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A B S T R A C T

Objective: Individuals at increased risk of type 2 diabetes have recently been classified into six prediabetes clusters, 
which stratify the risk of progression to diabetes and diabetes complications. Clusters 1, 2 and 4 are low-risk clusters 
while clusters 3, 5 and 6 are high-risk clusters; individuals in cluster 6 have an elevated risk of nephropathy and all- 
cause mortality despite delayed onset of diabetes. The urinary peptidome classifiers CKD273 (chronic kidney disease, 
CKD), HF2 (heart failure, HF) and CAD238 (coronary artery disease, CAD) are based on unique urinary peptide 
patterns and have shown potential for identifying individuals at risk for CKD and cardiovascular pathologies. This 
observational study investigates whether peptidome classifiers can differentiate complication risks across the pre
diabetes clusters and if a novel combination of peptides can distinguish high-risk from low-risk prediabetes clusters.
Methods: Urine peptidome analysis was performed on spot urine samples from individuals across 6 prediabetes 
clusters (n = 249) and 19 individuals with screen-detected diabetes (study cohorts at University Hospital 
Tübingen, Germany from 11/2004 to 11/2012). Predefined urinary classifiers were calculated for each partic
ipant. Lasso regression analysis was used to identify an optimal combination of peptides distinguishing low- 
Schlesinger et al. (2022), Wagner et al. (2021) [1,2,4] and high-risk (Rooney et al., 2021; Wagner, 2023; 
Latosinska et al., 2021 [3,5,6]) clusters.
Results: The predefined urinary peptidome classifiers CKD273, HF2 and CAD238 differed significantly across 
prediabetes clusters, particularly with elevated values in cluster 6 compared to the healthiest cluster 2. CKD273, 
HF2 and CAD238 were inversely associated with insulin sensitivity indexes. Machine Learning identified a 
combination of 112 urinary peptides that differentiated low-risk from high-risk prediabetes clusters (AUC-ROC 
0.868 (95 % CI 0.755–0.981)).
Conclusions: Urinary peptidome classifiers support the increased risk of CKD and suggest an elevated risk of heart 
failure and coronary artery disease in the high-risk prediabetes cluster 6. Urine peptidomics show promising 
potential as a tool for identifying high-risk prediabetes individuals and guiding early preventive interventions.
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1. Introduction

Prediabetes is an intermediary phenotype of hyperglycemia, char
acterized by elevated blood glucose levels that do not meet the diag
nostic criteria for diabetes. However, the condition is already associated 
with an elevated risk of diabetes-related complications and comorbid
ities [1]. Prediabetes prevalence is as high as 40 % of the adult popu
lation in some countries, such as the United States [2]. Nevertheless, 
preventive interventions are challenging, as many individuals with 
prediabetes are asymptomatic, and there is a large interindividual 
variance in the risk of both progression to diabetes and associated 
complications [3]. Additionally, examination methods for prediabetes 
screening lack scalability. The heterogeneity of metabolism before dia
betes development led to the identification of six prediabetes clusters 
that differentiate risk of diabetes or diabetic complications [4] (Fig. 1): 
Cluster 1, 2 and 4 represent low-risk clusters with low risk of developing 
diabetes and diabetic complications. Healthy individuals are found in 
clusters 1 and 2, with cluster 2 people also being of normal weight. 
Cluster 4 contains overweight people with comparatively healthy 
metabolism. In contrast, clusters 3, 5 and 6 are high-risk clusters. In
dividuals in clusters 3 and 5 have an elevated risk of progression to 
diabetes, with low insulin secretion in cluster 3 and fatty liver and in
sulin resistance in cluster 5. Individuals in cluster 6 have an elevated risk 
of chronic kidney disease and all-cause mortality although they are not 
at immanent risk of diabetes [4]. The classification of individuals with 

prediabetes into clusters has the potential to open new avenues for 
personalized risk assessment and targeted interventions to prevent the 
development of diabetes and its complications [4,5].

