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Circulating metabolites associated with insulin sensitivity may re-
present useful biomarkers, but their causal role in insulin sensitiv-
ity and diabetes is less certain. We previously identified novel
metabolites correlated with insulin sensitivity measured by the
hyperinsulinemic-euglycemic clamp. The top-ranking metabo-
lites were in the glutathione and glycine biosynthesis pathways.
We aimed to identify common genetic variants associated with
metabolites in these pathways and test their role in insulin sen-
sitivity and type 2 diabetes. With 1,004 nondiabetic individuals
from the RISC study, we performed a genome-wide association
study (GWAS) of 14 insulin sensitivity–related metabolites and
one metabolite ratio. We replicated our results in the Botnia
study (n = 342). We assessed the association of these variants
with diabetes-related traits in GWAS meta-analyses (GENESIS [in-
cluding RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM).
We identified four associations with three metabolites—glycine
(rs715 at CPS1), serine (rs478093 at PHGDH), and betaine
(rs499368 at SLC6A12; rs17823642 at BHMT)—and one associa-
tion signal with glycine-to-serine ratio (rs1107366 at ALDH1L1).
There was no robust evidence for association between these
variants and insulin resistance or diabetes. Genetic variants as-
sociated with genes in the glycine biosynthesis pathways do
not provide consistent evidence for a role of glycine in diabetes-
related traits. Diabetes 62:2141–2150, 2013

U
sing mass spectrometry–based metabolomic
approaches, recent studies have identified asso-
ciations between small molecules and insulin
sensitivity and type 2 diabetes (1–6). Previous

studies in the RISC (Relationship between Insulin Sensitivity
and Cardiovascular disease risk) study identified novel
associations between insulin sensitivity and small molecules
including amino acids glycine, cysteine, isoleucine, and
creatine and the organic acids a-hydroxybutyrate (a-HB)
and a-ketobutyrate (a-KB). Glycine was the amino acid
most strongly associated with increased insulin sensitivity
(4)—a finding consistent with other studies (7–9).

While some metabolites may represent important bio-
markers, the causal directions of their associations with
diabetes-related traits are uncertain. It is important to
understand the causal role, or otherwise, of these mole-
cules in order to avoid an increasingly confusing picture of
which biomarkers are causal and which are secondary to
the diabetes disease process.

The identification of genetic variants strongly associated
withmetabolitesmay provide useful tools to help understand
causal directions of correlated phenotypes. Genetic variants
are unlikely to be influenced by disease processes or envi-
ronmental factors and therefore provide robust tools in
Mendelian randomization to assess causal directions of
correlated phenotypes (10). Recently, the principle of Men-
delian randomization has been used to provide evidence for
a causal association between reduced B-type natriuretic
peptide levels and type 2 diabetes (11) and reduced sex
hormone–binding globulin levels and type 2 diabetes (12),
but the approach provided no evidence for a causal re-
lationship between raised triglycerides and increased insulin
resistance (13).

In this study, we focused on the associations of glycine
and glutathione biosynthesis pathways with type 2 dia-
betes because, apart from the strong correlations identi-
fied in the RISC study, some other recent studies have
provided evidence that high glycine level is associated
with increased insulin sensitivity and decreased type 2
diabetes risks (7–9). In addition, type 2 diabetic patients
have unrestrained gluconeogenesis and severely deficient
glutathione synthesis (14,15). Glycine supplementation can
improve deficient glutathione synthesis in type 2 diabetic
patients, and glutathione supplementation can improve
insulin sensitivity in nondiabetic individuals (15,16). We
hypothesized that glycine and glutathione pathways con-
tribute to diabetes and insulin resistance. We aimed to
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identify genetic variants influencing circulating levels of
metabolites in the glycine and glutathione pathways. We
tested these variants in Mendelian randomization analyses
to examine the potential causal role of these metabolites in
insulin resistance and type 2 diabetes.

