range (Fig. 1B). For H. sapiens, 
this distribution was more narrowly centered, which may be due to technical differences 
in data processing or reflect distinct aspects of translational regulation compared to A. 
thaliana. Notably, we observed a subset of genes in both species that exhibited negative 
gradients yet still achieved high  r2 values.

Exploring how the number of matched data points affects extrapolation quality 
reveals that too few data points hinder the identification of consistent relationships, 
but once at least 20 are available, predictions become fairly robust (Supplementary 

Fig. 1 Analysis of matched transcriptome‑proteome datasets from H. sapiens and A. thaliana. A Genes 
grouped based on the number of valid data points: genes with ≥ 20 data points are colored, genes with 
fewer than 20 are shown in gray. B Distribution of linear regression gradients. Poor‑quality regressions 
 (r2 < 0.7) are shaded in gray. C Average transcript abundances plotted against the variance of transcript 
and protein abundances (left: H. sapiens, right: A. thaliana). D Representative examples within the indicated 
gradient bin. The top panels show the 100th best‑fitting gene, and the bottom panels show the 100th 
worst‑fitting gene. E Histogram and average values for genes in the indicated gradient bin
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Fig. 1B). Since the total count of matched data points depends on both the number 
per gene and how many genes populate each bin, excluding genes with fewer matched 
data points does not notably reduce the available dataset (Supplementary Fig.  1C). 
Overall, we used 213,444 of 256,551 (83%) available data points for H. sapiens and 
322,197 of 379,611 (85%) for A. thaliana in our training and testing.

We next explored how average transcript abundances influence the variance in 
both transcript and protein abundances (Fig.  1C). In both H. sapiens and A. thali-
ana, the highest variance occurs at  log2 TPM between 3 and 5. While the average 
 log2 TPM variance is significantly lower in H. sapiens than in A. thaliana (P < 2 *  10–9, 
Mann–Whitney U test), the protein variance does not differ substantially (P = 0.25, 
Mann–Whitney U test). Even though low-abundance transcripts were readily detect-
able, their corresponding proteins were not as easily measured at the lower end of the 
transcript scale, giving the variance distribution a truncated appearance (Fig. 1D, E).

Fig. 2 Overview of sequence‑based experiments. A Schematic representation of the two sequence‑based 
front‑end modules. B Predictive performance of each sequence input feature during cross‑validation. 
Numbers indicate either the nucleotide shift of the codon count, the range of the context for 
start‑/stop‑context, or the filter size of the convolutional layers. C Learned weights for amino acid usage in 
the single‑feature model. D Learned weights for codon usage in the combined‑feature model (left: H. sapiens, 
right: A. thaliana). E Learned weights for start‑ and stop‑codon context in the combined‑feature model 
(top panels: start‑codon context, bottom panels: stop‑codon context, left: H. sapiens, right: A. thaliana). F 
Largest motif clusters identified in both the single‑feature model and the combined‑feature model for each 
sequence input feature (left: H. sapiens, right: A. thaliana)
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For illustration, we plotted the 100th best- and worst-fitting gene within the indi-
cated gradient bin for both species. Notably, several genes with a negative gradient 
(a < −0.2) are not statistical artefacts; instead, they show a clear trend across many 
data points. Although on average genes with negative gradients have the lowest coef-
ficient of determination, more than half of them still achieve a very robust  r2 ≥ 0.7. 
Surprisingly, nearly a quarter of all analyzed genes have gradients close to zero, indi-
cating that increases in mRNA concentration do not substantially affect protein con-
centration under the measured steady-state conditions. About 85% of these genes 
display stable protein concentrations, while some poor fits resemble non-linear point 
clouds, suggesting more complex regulatory mechanisms at play.