The present observational study aimed to further characterize pre
diabetes clusters using a urine peptidome analysis. There are predefined 
urinary classifiers based on unique urinary peptides that have shown 
potential in identifying individuals at risk of various renal and cardio
vascular pathologies [6]. CKD273 is a urinary peptide classifier devel
oped for early detection of chronic kidney disease (CKD) [7,8]. CKD273 
is based on 273 urinary peptides that were identified by comparing a 
training set of n = 230 patients with CKD and n = 379 healthy controls, 
and validated in a separate test set containing n = 110 CKD patients and 
n = 34 healthy controls receiving an AUC of 0.96 [7]. The urinary 
classifier HF2 is a marker of heart failure (HF) and combines 671 urinary 
peptides identified in a cohort of n = 98 patients with left ventricular 
dysfunction and n = 98 matched controls [9]. HF2 correlated with LV 
dysfunction, measured by echocardiography, in a separate test set (odds 
ratio 1.38 (1.00–1.90; p = 0.052)) [9]. The classifier CAD238 combines 
238 urine peptides to differentiate patients with coronary artery disease 
(CAD, n = 204 in the training set) from healthy controls (n = 382) [10]. 
CAD238 was validated in a test set of n = 71 CAD patients and n = 67 
healthy controls, reaching an AUC of 0.87 (95 % CI 0.81–0.92) [10] and 
was reevaluated in 60 urine samples (32 cases; 28 controls) for the 
prediction of cardiovascular events (Kaplan-Meier p = 0.021) [11].

The combination of prediabetes clusters and urinary peptide markers 

Fig. 1. Subphenotypes and classification into prediabetes clusters and flow chart of the study participants. 
Partly adapted from [36]. Abbreviations: CE-MS, capillary electrophoresis coupled mass spectroscopy.
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presents a promising approach for early risk assessment in individuals 
with an increased risk of diabetes. Prediabetes clusters, characterized by 
diverse metabolic disturbances, also provide further opportunities to 
examine the utility of CKD273, HF2, and CAD238 as biomarkers for 
early risk identification.

2. Material and methods

2.1. Sample collection and study cohort

Individuals at increased risk of type 2 diabetes were metabolically 
phenotyped, and single spot urine samples were collected at the Uni
versity Hospital Tübingen from 11/2004 to 11/2012 (TUEF/TULIP 
cohort, [12]). These cohorts included individuals with at least one of the 
following: a family history of type 2 diabetes, BMI > 27 kg/m2, impaired 
fasting glucose (IGT, fasting blood glucose ≥7.78 mmol/l), or a previous 
diagnosis of gestational diabetes, but no diagnosed diabetes [12]. Phe
notyping included assessment of insulin sensitivity by the Matsuda in
sulin sensitivity index (Matsuda-ISI) [13] and an insulin sensitivity 
index based on insulin and non-esterified fatty acids (NEFA-ISI) [14]. 
Cluster assignment was performed as described previously [4]. Urine 
samples with leukocyturia were excluded from the analysis. As cluster 1 
comprised the lowest number of participants, participants from cluster 1 
with available urine samples were selected (n = 44), and this number of 
patients was used as reference. A similar number of age and sex matched 
participants was selected from the other clusters (clusters 2, 3, 4, 5, and 
6). The study cohort included also persons with screen-detected mani
fest diabetes at study entry, who were subsequently classified as par
ticipants with type 2 diabetes (n = 19, Fig. 1). Protein excretion was 
overall low with values below the threshold for microalbuminuria (<30 
mg/g creatinine) in most of the cohort (Table 1).