RESEARCH DESIGN AND METHODS

We analyzed nondiabetic participants of European ancestry from four studies
who provided DNA for genome-wide genotyping and underwent a direct
measure of insulin sensitivity. The four studies include RISC (n = 957), Botnia
(n = 341), EUGENE2 consortium (European network on Functional Genomics
of type 2 diabetes; n = 577) and the Stanford Insulin Suppression Test (IST)
Cohort (n = 263). The descriptive characteristics of the RISC participants are
shown in Table 1. In brief, we excluded individuals with cryptic relatedness
using PLINK pairwise identity by descent estimation (PI_HAT .0.2). We ex-
cluded individuals with lipid disorders or diabetes, lipid medications, preg-
nancy, fasting plasma glucose $7.0 mmol/L, or 2-h plasma glucose (on a 75-g
oral glucose tolerance test) $11.0 mmol/L. The individual study character-
istics, genotyping, and phenotyping details are provided in Supplementary
Data. We performed genome-wide association studies (GWAS) for metabolites
in the RISC study, replicated the GWAS findings in the Botnia study, and
carried out Mendelian randomization analyses in RISC, EUGENE2, and
Stanford IST to test the associations of genetic variants with insulin sensitivity.
Selection and measurement of metabolites in RISC and Botnia studies.

We selected 14 metabolites for GWAS. The metabolites were selected based on
the study of Gall et al. (2010) (4). We selected metabolites that were both
available in the RISC study and associated with insulin sensitivity (3,5). Details
are shown in Table 2.

We selected metabolite ratios from the 14 metabolites based on two criteria:
1) the two metabolites were linked by one-step enzymatic reactions, and 2) the
ratio was associated with insulin sensitivity measured by hyperinsulinemic-
euglycemic clamp (M value). The glycine-to-serine ratio was the only one that
satisfiedboth criteria (Fig. 2D). In bothRISCandBotnia studies,metaboliteswere
measured using multiple-platform mass spectrometry technology (ultra-high
performance liquid chromatography and gas chromatography) as previously de-
scribed (17–19). Absolute quantitation was performed for the 14 metabolites
(Table 2) for the RISC study samples by UHPLC-MS/MS analysis (4,49).
GWAS of metabolites and metabolite ratios in RISC. The plasma
concentrations of metabolites were fitted in a linear regression model with ad-
justment for age, sex, and centers. Then, the standardized residuals were nor-
malized by inverse-normal transformation prior to GWAS. We performed GWAS
witheachmetaboliteusingMACH2QTLbasedonanadditivegeneticmodel(20,21).

For the glycine-to-serine ratio, we log 10 transformed the ratio and then
adjusted for age, sex, and center in linear regression analyses. We performed
GWAS using MACH2QTL as with single metabolites’ concentrations.
Candidate-region association study of metabolites in RISC. Some of the
key enzymes and transporters involved in the metabolism and transport of
metabolites are known. We selected 34 genes for the fourteen metabolites,
consisting of carrier-encoding or enzyme-encoding genes involved in the rate-
limiting steps of the relevant biosynthetic pathways. The genes selected are
listed in Table 2. We classified single nucleotide polymorphisms (SNPs) within
300 kb of these genes as candidate SNPs. To prioritize SNPs for follow-up, we
corrected for multiple testing of the total number of SNPs in each can-
didate region (a conservative threshold, given the correlation between SNPs).

However, we still used P value ,3 3 1029 (5 3 1028 corrected for 15 tests
[14 metabolites and one ratio]) in all available studies as the final criteria for
association.
Selection of SNPs for genotyping in Botnia and meta-analysis in RISC