Functionally, genes with negative gradient (a < −0.2) and robust fits  (r2 ≥ 0.7) are 
associated with core cell regulatory processes in both species [32]. In H. sapiens, these 
genes are enriched in functions such as ’translation’ (FDR = 2.5 *  10–46, Fisher’s exact 
test), ‘gene expression’ (FDR = 6.9 *  10–31, Fisher’s exact test), and ‘metabolic process’ 
(FDR = 8.6 *  10–24, Fisher’s exact test). Similarly, in A. thaliana, the corresponding 
functions include ‘protein metabolic process’ (FDR = 4.1 *  10–7, Fisher’s exact test), 
‘macromolecule metabolic process’ (FDR = 9.6 *  10–7, Fisher’s exact test), and ‘intra-
cellular transport’ (FDR = 7.0 *  10–6, Fisher’s exact test) (Supplementary Table 1).

To develop a linear regressor for predicting protein abundance – specifically the 
gradient (a) and offset (b) of the linear relationship between protein to RNA concen-
trations – we first sought to identify the most informative features. This helped us 
understand how different parts of the mRNA and the protein sequence contribute 
to the gradient (representing the PTR). At the same time, it allowed for individual 
hyperparameter optimization for each input feature.

We implemented two distinct front-end modules, each tailored to different input 
data types. For histogram-like and fixed-length sequence features (such as codon, 

Fig. 3 Overview of cell context‑specific experiments. A Expanded sequence‑based model architecture 
incorporating additional context‑dependent input genes. B Histogram of manually selected GO terms of 
potential regulatory genes. C Predictive performance of each tested input feature during cross‑validation. 
Dotted lines indicate the best‑performing model from previous experiments. D Linear cross‑correlation of all 
gene–gene combinations. Dotted lines indicate cutoffs for the top 10, 20, and 40 most correlated genes
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nucleotide, and amino acid counts, as well as start-/stop-codon context), we employed 
two parallel dense layers combined with a bias operator to predict a and b (the ‘dense 
module’) (Fig. 2A, top). For identifying linear motifs within continuous sequences (5’ 
and 3’ UTRs, coding sequences (CDS), and the translated protein sequence (PEP)), 
we applied a convolutional module that uses sliding windows (Fig. 2A, bottom, Meth-
ods), followed by two parallel dense layers combined with bias operators to predict a 
and b (Fig. 2A, top).

Figure 2B shows the predictive power of each sequence feature during cross-valida-
tion. Ultimately, we integrated the modules representing all features into a single model, 
optionally adding one or two additional dense layers. The combined-feature model with 
two dense layers achieved an average  r2 of 0.30 for H. sapiens and 0.32 for A. thaliana 
on independent test data. The difference in performance might stem from inconsisten-
cies in data quality, as variations in methodology have been shown to significantly affect 
mRNA-protein correlations [34]. We also tested whether combining both datasets might 
leverage any shared patterns in translational regulation. However, training a joint model 
for both organisms reduced performance in each by more than two percentage points 
(not shown). Likewise, a minimal model that omitted potentially redundant information 
showed a lower  r2, indicating that all sequence features contribute valuable information 
(not shown).

Among the ‘dense module’ features, codon counts were most informative for A. thali-
ana, while amino acid counts performed best for H. sapiens. This finding aligns with 
previous studies, which identified simple sequence features, such as codon and nucleo-
tide counts, as the most significant predictors of protein concentrations [35]. Somewhat 
surprisingly, out-of-frame codon counts were only slightly less predictive than in-frame 
codon counts. Given the strong predictive value of the amino acid counts, it seems 
unlikely that nucleotide identity alone, independent of coding potential, influences the 
PTR. A more plausible explanation is that even when the reading frame is shifted, the 
resulting codon counts still capture underlying trends in overall amino acid composi-
tion, albeit in a scrambled form. This interpretation is supported by the observation that 
a + 2 shift in the reading frame outperforms a + 1 shift. Shifting by + 2 bases preserves 
the connection between the first two nucleotides of each codon, discarding mainly the 
less informative wobble position, and thus retains a closer approximation of the amino 
acid composition.

Among the “convolutional module” features, the coding sequence stands out as the 
most informative for predicting protein abundance, especially when examined in its 
translated form. While most features show slightly better performance in A. thaliana, 
the predictive power of 5’ UTR motifs is virtually identical for both organisms. In con-
trast, the 3’ UTRs differ substantially in their predictive utility, with human 3’ UTRs 
proving more challenging (Fig. 2B). This may reflect the complexity introduced by the 
generally longer 3’ UTRs in H. sapiens, which complicates identifying stable, informative 
motifs. Notably, the predictive values of the 5’ and 3’ UTR nucleotide counts from the 
dense module are indistinguishable, especially in H. sapiens.