2.2. Peptidome analysis

The urine peptides in spot urine samples were investigated using 
capillary electrophoresis coupled mass spectroscopy (CE-MS). The pro
cedures for CE-MS analysis, encompassing sample preparation, mea
surement, peptide sequencing, data processing and calibration, have 
been extensively documented previously [15–17]. In summary, a P/ 
ACEMDQCE system (Beckman Coulter, Fullerton, CA, USA) coupled 
with a Compact Q-TOF-MS (Bruker Daltonic, Bremen, Germany) was 
employed for CE-MS analysis. Peptide separation was achieved by 
reverse polarity at 25 kV. A running buffer comprising 20 % acetonitrile 
(Sigma-Aldrich, Taufkirchen, Germany) in high-performance liquid 

chromatography-grade water (Roth, Karlsruhe, Germany), supple
mented with 0.94 % formic acid (Sigma-Aldrich), was utilized. The ESI 
sprayer (Agilent Technologies, Palo Alto, CA) was grounded, and the ion 
spray interface potential was set between − 4 and − 4.5 kV. Spectra were 
recorded over an m/z range of 350 to 3000 and accumulated every 3 s. 
After the CE-MS analysis, mass spectral ion peaks representing identical 
molecules at different charge states were deconvoluted into single 
masses using MosaFinder software [18]. Reference signals of 29 abun
dant peptides served as internal standards for signal intensity calibration 
using linear regression [15]. This calibration procedure is highly 
reproducible and addresses both analytical and dilution variances in a 
single step. The resulting peak list characterized each polypeptide by its 
calibrated molecular mass (Da), calibrated capillary electrophoresis 
migration time (minutes), and normalized signal intensity. All detected 
peptides were deposited, matched, and annotated in a Microsoft SQL 
database, facilitating further statistical analysis. Detailed technical as
pects of the analytical process have been elucidated in prior publications 
[17,19,20]. The following urinary classifiers as previously defined and 
validated combinations of urinary peptides for detection of chronic 
kidney disease and cardiovascular conditions were applied: CKD273 
(chronic kidney disease), HF2 (heart failure) and CAD238 (coronary 
artery disease). The classification scores for each classifier were calcu
lated using a support vector machine (SVM) algorithm, integrated into 
the MosaCluster software.

2.3. Statistical analysis

Mean and standard deviation (SD) are reported for continuous var
iables after test for normal distribution. Number and percentage are 
reported for categorical variables. ANOVA and Chi2 test were used to 
test for differences between all groups of participants, and t-test with 
Bonferroni correction was used for pairwise comparisons. Correlations 
of continuous variables were analyzed with Pearson's product moment 
correlation and linear regression model. Outliers defined as values 
outside 1.5 * IQR of Q1 and Q3 were excluded for NEFA-ISI and Mat
suda-ISI.

Machine learning was performed using lasso regression to identify a 
new combination of urinary peptides differentiating between high and 
low-risk clusters. Lasso (Least Absolute Shrinkage and Selection Oper
ator) regression is a type of a linear regression model that uses a regu
larization with a penalty term called lambda to shrink the coefficients of 
less important features towards zero. For the lasso regression, partici
pants were dichotomized into low-risk (cluster 1, 2 and 4) and high-risk 
(cluster 3, 5 and 6) clusters. A stratified random split into a 80 % training 

Table 1 
Characteristics of the study cohort.

Total cohort Cluster 1 + 2 + 4 Cluster 3 Cluster 5 Cluster 6 Diabetes mellitus p-value

Cluster definition Low-risk Beta-cell failure High-risk 
insulin-resistant 
fatty liver