Single metabolites. We used two statistical thresholds to select SNPs for
replication. First, we used P value ,5 3 1028 as the standard for genome-wide
significance in the context of common SNPs. Second, for the 34 candidate genes
(Table 2 and RESEARCH DESIGN AND METHODS), we divided 0.05 by the total number
of SNPs in the gene 6300 kb. We meta-analyzed SNP-metabolite results from
RISC and Botnia using an inverse variance–weighted approach as implemented
in STATA command “metan.” For Mendelian randomization analyses, we used
SNPs reaching P value ,3 3 1029 in the meta-analysis of the two studies.
Metabolite ratio. To validate SNPs associated with the glycine-to-serine ratio,
we linked results from the recently published Cooperative Health Research in
the Region of Augsburg (KORA) and UKtwins studies (22) to our GWAS results.
We meta-analyzed our results with those from the KORA or UKtwins studies
with a significant threshold of P value ,3 3 1029 when including all available
studies.
Effects of associated SNPs on other metabolites in the glycine and

glutathione biosynthesis pathways. We performed further analyses for the
five SNPs associated with metabolites in the glycine or glutathione biosynthesis
pathways, which include glycine, serine, betaine, a-HB, a-KB, and glycine-to-
serine ratio. We tested the associations of each SNP against the other me-
tabolite traits. We performed association analyses in the linear regression
model described in method section 3 in STATA (version 10.1).
Mendelian randomization analyses

Association of metabolite-associated SNPs in glycine biosynthesis
pathway with insulin sensitivity.We tested the role of metabolite-associated
SNPs reaching genome-wide significance with two diabetes-related traits:
hyperinsulinemic-euglycemic clamp (M value corrected for kilograms body
weight), which was a measure of whole-body insulin sensitivity, and fast-
ing insulin. M value–based measures of insulin sensitivity were corrected
for age, sex, and center and converted to SD units; and inverse normalized.
Fasting insulin was natural log transformed; corrected for age, sex, and
center; and converted to SD units. Using RISC data, we calculated two
estimates of the association between metabolite SNPs and diabetes-related
traits for each metabolite trait. First, we calculated an estimated expected
effect if there was a causal association between metabolites and diabetes-
related measures, using a triangulation approach as shown in Supplementary
Fig. 1: we calculated the correlation between standardized metabolite levels
and the two diabetes-related traits. We then multiplied these standardized
effects by that between metabolite SNPs and metabolites to estimate an
approximate expected effect size of the association between metabolite
SNPs and M value and fasting insulin. We calculated approximate expected
95% CIs based on the observed effects and SEs using the Taylor series
expansion of the ratio of two means (23). Second, we tested the observed
effect between metabolite SNPs and the two diabetes-related traits. For the
clamp-based measures of insulin sensitivity, we used three studies (RISC,
EUGENE2, and Stanford IST) and meta-analyzed results using the program
METAL (24). In EUGENE2, insulin sensitivity was measured using the same
hyperinsulinemic-euglycemic clamp–based protocol as that used by RISC
(25). In the Stanford study, insulin sensitivity was measured by steady-state
plasma glucose method. The steady-state plasma glucose value is highly in-
versely correlated to M value (r = 20.93, P , 0.001) (26), so meta-analyses
were performed between the three studies by reversing the signs of the effect
sizes in Stanford.

TABLE 1
Summary details of RISC individuals and relevant characteristics

Units
Age

(years)
BMI

(kg/m2)
FI

(pmol/L)
M value (mmol/kg
body wt/min)*

N 1,004 1,004 973 1,004
Mean 43.91 25.42 34.3 39.84
SD of mean 8.37 4.04 18.55 16.2
Median 44 24.9 30 38.33
Minimum 30 16.9 3 4.92
Maximum 61 43.9 116 114.25
Correlation with age 1
Correlation with BMI r = 0.30; P = 8.3 3 1026 1
Correlation with FI r = 0.01; P = 0.31 r = 0.11; P = 1.2 3 10268 1
Correlation with M value r = 20.04; P = 0.01 r = 20.12; P = 7.5 3 10258 r = 20.49; P = 6.4 3 10244 1