To pinpoint which features drive protein abundance prediction, we extracted the 
learned weights for the gradient parameter (a) from both the combined and single-
feature models across all repeats and folds, visualizing them as averaged heatmaps 
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(Fig.  2C-F, Supplementary Fig.  2A-D). In the combined-feature models, these weights 
are generally smaller than in the single-feature models. While the overall trends remain 
similar, some signals become weaker or even disappear in the combined-feature mod-
els. This suggests partial redundancy among features, such as between codon and amino 
acid counts, and that the final dense layer sums all weights without additional scaling. 
To highlight variations in codon usage and focus on the non-fixed parts of the start- 
and stop-codon contexts, we truncated the color scales at 1 for the single-feature model 
visualization.

For most features, we observed both commonalities and clear differences between H. 
sapiens and A. thaliana, helping to explain why modeling PTRs jointly for both species 
reduces predictive performance. Examining amino acid counts, we found that only a few 
amino acids were strongly informative, even in the single-feature module (Fig. 2C). In 
H. sapiens, the charged aspartate (D) and lysine (K) positively influence PTRs, while leu-
cine (L) and serine (S) have a negative impact. By contrast, in A. thaliana, D exerts a 
negative effect, and isoleucine (I), which shows no effect in humans, has a strong posi-
tive impact. Overall, hydrophobic amino acids tend to contribute more positively to PTR 
predictions in plants than in humans. This may reflect the differing temperature ranges 
in which these proteins function organisms thrive – 37 °C for humans versus a variable 
range (4 °C to over 30 °C) for A. thaliana – imposing distinct biophysical constraints on 
protein stability and abundance.

Redundant codons also seem to enable finer tuning of PTRs. For example, both S and 
arginine (R) are encoded by six codons, and within these sets, certain codons increase 
PTR while others reduce it. In H. sapiens, AAG for R is positively weighted, whereas 
CGA is negatively weighted. Similarly, in A. thaliana, AGC for S is positive, while UCA 
reduces the PTR (Fig. 2D).

Next, we examined the sequence context of start- and stop-codons in the combined-
feature model. In both organisms, the most prominent positive impact arises from a 
cytosine (C) at the + 5-position relative to the start codon (Fig. 2E, top panels). Intrigu-
ingly, a study in yeast that investigated ribosome occupancy and translational efficiency 
also identified a + 5 C and a weaker enrichment for uracil (U) at the + 4 and + 6 posi-
tions [36]. In our data, the effect of the + 5 C is strong in both human and plants, with 
an additional contribution from U at the + 4 position in humans (Fig. 2E). Furthermore, 
the presence of adenine (A) before the ATG codon in both species aligns with patterns 
observed in yeast, where efficiently translated genes also show purines (A or a guanine 
(G)), in the −3 position, known as the Kozak sequence (A/G)CCA UGG  [37]. Our results 
suggest slight deviations from this canonical motif, with an A at the −1 position and a U 
at the + 1 position exerting a stronger positive influence than the classic C and G at these 
positions.

Like the start context, we also see consistent patterns around the stop codon (Fig. 2E, 
bottom panels). In both organisms, a C at the + 1 position following the stop codon and 
a G at the + 3 position strongly reduce the predicted PTR. By contrast, substituting a U 
at the + 1 position increases the PTR in humans.