High-risk 
visceral fat 
Nephropathy

Number 268 123 40 43 43 19

Age, years 46 ± 11 45 ± 11 48 ± 11 45 ± 10 45 ± 12 49 ± 11 n.s.
Gender, male 152 (61 %) 71 (66 %) 20 (50 %) 27 (63 %) 22 (54 %) 12 (67 %) n.s.
BMI, kg/m2 34 ± 9 29 ± 5 29 ± 3 41 ± 7 44 ± 9 37 ± 10 <0.001
HbA1c, % 5.5 ± 0.4 5.4 ± 0.3 5.6 ± 0.4 5.8 ± 0.4 5.6 ± 0.4 6.5 ± 1.0 <0.001
eGFR (CKD-EPI), ml/min/1.73m2 95 ± 16 94 ± 15 88 ± 18 103 ± 10 98 ± 15 91 ± 18 <0.001
UACR, mg/g Crea 12.65 ± 14.5 9.31 ± 12.6 9.82 ± 8.0 11.82 ± 9.1 23.74 ± 27.59 16.96 ± 21.78 0.001
medication with RAAS inhibitor 63 (23.5 %) 25 (20.3 %) 7 (17.5 %) 13 (30.2 %) 12 (27.9 %) 6 (31.6 %) 0.142
Matsuda-ISI 11.7 ± 6.7 16.0 ± 5.8 12.2 ± 4.7 5.1 ± 2.6 6.8 ± 3.0 7.5 ± 5.1 <0.001
NEFA-ISI 3.2 ± 1.6 4.2 ± 1.3 3.5 ± 1.0 1.5 ± 0.6 1.7 ± 0.5 2.5 ± 1.7 <0.001
CKD273 − 0.72 ± 0.34 − 0.78 ± 0.32 − 0.62 ± 0.32 − 0.74 ± 0.36 − 0.66 ± 0.39 − 0.66 ± 0.37 0.034
HF2 − 0.85 ± 0.45 − 0.93 ± 0.41 − 0.84 ± 0.51 − 0.85 ± 0.39 − 0.62 ± 0.49 − 0.85 ± 0.57 0.005
CAD238 − 0.37 ± 0.30 − 0.41 ± 0.26 − 0.45 ± 0.30 − 0.29 ± 0.26 − 0.26 ± 0.39 − 0.44 ± 0.28 0.002

Abbreviations: UACR, urinary albumin to creatinine ratio; RAAS, Renin angiotensin aldosterone system; CKD, chronic kidney disease; HF, heart failure; CAD, coronary 
artery disease; Matsuda-ISI, Matsuda insulin sensitivity index; NEFA-ISI, insulin sensitivity index based on insulin and non-esterified fatty acids.
Values are mean and SD or number and percentage. P values are from ANOVA or chi2 test.
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and a 20 % test set was performed. Lasso regression was performed and 
the optimal lambda with the highest accuracy was selected for the final 
model. Performance of the model was tested with Receiver operating 
characteristic (ROC, with reporting area under the curve, AUC with 95 
% confidence interval, CI) and a confusion matrix to calculate precision 
score, recall score, F1 score, sensitivity and specificity. To analyze the 
number of individuals needed to be screened to identify one true posi
tive case, the Screening Efficiency Ratio (SER) was calculated as follows: 
true positive [TP] + false positive [FP] + true negative [TN] + false 

negative [FN]) / TP; reversely, the False Negative Burden Ratio (FNBR) 
was calculated as (TP + FP + TN + FN) / FN to define the number of 
cases screened while missing one case, as suggested by Kokkorakis et al. 
[21]. A complementary statistical approach of variable selection was 
additionally performed based on the work of Guo et al. [22] as follows: 
Variable importance scores were obtained using the varimp function of 
the caret package [23] and features were ordered by importance. 
Starting with the most important feature, logistic regression models 
were trained on the training set and tested on the test set, and iteratively 

Fig. 2. Urinary peptidome classifier CKD273 in prediabetes clusters (A) and correlation with insulin sensitivity indices in prediabetes persons (B, Matsuda-ISI and C, 
NEFA-ISI). 
Abbreviations: CKD, chronic kidney disease; Matsuda-ISI, Matsuda insulin sensitivity index; NEFA-ISI, insulin sensitivity index based on insulin and non-esterified 
fatty acids.
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extended by the next most important feature from the ordered list. The 
AUC-ROC of each new model was compared to the previous one using 
DeLong's test to determine if the improvement was statistically signifi
cant. All analyses were performed using the statistical software R 
version 4.1.2. Statistical significance was defined as a significance 
threshold of p < 0.05.