FI, fasting insulin. *M value for the clamp expressed per kilogram body weight.
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For fasting insulin measures of insulin sensitivity, we used data from the
Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC),
consisting of a meta-analysis of 23 GWAS with 27,589 individuals (27).
Association of metabolite-associated SNPs with type 2 diabetes. We
used data from the Diabetes Genetics Replication and Meta-analysis Consor-
tium (DIAGRAM) to assess the association of metabolite SNPs with type 2
diabetes. These data come from 8,130 patients with type 2 diabetes and 38,987
control subjects from eight GWAS (28).
Instrumental variable analysis. In this RISC study, where we hadmeasures
of SNPs, metabolites, and insulin sensitivity, we performed instrumental var-
iable analyses using the two-stage least squares regression approach imple-
mented in the STATA command “ivreg2.” Using the two-stage least squares
regression approach, the instrumental variable estimator bIV provides an es-
timate of the causal effects of exposure (i.e., metabolites) on outcome (i.e.,
insulin sensitivity) even in the presence of unmeasured confounders (10,29).

RESULTS

GWAS and replication of insulin sensitivity–related
metabolites. In the RISC study, we identified eight sig-
nals of interest either at genome-wide significance or
reaching a locus-wide nominal level of significance around
one of the candidate genes (Supplementary Table 2). One
of these signals represented a widely reported association
between SNPs in the FADs gene cluster and fatty acids
(27,30,31) (in our case adrenate), and we did not pursue
this association further. We successfully genotyped SNPs
representing six of the remaining seven signals in the
Botnia study (Table 3).

After meta-analysis of RISC and Botnia data (where
available), we identified four association signals with three
separate single metabolites—the amino acids glycine,
serine, and betaine—at P value ,3 3 1029. For ratios of
metabolites, we identified one signal for glycine-to-serine
ratio that when meta-analyzed with published KORA
data reached P value,331029. Details of the associations
are given in Table 3 and Fig. 1. Two SNPs associated with
serine were taken forward from the RISC GWAS but did
not replicate in the Botnia study (Table 3).
Novel associations between SNPs in two loci and
betaine levels. We identified an association between
rs499368 in the SLC6A12 gene and betaine levels (P value
1.463 10210) (Fig. 1A). This signal has not previously been
reported with any other trait and was not captured at r2 .
0.8 in the published KORA or UKtwins data. The second
association occurred between rs17823642 near a candidate

gene, BHMT, and betaine levels (P value 2.3 3 1029) (Fig.
1B). This signal has not previously been reported with any
other trait at genome-wide significance but was captured
at r2 = 1.0 by rs7732845 in the published KORA data (but
not UKtwins), and a meta-analysis of RISC, Botnia, and
KORA data (P value for KORA alone 1.983 1026) confirms
very robust evidence of association (meta-analyzed
P value 6.07 3 10214).
SNP in a known locus is associated with glycine
levels. We identified an association between rs715 in the
39 untranslated region of the CPS1 gene and glycine levels
at genome-wide significance (P value 3.30 3 10250) (Fig.
1C). This signal was not captured at r2 .0.8 in the pub-
lished KORA or UKtwins data, but a SNP (rs4673558) with
an r2 = 0.21 with rs715 is associated with glycine levels
with P value 4.3 3 10211 in the UKtwins data.
SNP in a known locus is associated with serine
levels. We identified an association between rs478093 near
the PHGDH gene and serine levels at genome-wide signifi-
cance (P value 1.52 3 1029) (SNP not available in Botnia
study) (Fig. 1D). This signal was previously reported as
associated with serine and ratios of metabolites involving
serine in the published KORA and UKtwins data (based
on rs477992 [r2 = 0.93], meta-analyzed P value 1.94 3
10214) (22).
SNP in a novel locus is associated with glycine-to-
serine ratios. We identified a previously unreported as-
sociation between rs1107366 near the ALDH1L1 gene and
glycine-to-serine ratios (P value 2.25 3 1026) (Fig. 1E).
This signal reached genome-wide significance in combi-
nation with data from the KORA and UKtwins studies
(meta-analyzed P value 2.8 3 10212) (Table 3).
Association between rs715 in CPS1 and glycine
levels is highly sex specific. The SNPs in the CPS1 lo-
cus have been previously reported with sex-specific effect
on glycine and homocysteine levels (rs7422339, r2 = 0.92
with rs715) (32,33). We observed a similar sex-specific
association between this signal and glycine levels (Sup-
plementary Fig. 2). The association was weak in males
(b = 20.19 [95% CI 20.31 to 20.08]; P value = 1.1 3 1023)
but more than four times the effect size in females (b =
20.84 [20.98 to 20.69]; P value 4.5 3 10228). The Z test
for the null hypothesis of no sex-specific effect was
rejected at P value 2.67 3 10213. This result was consistent