To further understand the patterns of the convolutional filters, we clustered the 
learned weights from each repeat and fold, incorporating all possible shifted com-
binations. After clustering each experiment and species separately, we examined the 
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resulting motifs. Similar to the start- and stop-codon context, the convolutional mod-
ule recovered numerous known motifs with well-documented biological significance 
and mechanisms. For example, the CUC UCU  motif identified in the 5’ UTRs of A. 
thaliana corresponds to a binding site for polypyrimidine tract-binding proteins, 
which are involved in various aspects of RNA metabolism [38]. In the 3’ UTR of A. 
thaliana, the UGUA motif, visible in the single-feature model (Fig. 2F, right, panel 1), 
is known to bind the cleavage factor  Im [39]. Likewise, the UAU AUA  motif found in 
A. thaliana 3’ UTRs, was previously described in yeast as a stability regulator [40]. In 
humans, a G-quadruplex motif in the 5’ UTR of oncogenes has been shown to mod-
ulate translation [41]. Interestingly, the strong weight assigned to this motif in the 
human CDS suggests that its functional impact may not be strictly confined to the 5’ 
UTR, indicating some positional flexibility in its regulatory role.

Many of the motifs discovered by the convolutional module have been described 
previously, with their molecular mechanisms already established. Their recurrence 
here reinforces their importance and suggests that motifs not yet characterized could 
also be functionally relevant. However, it is crucial to consider that the extracted 
weights reflect patterns learned by the model rather than direct biological enti-
ties. For instance, the highest scoring 3’ UTR motif found by the combined-feature 
model in A. thaliana includes both the UAU AUA  motif and the UGUA motif identi-
fied by the single-feature model. In this way, the extracted weights may represent a 
blend of functional sequence motifs that influence PTR through diverse regulatory 
mechanisms.

Overall, we observe substantial variation in the predictive power of different fea-
tures and only modest improvements when combining all features compared to using 
the single best feature alone. This finding suggests that we have largely captured 
the information provided by local one-dimensional sequence features. The remain-
ing unexplained variance likely reflects more complex, context- and environment-
dependent regulatory mechanisms, as well as interactions among distant regulatory 
elements within individual RNA molecules.

We next considered whether additional context-dependent information might 
improve protein abundance predictions. We modified our model architecture to com-
pute a sequence-based vector δ, which was then used in a dot product with the mRNA 
concentrations of selected genes (Fig. 3A, Material and Methods). We hypothesized 
that these genes, potentially involved in proteostasis, or reflective of general cell state, 
such as kinases, could provide insight into PTR variance (Fig.  3B). As controls, we 
used randomly selected gene sets of the same size. Surprisingly, none of the tested 
gene sets improved the model’s prediction in any meaningful way (Fig. 3C). Some sets 
slightly reduced performance, while the random controls remained unchanged.

Given these results, we asked if it was possible to identify sets of informative input 
genes analytically, without relying on prior knowledge. We performed linear regres-
sion for every possible gene–gene pair, using cross-validation and multiple repeats. 
For each target gene (output gene), we selected the input gene that best supported 
protein abundance prediction and recorded how often each input gene appeared as 
a top correlate across all targets. Plotting the resulting degree distribution (Fig. 3D), 
we found that while controls produced correlations for up to 18 and 24 genes in H. 
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sapiens and A. thaliana, respectively, several actual input genes correlated with far 
more target genes (P = 1.1 *  10–20 for H. sapiens and P = 1.2 *  10–6 for A. thaliana, 
Mann–Whitney U-test).

We then tested whether the top 10, 20, or 40 most correlated genes as input could 
improve predictions. Again, this had only minor impact compared to our previous best 
models (Fig. 3C). Despite the limited gains, we examined the gene ontology (GO) func-
tions of these highly correlated (average  r2 > 0.8) genes. In H. sapiens, they were enriched 
for immunity-related processes, such as ‘adaptive immune response’ (FDR = 2.1 *  10–5, 
Fisher’s exact test), ‘regulation of immune system process’ (FDR = 1.9 *  10–4, Fisher’s 
exact test) and ‘immune effector process’ (FDR = 2.3 *  10–3, Fisher’s exact test). By con-
trast, in A. thaliana, top functions included ‘response to stimulus’ (FDR = 7.2 *  10–7, 
Fisher’s exact test) and specifically ‘response to light stimulus’ (FDR = 2.0 *  10–4, Fisher’s 
exact test), suggesting that environmental factors strongly influence protein abundances 
(Supplementary Table  2). These results hint that the predominant challenges faced by 
each organism – environmental variability for plants and immune challenges for mam-
mals – may shape the underlying regulatory landscape of protein homeostasis.