3. Results

3.1. Characteristics of study cohort and urinary classifiers

Mean age of the entire cohort was 46 ± 11 years and 61 % of the 
participants were males, with no significant difference across the pre
diabetes clusters, as participants were age- and sex-matched (Table 1). 
BMI, HbA1c and insulin sensitivity differed across groups, as expected 
from the cluster definitions (Table 1).

To better interpret the investigation of urinary peptide-based clas
sifiers in the present study cohort, the overlap between the classifiers 

was examined by comparing the peptides included in the classifiers and 
assessing whether the change (up- or down-regulation) occurred in the 
same direction. The predefined classifiers CKD273, CAD238, and HF2 
include 273, 238, and 671 peptides, respectively. Across all three clas
sifiers, an overlap of 17 peptides was observed. CKD273 and CAD238 
share 26 common peptides, CAD238 and HF2 share 102 peptides, and 
CKD273 and HF2 share 100 peptides (Suppl. Table 1).

3.2. CKD273 in prediabetes clusters

The urinary peptide-based classifier CKD273 was significantly 
different across prediabetes clusters (p = 0.023) and marginally signif
icant in the total cohort, which included individuals with diabetes (p =
0.058, Table 1). Higher values of CKD273 were found in clusters 3 and 6 
and in persons with diabetes (Table 1). CKD273 was significantly higher 
in cluster 3 and had a trend of being significantly higher in cluster 6, all 
compared to the healthiest cluster 2 (p = 0.018 and p = 0.078, Fig. 2 A). 
CKD273 inversely associated with Matsuda-ISI (p = 0.0400; r2 = 0.0258) 

Fig. 3. Urinary peptidome classifier HF2 in prediabetes clusters (A) and correlation with insulin sensitivity indices in prediabetes persons (B, Matsuda-ISI and C, 
NEFA-ISI). 
Abbreviations: HF, heart failure; Matsuda-ISI, Matsuda insulin sensitivity index; NEFA-ISI, insulin sensitivity index based on insulin and non-esterified fatty acids.
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and NEFA-ISI (p = 0.0143; r2 = 0.0360; Fig. 2 B and C; adjusted for age, 
sex, BMI).

3.3. HF2 in prediabetes clusters

The urinary peptide-based classifier HF2 showed significant differ
ences in participants from different prediabetes clusters and with dia
betes (ANOVA p = 0.008, Table 1). HF2 was highest in cluster 6 with 
significant differences to clusters 2 and 4 (p = 0.001 and p = 0.026, 
Fig. 3 A). HF2 inversely associated with Matsuda-ISI (p < 0.0001; r2 =

0.1036) and NEFA-ISI (p < 0.0001; r2 = 0.1003; Fig. 3 B and C; adjusted 

for age, sex, BMI).

3.4. CAD238 in prediabetes clusters

The urinary peptide-based classifier CAD238 showed significant 
differences in participants of different prediabetes clusters and with 
diabetes (ANOVA p = 0.007, Table 1). CAD238 was highest in clusters 5 
and 6 (Table 1) with highest values in cluster 6 and significant or 
trending significant differences between cluster 6 vs. cluster 2 and 3, 
respectively (p = 0.039 and p = 0.081, Fig. 4 A). CAD238 inversely 
associated with Matsuda ISI (p < 0.0001; r2 = 0.0999) and NEFA-ISI (p 

Fig. 4. Urinary peptidome classifier CAD238 in prediabetes clusters (A) and correlation with insulin sensitivity indices in prediabetes persons (B, Matsuda-ISI and C, 
NEFA-ISI). 
Abbreviations: CAD, coronary artery disease; Matsuda-ISI, Matsuda insulin sensitivity index; NEFA-ISI, insulin sensitivity index based on insulin and non-esterified 
fatty acids.
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< 0.0001; r2 = 0.1060; Fig. 4 B and C; adjusted for age, sex, BMI).