TABLE 2
Fourteen metabolites studied in GWAS and candidate genes in RISC (n = 1,004)

Metabolites
(mg/mL) Candidate genes

Mean
(minimum–maximum) SD Median

Correlation with
M value

r P

a-HB LDHA, LDHB, LDHC, LDHD, a-HBDH 4.50 (1.09–13.35) 1.75 4.23 20.35 1.5 3 10230

Adrenate — 0.20 (0.06–1.19) 0.09 0.18 20.19 9.0 3 10210

a-Ketoglutaric acid — 1.09 (0.00–2.92) 0.39 1.09 20.21 1.4 3 10211

a-KB CBS 0.38 (0.00–1.16) 0.21 0.36 20.28 4.4 3 10220

Betaine BHMT, CHDH 4.26 (1.16–11.92) 1.38 4.13 0.06 6.6 3 10211

Creatine CKMT1A/1B, CKMT2 4.55 (1.05–14.3) 2.19 4.13 20.18 1.4 3 1028

Decanoylcarnitine CPT1C, SLC25A20 0.04 (0–0.35) 0.04 0.03 0.14 1.3 3 1025

Glutamate NAGS, SIRT4, GLUD1 18.19 (4.99–100.26) 12.21 14.38 0.06 0.06
Glycine SHMT1/2, GLDC, GCSH 17.35 (7.05–41.53) 5.26 16.12 0.24 7.2 3 10215

Ketovaline BCAT2, BCKDHA, BCKDHB 1.59 (0.12–2.99) 0.40 1.62 20.23 7.1 3 10214

Linoleoyl-GPC PLA2G5, PLA2G12A, PLA2G2D 15.65 (5.24–39.89) 5.18 15.15 0.29 2.4 3 10221

Oleate OLAH, ACSL1 85.14 (11.91–569.89) 36.67 81.57 20.17 3.2 3 1028

Oleoyl-GPC OLAH, LCLAT, PLD1 9.81 (3.14–22.64) 2.93 9.49 0.27 1.2 3 10218

Serine PSPH, PHGDH, CBS, SDS, SHMT2 10.90 (4.61–21.75) 2.23 10.70 0.14 4.6 3 1026
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with the female-specific association previously reported
(32,33). There was no evidence that the association was
different between pre- and postmenopausal women (pre-
menopausal, effect 20.78 [20.95 to 20.61]; P value 1.57 3
10219; postmenopausal, 21.04 [21.35 to 20.73]; P value
4.57 3 10211). We did not observe any evidence of sex-
specific effects for the other metabolite SNPs.
Effects of metabolite-associated SNPs on other metab-
olites in the glycine and glutathione biosynthesis path-
ways. The effects of the five confirmed signals on the other
four single metabolites levels and glycine-to-serine ratio are
shown in Table 4, with the last column showing the effects
of metabolite–insulin sensitivity associations.
Associations of metabolite-associated SNPs with fast-
ing insulin–based and clamp-based measures of insulin
sensitivity. Associations between the five metabolite-
associated SNPs, metabolite levels, and diabetes-related
traits (fasting insulin and hyperinsulinemic-euglycemic
clamp [M value]) are shown in Table 5. There were strong
correlations between fasting insulin and metabolite levels
(0.10 , r , 0.20), as was expected, given that the me-
tabolites were selected as those correlated with a measure
of insulin sensitivity. These strong correlations between
phenotypes meant that the MAGIC data had.90% power to
detect associations at P value, 0.01 based on the estimated
expected effects between metabolite SNPs and fasting in-
sulin. However, there were no associations between me-
tabolite SNPs and fasting insulin. The effect sizes observed
in the MAGIC data were all smaller than those expected
based on the triangulation calculations.