We suspect that insufficient data is limiting our ability to predict protein abundances 
from transcript abundances. Although we have thousands of matched transcript-protein 
pairs for identifying sequence features, the number of tissues is restricted to 29 for H. 
sapiens and 30 for A. thaliana. Even if traditional guidelines like the “rule of ten” (ten 
times more data points than variables) are not strictly applicable, a model built from 
only 29 conditions can effectively utilize at most 29 variables. In contrast, a proteins 
interaction network context involves roughly 20,000 other genes, and capturing condi-
tion-specific interaction network effects on protein abundance would therefore require 
thousands of condition-specific matched datasets – three orders of magnitude more 
than currently available.

Conclusions
We developed a CNN-based model to predict protein abundance and identify relevant 
sequence features, achieving  r2 = 0.30 for H. sapiens and  r2 = 0.32 for A. thaliana. It is 
important to note that our coefficient of determination was calculated independently 
for each gene, rather than across tissues, avoiding some of the misleading interpreta-
tions seen in previous work [42]. Despite the limitations of interaction network-based 
approaches, our model surpasses earlier sequence-based efforts by providing a frame-
work that can be extended to account for alternative, previously unseen sequences, ena-
bling more precise mRNA-dependent protein abundance predictions.

For H. sapiens, our model improves prediction performance by nearly 50% compared 
to previous sequence-based methods  (r2 = 0.19 [43] and  r2 = 0.22 [23]). Moreover, to our 
knowledge, our model is the first sequence-based predictor for A. thaliana, establishing 
a benchmark for plant studies. In Saccharomyces cerevisiae, previous attempts to pre-
dict protein abundances independent of transcript abundances have reached  r2 = 0.48 
[44]. For H. sapiens, interaction network-based methods applied to cancer cells averaged 
Pearson correlation coefficients of r = 0.49  (r2 = 0.24) [45], and a tailored ovarian cancer 
model reached r = 0.60  (r2 = 0.36) [46]. Notably, this study reported that incorporating 



Page 12 of 15Schwehn and Falter‑Braun  BioData Mining           (2025) 18:18 

the mRNA abundances of all protein interaction partners improved predictions – a fac-
tor we did not consider here.

Our combined sequence and abundance-based approach may be approaching the limit 
imposed by the current training data and might be susceptible to overfitting. Future 
work should explore integrating CNNs and other deep learning models with more 
extensive training data, as well as considering complex regulatory interactions beyond 
those examined here. Moreover, for the cross-validation genes were randomly distrib-
uted among training- and validation sets, and it is possible that homologous sequences 
cause data leakage resulting in slightly increased performance measures. The reidenti-
fication of experimentally validated sequence motifs suggest that not only correlated, 
but indeed causal sequence motifs were identified. Nonetheless, future expansion of this 
work will aim to eliminate this issue, e.g. as proposed [47]. At the same time, it is telling 
that various approaches plateau at similar performance levels, suggesting that current 
unknown factors and constraints will require new conceptual frameworks or additional 
data to achieve further improvements in predictive power.

The fact that our sequence-based model performs equally well on the more challeng-
ing, RNA-dependent PTR in multicellular A. thaliana underscores its robustness. It also 
supports the notion that approximately one-third of the variation in protein concentra-
tions is determined by intrinsic sequence features, while the remaining two-thirds arise 
from higher-level regulatory mechanisms. To model these more complex factors effec-
tively, additional training data or a better understanding of the underlying regulatory 
principles will be needed.

By examining the trained neural network, we identified key input features that not 
only improve prediction accuracy but also mirror known molecular regulatory mecha-
nisms, such as those governing translation initiation or mRNA stability. To address the 
data limits in condition-specific predictions, it may be feasible to constrain gene sets 
based on protein–protein [5, 48, 49] or protein-RNA [50, 51] interaction networks. Such 
an approach could capture a reasonable subset of the regulatory landscape, thereby 
reducing the combinatorial complexity and improving predictive performance.
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