3.5. Lasso regression of urinary peptides differentiating low-risk vs. high- 
risk clusters

A total of 1621 sequenced urinary peptides were detected by CE-MS 
with a frequency threshold of 30 %. To identify a combination of urinary 
peptides differentiating high-risk from low-risk clusters, machine 
learning analysis was performed with lasso regression, as described in 
the methods section, taking accuracy as selection criterion for the 
optimal model. The optimal combination comprised 112 urinary pep
tides (Fig. 5 A, Suppl. Table 2). Th feature contribution of the lasso 
model peptides is shown in Fig. 2 B. The model predicted low-risk vs. 
high-risk clusters in the test set with an area under the receiver operating 
characteristic curve (AUC-ROC) of 0.868 (95 % CI 0.755–0.981; Fig. 5
C), a sensitivity of 72 % and a specificity of 83 % (Fig. 5 D). The 
Screening Efficiency Ratio (SER), defined as true positive [TP] + false 
positive [FP] + true negative [TN] + false negative [FN]) / TP was 18 +
4 + 20 + 7 / 18 = 2,72. The False Negative Burden Ratio (FNBR), 
defined as TP + FP + TN + FN / FN was 18 + 4 + 20 + 7 / 7 = 7. 
Comparison of the lasso regression model with the predefined urinary 
peptide-based classifiers revealed only one common peptides with 
CKD273, and no overlap with CAD283 and HF2 (Suppl. Table 2). As an 
alternative approach to identify an optimum set of proteins explaining 
the difference between the low risk and high-risk clusters, an iterative 
model fitting approach was used, as described in the methods section 
(Suppl. Fig. 1). An optimum model was not identified due to the lack of 
significant differences between iterations. An AUC-ROC of 0.775 was 
reached after 5 steps. With n = 74 peptide variables, the AUC-ROC of the 
model reached 0.853, approaching the AUC of the lasso model. The n =
5 peptides with the highest importance are printed bold in Suppl. 
Table 2.

4. Discussion

The prediabetes clusters delineate groups of individuals with similar 
metabolic status before the onset of diabetes and stratify populations for 
the risk of developing diabetes and complications of diabetes, such as 
CKD [4,24]. Prediabetes clusters 3 and 5 are associated with an elevated 
risk of developing diabetes [4]. Individuals in cluster 6 have an elevated 
risk of CKD and all-cause mortality, but only a moderate risk of devel
oping overt diabetes mellitus [4]. Consistent with this, a slightly 
increased urinary albumin excretion was already detectable in cluster 6. 
In the current urinary peptidome analysis, an association between the 
investigated urinary peptidome classifiers and insulin sensitivity was 
observed. Insulin sensitivity plays a major role in renal hemodynamics, 
as well as podocyte viability and tubular function, such that insulin 
resistance has long been discussed as a driver of diabetic kidney disease 
[25]. The CKD-related classifier CKD273 in clusters 3 and 6 was as high 
as in individuals with diabetes mellitus (Table 1). This aligns with the 
increased risk of kidney disease in cluster 6 and suggests that the 
biomarker CKD273 captures the elevated CKD risk in cluster 6. Indeed, 
in patients with diabetes, CKD273 has been shown to be associated with 
an increased risk of development of microalbuminuria over a median 
follow-up of 2.5 years [8]. Notably, urine peptidome analysis requires 
only one urine sample, and does not need a functional test, such as an 
OGTT, for cluster assignment. CKD273 may therefore be a readily 
implementable tool to detect prediabetes persons at risk for CKD.