We identified a nominal association between the
glycine-to-serine ratio–associated SNP rs1107366 near
ALDH1L1 and clamp-based measures of insulin sensi-
tivity (b = 0.09 SD [95% CI 0.03–0.15], where the allele
that raises glycine-to-serine ratios increases clamp-based
insulin sensitivity P value 0.005) (Table 5 and Supple-
mentary Table 3). The observed effect size on insulin
sensitivity (IS) was larger than the expected effect
(expected bSNP-IS = 0.03 SD [95% CI 0.01–0.04]). Results of
instrumental variable analyses in RISC were consistent
with the main results: the glycine-to-serine ratio predicted
from the rs1107366 genotypes is associated with clamp-
based insulin sensitivity (bIV = 1.00 [0.24–1.76]; P value
0.01). No other metabolite SNPs were associated with
clamp-based measures of insulin sensitivity in either the
triangulation analyses or the instrumental variable anal-
yses, including the other glycine and serine signals (rs715
and rs478093).
Association of metabolite SNPs with type 2 diabetes.
There was no evidence of association between four of
the five metabolite SNPs and type 2 diabetes, based on
the meta-analysis of case-control studies reported by the
DIAGRAM study (Supplementary Table 4). The rs715 SNP
in CPS1 associated with glycine levels was poorly captured
in the type 2 diabetes GWAS meta-analysis (28).

DISCUSSION

Using a genome-wide approach, we have identified five
associations between genetic variants and circulating levels
of three metabolites and one metabolite ratio. These metab-
olites occur in pathways strongly correlated with the gold
standard measure of insulin sensitivity (hyperinsulinemic-
euglycemic clamp) in the RISC study—primarily, the
glycine biosynthesis pathway. Three of these associationsT
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have been previously identified at genome-wide levels of
significance. We have tested the association of these var-
iants with insulin sensitivity using the largest collective set
of studies with these measures, including RISC, EUGENE2,
and Stanford.
Amino acid–associated SNPs and diabetes-related
traits. Glycine and serine are glycogenic amino acids in-
volved in hepatic gluconeogenesis and glutathione bio-
synthesis, which are potentially important pathways in
diabetes and insulin resistance. In the RISC study, glycine,
serine, and betaine were positively correlated with clamp-
based measures of insulin sensitivity and negatively cor-
related with fasting insulin. These associations are in line
with previous findings (7–9,34).

Using Mendelian randomization analyses, we assessed
whether these amino acids play a causal role in insulin
sensitivity and type 2 diabetes risks. Our Mendelian ran-
domization analyses do not support a causal association
between genetically changed glycine, serine, and betaine
levels and insulin sensitivity levels as measured by fasting
insulin or type 2 diabetes. However, for the clamp-based
measures of insulin sensitivity we observed a suggestive
association of a glycine-to-serine ratio–associated SNP,
rs1107366 (near the ALDH1L1 gene). The allele that raises
glycine-to-serine ratios increases clamp-based insulin
sensitivity. The rs1107366–insulin sensitivity association
needs further replication in a larger sample size, especially

given that other glycine or serine-associated SNPs (e.g.,
rs715 and rs478093) are not associated with insulin sensi-
tivity. The rs715 variant in CPS1, for example, explains
a greater proportion of the variance in glycine levels
(;13% compared with ;2% for rs1107366). It is also pos-
sible that rs1107366 could influence insulin sensitivity via
non–glycine-mediated (pleiotropic) effects.

In an insulin-resistant state, the increase of hepatic
gluconeogenesis would result in greater consumption of
glycogenic amino acids, which may be accentuated in
individuals with genetically influenced lower levels of
these molecules and is consistent with the hypothesis of
reverse causality (35). However, causal mechanisms in
both directions remain plausible because gluconeogenesis
is controlled in many different ways.
Biology of metabolite levels. Our data highlight some
candidate genes and protein products important in con-
trolling circulating metabolite levels. At each locus, there
is a clear candidate gene, although we cannot be certain
which gene is affected by the associated SNP.
Betaine and serine signals are in or near function-
ally relevant genes. The SLC6A12 gene is a highly
plausible candidate for influencing betaine levels. Betaine
is an osmolyte used by cells for protection against hyper-
osmotic environments (36), and SLC6A12 encodes a
highly conserved osmoregulator, which controls cellu-
lar volume by extrusion of betaine (37,38). Previous

FIG. 1. Regional association plots of the five SNP-metabolite associations in the RISC cohort. In each plot, the top panel shows the name and
location of genes in the UCSC Genome Browser. The –log 10 of P values of the imputed SNPs are plotted on the y-axis against genomic position
(NCBI Build 36) on the x-axis. The top signal is represented by a diamond. Estimated recombination rates (taken from HapMap) are plotted to
reflect the local linkage disequilibrium structure around the associated SNPs and their correlated proxies (according to a gray scale from r2 = 0 to
1, based on pairwise r2 values from HapMap Phase II CEU). chr, chromosome. (A high-quality color representation of this figure is available in the online
issue.)
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studies have shown that hyperosmolarity could induce
insulin resistance by impairing insulin receptor substrate
(IRS)-1 tyrosine phosphorylation and degradation of IRS1
and IRS2 in adipocytes (39,40). This connection may
partly explain the association of betaine with insulin
sensitivity.

The BHMT gene encodes a cytosolic enzyme that catal-
yses the conversion of betaine and homocysteine to dime-
thylglycine and methionine, respectively. The rs17823642
SNP is highly correlated with three SNPs associated with
BHMT enzyme activity and protein level (rs41272270, r2 = 1;
rs16876512, r2 = 0.925; and rs6875201, r2 = 0.925) (41).

The previously described serine GWAS signal rs478093
is in PHGDH (also known as PGDH [see 3-PGDH in Fig.
2A]), the gene product of which catalyzes the first and rate-
limiting step in the phosphorylation pathway of serine
biosynthesis.
Effect of variation at the CPS1 locus on glycine level.
The rs715 SNP represents the same association signal as
that identified between the SNP rs2216405 near CPS1 (r2 =
0.47 with rs715) and glycine levels (31), but the variance in
glycine levels explained by rs715 (12.87%) in our study
compared with the variance explained by the rs2216405
SNP (8.64%) suggests that rs715 is a better marker for the
causal variant. A recent study reported an association
between rs715 and glycine levels specific to females,
consistent with our results (32).