The cause of increased mortality in cluster 6 has so far been elusive 
[4]. In the current analysis, the cardiovascular disease-related classifiers 
HF2 and CAD238 were elevated in prediabetes cluster 6. These results 
indicate an increased risk of heart disease, such as CAD and HF, in 
persons of prediabetes cluster 6, which may underlie the previously 
unexplained increased mortality. This is further supported by recent 
work showing higher mortality in high-risk prediabetes clusters in a 
cohort undergoing coronary angiography [24].

The current study highlights the potential of urinary peptidome 
analysis in identifying persons of high-risk prediabetes clusters and 
facilitating early risk stratification before the onset of diabetes. Lifestyle 
intervention is the recommended approach for managing prediabetes, 
according to current guidelines. However, with prediabetes affecting 
over 25 % of the population in the US and Europe, and the limited 
scalability of lifestyle interventions, effective implementation poses 
significant challenges [2]. Stratifying prediabetes into biologically 
similar groups facilitates identification of subpopulations that respond 
differently to lifestyle interventions [26,27]. Regarding pharmacolog
ical approaches, SGLT2 inhibitor treatment did not improve whole-body 
insulin sensitivity or insulin secretion in an unstratified prediabetes 
population [28,29]. Identifying individuals with high-risk prediabetes 
probably improves selection of those who would most benefit from a 
medical treatment, including time-intensive lifestyle intervention or 
pharmacological approaches [30].

In the current study, a set of urinary peptides was able to differen
tiate high- and low-risk prediabetes clusters. The urinary classifier 
CKD273 has demonstrated effectiveness in identifying high-risk patients 
with type 2 diabetes [31] and monitoring therapeutic success in patients 
with diabetes [8,32]. Urinary peptide classifiers have also been able to 
predict in silico treatment efficacy in cardiovascular disease and CKD 
[33]. The combined evidence suggests that urinary peptidome mea
surements are a promising tool for monitoring the success of interven
tion in prediabetes or specific clusters of prediabetes. Prediabetes with 
fluctuating hyperglycemia is also common and needs to be stratified in 
vulnerable cohorts with potential altered physiology, such as kidney or 
liver transplant recipients [34,35]. Urinary peptidome analysis, 
requiring a single urine sample and potentially repeated measurement 
over time, has the potential to improve the selection of individuals who 
would benefit most from the time- and cost-intensive interventions.

The present study is limited by the available sample size and retro
spective single-measurement nature of the data. Another limitation of 
the study is the lack of external validation of the peptide combination 
distinguishing low- and high-risk prediabetes. However, it is the first 
study to investigate use of urinary peptidome analysis for risk stratifi
cation in prediabetes.

5. Conclusion

In conclusion, urinary peptidome classifiers corroborate the 
increased risk of CKD and suggest an elevated risk of heart failure and 
coronary artery disease in individuals from prediabetes cluster 6, 
providing an explanation for the increased mortality independent of 
diabetes development in this high-risk prediabetes cluster. Urinary 
peptidome analysis and investigation of urinary peptide-based classi
fiers facilitate the selection of individuals with prediabetes who are at 
high risk for complications and are most likely to benefit from thera
peutic intervention.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.metabol.2025.156174.
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[32] Curovic VR, Eickhoff MK, Rönkkö T, Frimodt-Møller M, Hansen TW, Mischak H, 
et al. Dapagliflozin improves the urinary proteomic kidney-risk classifier CKD273 
in type 2 diabetes with albuminuria: a randomized clinical trial. Diabetes Care 
2022;45(11):2662–8.

[33] Jaimes Campos MA, Andújar I, Keller F, Mayer G, Rossing P, Staessen JA, et al. 
Prognosis and personalized in silico prediction of treatment efficacy in 
cardiovascular and chronic kidney disease: a proof-of-concept study. 
Pharmaceuticals (Basel) 2023;16(9).

[34] Guthoff M, Wagner R, Weichbrodt K, Nadalin S, Königsrainer A, Häring HU, et al. 
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