The enzyme encoded by CPS1 catalyzes synthesis of
carbamoyl phosphate from ammonia and bicarbonate (Fig.
2B). Patients with defects in the function or expression of
CPS1 suffer from life-threatening hyperammonemia (42). It
is possible that variants at this locus perturb the conver-
sion of ammonia and bicarbonate to carbamoyl phosphate.
We hypothesize that CPS1 variants may cause excess
ammonia, which may then lead to increased production of
glycine and tetrahydrofolate in the glycine cleavage system
(Figs. 2D and 3).
ALDH1L1 as a candidate enzyme involved in glycine
metabolism. Glycine is a key component of the folate
pathway (Fig. 3). The protein product of ALDH1L1 cata-
lyzes the conversion of 10-formyltetrahydrofolate, NADP,
and water to tetrahydrofolate, NADPH, and carbon dioxide
(Fig. 2C). Our association between a SNP near the ALDH1L1
gene and glycine-to-serine ratio implicates this enzyme in
glycine/serine conversion rate. This is in accordance with
the knowledge that the glycine cleavage system, which
accounts for ;41% of whole-body glycine flux, is tightly
linked with tetrahydrofolate in folate metabolism (43) (Fig.
2D and 3).
Sex-specific effect at CPS1 locus on glycine and
homocysteine levels. We observed a sex-specific asso-
ciation of CPS1 variants on glycine levels. This is consis-
tent with the findings of Mittelstrass et al. (2011) (32). The
variants at the CPS1 locus also have female-specific effects
on homocysteine levels (33), and the glycine-raising allele
is associated with raised homocysteine (44).
Links between glycine, serine, homocysteine, and
betaine in folate and homocysteine metabolism.
Glycine, serine, and betaine are linked to homocysteine
and folate metabolism (44,45) (Fig. 3). The CPS1 variant
rs715 is strongly correlated with rs7422339 (r2 = 0.92),
which was previously reported to be associated with
homocysteine and folate levels (33). House, O’Connor, and
Guenter (44) demonstrated that the plasma concentrations
of homocysteine, glycine, and serine were all elevated in
folate-deficient rats. From the link between betaine andT
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homocysteine in the reaction catalyzed by BHMT, we hy-
pothesized that if rs17823642 is associated with betaine
level through reduced functioning of BHMT, then it would
result in elevation of not only betaine but also homocysteine
levels (46). We assessed the effect of rs17823642 on homo-
cysteine levels in an independent European study (Invec-
chiare in Chianti, aging in the Chianti area [InCHIANTI]). We
observed a nominal association in females (n = 575; b = 0.26

[95% CI 0.07–0.44]; P value 5.93 1023) but not in males (n =
458; b = 20.02 [20.25 to 0.21]; P value 0.87), where the
betaine-raising allele also correlated with increased homo-
cysteine levels. However, this association requires further
confirmation with a larger sample size.
Limitations. There are a number of limitations in our
study. First, the triangulation approach for estimating ex-
pected effects does not take into account the complicated

FIG. 2. Schematics of metabolic pathways relevant to SNP-metabolite associations. PSAT, phosphoserine aminotransferase.

FIG. 3. Links between glycine, serine, folate, homocysteine, and betaine in folate metabolism and homocysteine metabolism. Enzymes (1): dihy-
drofolate reductase (2), serine hydroxymethyltransferase (3), glycine synthase (also called glycine cleavage enzyme) (4), methylenetetradydrofolate
reductase (5), methionine synthase (the other name of 5-methyltetrahydrofolate-homocysteine methyltransferase) (6), and betaine-homocysteine
methyltransferase. Modified from House et al. (44) and Van Tellingen et al. (45). (A high-quality color representation of this figure is available in the
online issue.)

GLYCINE METABOLISM AND INSULIN SENSITIVITY

2148 DIABETES, VOL. 62, JUNE 2013 diabetes.diabetesjournals.org



feedback mechanisms and interactions involved in con-
trolling metabolite levels. The SNPs that we identified are
associated with several metabolites (Table 4), which means
that they do not provide specific instruments for one me-
tabolite. However, the associations for any one SNP are all
with metabolites closely connected in well-annotated path-
ways and therefore provide an instrument to test the
relationship between alterations in those pathways and
diabetes-related outcomes.

Second, our estimated effects are approximate, with
metabolite levels only measured in RISC and observed
estimates coming from separate studies. Nevertheless, the
size of the MAGIC study provided very good power to see
the expected very small effects on fasting insulin levels.

Finally, we have only been able to assess some of the
many metabolites associated with insulin sensitivity. The
metabolites selected in our study were those most strongly
associated with clamp-measured insulin sensitivity in the
RISC study (4), and we focused efforts on these metabolite
traits. Some recent studies have reported other metabo-
lites associated with dysglycemia (e.g., branched chain
and aromatic amino acids) (3,5,47,48), but these metabo-
lites have not been measured in RISC study.

In conclusion, our study provides novel insight into the
genetic regulation of metabolite levels, particularly those
involved in the glycine-related pathways closely correlated
to insulin sensitivity. Genetic variants associated with
metabolite levels provide an important approach to help-
ing unravel the functional role of the metabolic pathways
that influence diabetes-related traits.
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